FUNCTIONAL DEPENDENCIES

CS 564- Spring 2018

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan

WHAT IS THIS LECTURE ABOUT?

Database Design Theory:

* Functional Dependencies
* Armstrong’s rules

The Closure Algorithm
* Keysand Superkeys

HOW TO BUILD A DB APPLICATION

* Pick an application

* Figure out what to model (ER model)
— QOutput: ER diagram

* Transformthe ER diagramto arelational schema

S EEE EEE EEE EEE S EEE BN EEE DS G G G G G G S G S S S S G S mae aee

- s s e e S e M e EEE B EEE BE EEE BEE EEE EEE B BEE GEm BEE BEm BEE BEm S BEn Bam BEn Bam SEm BEm G Mam B Mam Mam M e e e e mm

* Now ready to implement the schema and load the
data!

DB DESIGN THEORY

* Helps us identify the “bad” schemas and improve them

1. express constraints on the data: functional
dependencies (FDs)

2. use the FDs to decompose the relations

* The process, called normalization, obtains a schema in a
“normal form” that guarantees certain properties

— examples of normal forms: BCNF, 3NF, ...

MOTIVATING EXAMPLE

SSN name age phoneNumber
934729837 Paris 24 608-374-8422
934729837 Paris 24 603-534-8399
123123645 John 30 608-321-1163
384475687 Arun 20 206-473-8221

 What is the primary key?
— (SSN, PhoneNumber)
 What is the problem with this schema?

MOTIVATING EXAMPLE

SSN name age phoneNumber

934729837 Paris 24 608-374-8422

934729837 Paris 24 603-534-8399

123123645 John 30 608-321-1163

384475687 Arun 20 206-473-8221
Problems:

* redundant storage

* update: change the age of Paris?

* insert: what if a person has no phone number?
* delete: whatif Arun deletes his phone number?

SOLUTION: DECOMPOSITION

SSN name age phoneNumber
934729837 Paris 24 608-374-8422
934729837 Paris 24 603-534-8399
123123645 John 30 608-321-1163
384475687 Arun 20 206-473-8221
SSN narﬁ(SSl\l\p;oneNumber
934729837 | Paris 24 934729837 608-374-8422
123123645 |]John 30 934729837 603-534-8399
384475687 | Arun 20 123123645 608-321-1163
384475687 206-473-8221

FUNCTIONAL DEPENDENCIES

FD: DEFINITION

* Functional dependencies (FDs) are a form of constraint

* they generalize the concept of keys

[f two tuples agree on the attributes
A=A,A, .., A,

then they must agree on the attributes
B =B4,B,, ... By,

Formally:
A, Ay, ..., A, — B1,B5, ..., By,

We then say that A functionally determines B

FD: EXAMPLE 1

SSN name age phoneNumber
934729837 Paris 24 608-374-8422
934729837 Paris 24 603-534-8399
123123645 John 30 608-321-1163
384475687 Arun 20 206-473-8221

* SSN — name, age
* SSN,age — name

FD: EXAMPLE 2

studentID semester | courseNo section instructor
124434 4 CS 564 1 Paris
546364 4 CS 564 2 Arun
999492 6 CS 764 1 Anhai
183349 6 CS 784 1 Jeff

courseNo, section — instructor
studentlID — semester

SPLITTING AN FD

e Considerthe FD: A, B — C,D

* The attributes on the right are independently
determined by 4, B so we can split the FD into:
— A B—C and ALB— D

e We can not do the same with attributes on the left!

— writingA — C,D and B — C, D does not express the
same constraint!

TRIVIAL FDS

* Not all FDs are informative:

* A — A holds for any relation
* A,B,C — C also holds for any relation

* An FD X — A is called trivial if the attribute A
belongs in the attribute set X
— a trivial FD alwaysholds!

HOW TO IDENTIFY FDS

* An FD is domain knowledge:

— an inherent property of the application & data
— not something we can infer from a set of tuples

* Given a table with a set of tuples

— we can confirm that a FD seems to be valid
— to infer that a FD is definitely invalid
— we can never prove that a FD is valid

EXAMPLE 3

name category color department price
Gizmo Gadget Green Toys 49
Tweaker | Gadget Black Toys 99
Gizmo Stationary Green Office-supplies | 59

Q1: Isname — department an FD?
— not possible!

Q2: [s name, category — department anFD ?
— we don’t know!

WHY FDS?

1. keysare special cases of FDs
2. more integrity constraints for the application

3. having FDs will help us detect that a schema has
redundancies and tell us how to normalize it

MORE ON FDS

* [f the following FDs hold:
—A — B
—B— C
then the following FD is also true:
—A—>C

* We can find more FDs like that using what we call
Armstrong’s Axioms

ARMSTRONG’S AXIOMS: 1

Reflexivity
For any subset X € {A4,,..,4,}:
AL Ay, A — X

 Examples
—AB— B
—A,B,C — A B
—AB,C — AB,C

ARMSTRONG’S AXIOMS: 2

Augmentation

For any attribute sets X, Y, Z:
if X—>Y then X,Z7 —Y,7Z

 Examples
— A — B impliesA4,C — B,C
— A,B — C impliesA,B,C — C

ARMSTRONG’S AXIOMS: 3

Transitivity
For any attribute sets X, Y, Z:
if X - Y and Y —> 7 then X —> 7

 Examples
—A— Band B — CimplyA — C
—A— C,D and C,D — EimplyA — E

APPLYING ARMSTRONG'S AXIOMS

Product(name, category, color, department, price)
1. name — color

2. category — department

3. color,category — price

* Infer:name, category — price

1. We apply the augmentationaxiom to (1) to obtain
(4) name, category — color,category

2. We apply the transitivity axiom to (4), (3) to obtain
name, category — price

APPLYING ARMSTRONG'S AXIOMS

Product(name, category, color, department, price)
1. name — color

2. category — department

3. color,category — price

* Infer: name, category — color

1. We apply the reflexivity axiom to obtain
(5) name, category — name

2. We apply the transitivity axiomto (5), (1) to obtain
name, category — color

FD CLOSURE

FD Closure
If Fis aset of FDs, the closure F* is the set of
all FDs logically implied by F

Armstrong’s axioms are:

 sound: any FD generated by an axiom belongsin F*

* complete: repeated application of the axioms will generate
all FDsin F*

CLOSURE OF ATTRIBUTE SETS

Attribute Closure
If Xis an attribute set, the closure X is the
set of all attributes B such that:

X —B

In other words, X ™ includes all attributes that are
functionally determined from X

EXAMPLE

Product(name, category, color, department, price)
* name — color

* category — department

* color,category — price

Attribute Closure:
« {name}" = {name, color}

« {name,category}* =
{name, color, category, department, price}

THE CLOSURE ALGORITHM

 LetX ={4,,4,,...,A,}}
 UNTIL X doesn’t change REPEAT:
IF B,,B,,...,B,,, — C isan FD AND
B,,B,,...,B,, areallin X
THEN add Cto X

EXAMPLE

R(A B,C D, E, F)
e AB—C
e AD—>E
e B—D
e AF — B

Compute the attribute closures:

. {A,BY*={A,B,C,D,E)}
. {A,FY*={AF,B,D,E,C)

CS 564 [Spring 2018] - Paris Koutris

27

WHY IS CLOSURE NEEDED?

1. DoesX — Y hold?
— we can checkifY € X*
2. To compute the closure F* of FDs
— for each subset of attributes X, compute X *

— for each subset of attributes Y € X, output the
FDX —Y

KEYS & SUPERKEYS

superkey: a set of attributes 4,,4,, ..., A,, such that
for any other attribute B in the relation:

A, A, ..., A, — B
Key (or candidate key): a minimal superkey

— none of its subsets functionally determines all
attributes of the relation

If a relation has multiple keys, we specify one to be
the primary key

COMPUTING KEYS & SUPERKEYS

« Compute X for all sets of attributes X
e If X = all attributes, then X is a superkey
* If nosubset of X isa superkey, then Xis also a key

EXAMPLE

Product(name, category, price, color)

* name — color
* color,category — price

Superkeys:

« {name, category}, {name, category, price}
{name, category, color},{name, category, price, color}

Keys:
« {name,category}

HOW MANY KEYS?

Q: Is it possible to have many keysin a relationR ?

YES!! Takerelation R(A, B, C)with FDs
e AAOB — C
e A,C — B

MINIMAL BASIS FOR FDS

* Given a set F of FDs, we know how to compute the
closure F*
* A minimal basis of F is the opposite of closure
 Sisaminimal basis for a set F if FDs if:
_ Gt =
— every FD in S has one attribute on the right side
— if weremove any FD from S, the closure is not F*

— if for any FD in S we remove one or more attributes
from the left side, the closure is not F*

EXAMPLE: MINIMAL BASIS

Example:

e A — B

« AB,C,D — E
e E.F — G, H

« AC,D,F —E,G

STEP 1: SPLIT THE RIGHT HAND SIDE

e A — B

e AB,C,D — E
e FF — G

e F,F — H

e AAC,D,F — E

- AC,D,F —> G

STEP 2: REMOVE REDUNDANT FDS

e A — B
e AB,C,D — E
* E'F — G can be removed, since these

o E’ F — H FDs are logically implied
by the remaining FDs
)))

STEP 3: CLEAN UP THE LEFT HAND SIDE

e A — B

¢ A,B,C,D — E\

e FF — G B can be safely removed
because of the first FD
e £,F — H

EXAMPLE: FINAL RESULT

e A — B

e AC,D — E
e FF — G
e F,F — H

RECAP

* FDs and (super)keys
* Reasoning with FDs:
— given a set of FDs, infer all implied FDs

— given a set of attributes X, infer all attributes
that are functionally determined by X

e Nextwe will look at how to use them to detect that
a table is “bad”

