ADVANCED SQL 1

CS 564- Spring 2018

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan

WHAT IS THIS LECTURE ABOUT

* SQL: Set Operators
— UNION/EXCEPT/INTERSECT
— duplicates in SQL
 SQL: Nested Queries
— IN/EXISTS/ALL
— correlated queries

SET AND MULTISET OPERATORS

SET OPERATORS: REFRESHER

R = {1,2,3) S = {1,2,4,5)
* Intersection: R nS={1,2}
e Union: RuS=1{1,2,34>5}
 Difference: R — S ={3}

S—R = {4,5)

SET OPERATORS IN SQL

SQL supports set operations between the outputs of
subqueries:

* (subquery) INTERSECT (subquery)
* (subquery) UNION (subquery)

* (subquery) EXCEPT (subquery)

SET OPERATORS: INTERSECT

SELECT A FROM R
INTERSECT
SELECT A FROM S;

output |A
1
2

Returns the tuples that belong
in both subquery results

WiN| R [= |~]|>

G| (NN ==

SET OPERATORS: UNION

SELECT A FROM R
UNION
SELECT A FROM S;

output

A
1
2
3
4
5

WiN| R [= |~]|>

G| (NN ==

Returns the tuples that belong
in either subquery results

SET OPERATORS: EXCEPT

SELECT A FROM R
EXCEPT
SELECT A FROM S;

output |A

Returns the tuples that belong
in the first and not the second
subquery result

WiN| R [= |~]|>

G| (NN ==

SEMANTICS

 When using set operators, SQL eliminates all
duplicate tuples

* We can modify the semantics by using the
keyword ALL (e.g. UNION ALL)

 When using ALL, the operators are evaluated using
multiset (or bag) semantics

SET OPERATORS: UNION ALL

WiN| R [= |~]|>

G| (NN ==

SELECT A FROM R
UNION ALL
SELECT A FROM S;

output

The number of copies of each
tuple is the sum of the number
of copiesin the subqueries

S T VO INSCIN I ORI NCT I O (SN (N S S T ™S

SET OPERATORS: INTERSECT ALL

SELECT A FROM R
INTERSECT ALL
SELECT A FROM S;

A
output |1
1

2

The number of copies of each
tuple is the minimum of the
number of copies in the subqueries

WiN| R [= |~]|>

G| (NN ==

SET OPERATORS: EXCEPT ALL

SELECT A FROM R
EXCEPT ALL
SELECT A FROM S;

A
1
3

output

The number of copies of each
tuple is the difference (if positive)
of the number of copies in the
subqueries

WiN| R [= |~]|>

G| (NN ==

DISCUSSION ON DUPLICATES

 When doing projection:
— easier to avoid eliminating duplicates
— tuple-at-a-time processing

 When doing intersection, union or difference:
— more efficient to sort the relations first

— at that point you may as well eliminate the duplicates
anyway

NESTED QUERIES

NESTED QUERIES

A parenthesized SELECT-FROM-WHERE statement
(subquery) can be used as a value in a number of
places:

e in FROM clauses

 in WHERE clauses SELECT C.Name
FROM Country C

WHERE C.code =
(SELECT C.CountryCode
FROM City C
WHERE C.name = 'Berlin');

Can you rewrite this query without a subquery (unnesting)?

NESTING

We can write nested queries because the SQL
language is compositional

Everything is represented as a multiset

Hence the output of one query can be used as the
input to another (nesting)

NESTED QUERIES

Find all countries in Europe with population more
than 50 million

SELECT C.Name
FROM (SELECT Name, Continent

FROM Country

WHERE Population >50000000) AS C
WHERE C.Continent = 'Europe' ;

Can you unnest this query?

SET-COMPARISON OPERATOR: IN

Find all countries in Europe that have some city with
population more than 5 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’

AND C.Code IN (SELECT CountryCode

FROM City
WHERE Population > 5000000);

SET-COMPARISON OPERATOR: EXISTS

Find all countries in Europe that have some city with
population more than 5 million

SELECT C.Name
FROM Country C -+ correlated subquery
WHERE C.Continent = 'Europe’
AND EXISTS (SELECT *

FROM City T
WHERE T.Population > 5000000

AND T.CountryCode = C.Code);

SET-COMPARISON OPERATOR: ANY

Find all countries in Europe that have some city with
population more than 5 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’

AND 5000000 <= ANY (SELECT T.Population
FROM City T
WHERE T.CountryCode = C.Code);

SET-COMPARISON OPERATORS

Find all countries in Europe that have all cities with
population less than 1 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’
AND NOT EXISTS (SELECT *

FROM City T
WHERE T.Population > 1000000

AND T.CountryCode = C.Code);

SET-COMPARISON OPERATORS: ALL

Find all countries in Europe that have all cities with
population less than 1 million

SELECT C.Name

FROM Country C

WHERE C.Continent = 'Europe’

AND 1000000 > ALL (SELECT T.Population
FROM City T
WHERE T.CountryCode = C.Code);

