
ADVANCED	SQL	I

CS	564- Spring	2018

ACKs:	Dan	Suciu,	Jignesh Patel,	AnHai Doan

WHAT IS THIS LECTURE ABOUT

• SQL:	Set	Operators
– UNION/EXCEPT/INTERSECT
– duplicates	in	SQL

• SQL:	Nested	Queries
– IN/EXISTS/ALL
– correlated	queries

2CS	564	[Spring	2018]	- Paris	Koutris

SET AND MULTISET OPERATORS

3CS	564	[Spring	2018]	- Paris	Koutris

SET OPERATORS:	REFRESHER

4CS	564	[Spring	2018]	- Paris	Koutris

𝑅	 =	 {1, 2, 3} 𝑆	 =	 {1, 2, 4, 5}

• Intersection:							 	𝑅	 ∩ 𝑆 = {1, 2}
• Union: 𝑅	 ∪ 𝑆 = 1, 2, 3, 4, 5
• Difference: 𝑅	 − 𝑆 = 3

	𝑆 − 𝑅 = {4, 5}

SET OPERATORS IN SQL

SQL	supports	set	operations	between	the	outputs	of	
subqueries:	

• (subquery)	INTERSECT (subquery)
• (subquery)	UNION (subquery)
• (subquery)	EXCEPT (subquery)

5CS	564	[Spring	2018]	- Paris	Koutris

SET OPERATORS:	INTERSECT

6CS	564	[Spring	2018]	- Paris	Koutris

A
1
1
1
2
3

A
1
1
2
2
4
5

SR

SELECT A FROM R
INTERSECT
SELECT A FROM S;

A
1
2

output

Returns	the	tuples	that	belong	
in	both subquery results

SET OPERATORS:	UNION

7CS	564	[Spring	2018]	- Paris	Koutris

A
1
1
1
2
3

A
1
1
2
2
4
5

SR

SELECT A FROM R
UNION
SELECT A FROM S;

A
1
2
3
4
5

output

Returns	the	tuples	that	belong	
in	either	subquery results

SET OPERATORS:	EXCEPT

8CS	564	[Spring	2018]	- Paris	Koutris

A
1
1
1
2
3

A
1
1
2
2
4
5

SR

SELECT A FROM R
EXCEPT
SELECT A FROM S;

A
3

output

Returns	the	tuples	that	belong	
in	the	first	and	not the	second	
subquery result

SEMANTICS

• When	using	set	operators,	SQL	eliminates	all	
duplicate	tuples

• We	can	modify	the	semantics	by	using	the	
keyword	ALL (e.g.		UNION ALL)

• When	using	ALL,	the	operators	are	evaluated	using	
multiset (or	bag)	semantics

9CS	564	[Spring	2018]	- Paris	Koutris

SET OPERATORS:	UNION ALL

10CS	564	[Spring	2018]	- Paris	Koutris

A
1
1
1
2
3

A
1
1
2
2
4
5

SR

SELECT A FROM R
UNION ALL
SELECT A FROM S;

A
1
1
1
1
1
2
2
2
3
4
5

output

The	number	of	copies	of	each
tuple	is	the	sum of	the	number	
of	copies	in	the	subqueries

SET OPERATORS:	INTERSECT ALL

11CS	564	[Spring	2018]	- Paris	Koutris

A
1
1
1
2
3

A
1
1
2
2
4
5

SR

SELECT A FROM R
INTERSECT ALL
SELECT A FROM S;

A
1
1
2

output

The	number	of	copies	of	each
tuple	is	the	minimum	of	the	
number	of	copies	in	the	subqueries

SET OPERATORS:	EXCEPT ALL

12CS	564	[Spring	2018]	- Paris	Koutris

A
1
1
1
2
3

A
1
1
2
2
4
5

SR

SELECT A FROM R
EXCEPT ALL
SELECT A FROM S;

A
1
3

output

The	number	of	copies	of	each
tuple	is	the	difference	(if	positive)
of	the	number	of	copies	in	the	
subqueries

DISCUSSION ON DUPLICATES

• When	doing	projection:
– easier	to	avoid	eliminating	duplicates
– tuple-at-a-timeprocessing

• When	doing	intersection,	union	or	difference:
– more	efficient	to	sort the	relations	first
– at	that	point	you	may	as	well	eliminate	the	duplicates	
anyway

13CS	564	[Spring	2018]	- Paris	Koutris

NESTED QUERIES

14CS	564	[Spring	2018]	- Paris	Koutris

NESTED QUERIES

A	parenthesized	SELECT-FROM-WHERE	statement	
(subquery)	can	be	used	as	a	value	in	a	number	of	
places:
• in	FROM clauses
• in	WHERE clauses

15CS	564	[Spring	2018]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.code =

(SELECT C.CountryCode
FROM City C
WHERE C.name = 'Berlin');

Can	you	rewrite	this	query	without	a	subquery (unnesting)?

NESTING

• We	can	write	nested	queries	because	the	SQL	
language	is	compositional

• Everything	is	represented	as	a	multiset
• Hence	the	output	of	one	query	can	be	used	as	the	
input	to	another	(nesting)

16CS	564	[Spring	2018]	- Paris	Koutris

NESTED QUERIES

Find	all	countries	in	Europe	with	population	more	
than	50	million

17CS	564	[Spring	2018]	- Paris	Koutris

SELECT C.Name
FROM (SELECT Name, Continent

FROM Country
WHERE Population >50000000) AS C

WHERE C.Continent = 'Europe' ;

Can	you	unnest this	query?

SET-COMPARISON OPERATOR:	 IN

Find	all	countries	in	Europe	that	have	some city	with	
population	more	than	5	million

18CS	564	[Spring	2018]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND C.Code IN (SELECT CountryCode

FROM City
WHERE Population > 5000000);

SET-COMPARISON OPERATOR:	EXISTS

Find	all	countries	in	Europe	that	have	some city	with	
population	more	than	5	million

19CS	564	[Spring	2018]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND EXISTS (SELECT *

FROM City T
WHERE T.Population > 5000000
AND T.CountryCode = C.Code);

correlated	subquery

SET-COMPARISON OPERATOR:	ANY

Find	all	countries	in	Europe	that	have	some city	with	
population	more	than	5	million

20CS	564	[Spring	2018]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND 5000000 <= ANY (SELECT T.Population

FROM City T
WHERE T.CountryCode = C.Code);

SET-COMPARISON OPERATORS

Find	all	countries	in	Europe	that	have	all	cities	with	
population	less	than	1	million

21CS	564	[Spring	2018]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND NOT EXISTS (SELECT *

FROM City T
WHERE T.Population > 1000000
AND T.CountryCode = C.Code);

SET-COMPARISON OPERATORS:	ALL

Find	all	countries	in	Europe	that	have	all	cities	with	
population	less	than	1	million

22CS	564	[Spring	2018]	- Paris	Koutris

SELECT C.Name
FROM Country C
WHERE C.Continent = 'Europe’
AND 1000000 > ALL (SELECT T.Population

FROM City T
WHERE T.CountryCode = C.Code);

