HASH INDEXES

CS 564- Spring 2018

ACKs: Dan Suciu, Jignesh Patel, AnHai Doan

WHAT IS THIS LECTURE ABOUT?

Hash indexes

- Static Hashing

— whatis the I/0 cost?

— problems with static hashing
- Extendible Hashing

— insertion

— deletion

HOW TO EVALUATE AN INDEX?

What access types does it support?

— e.g. equalitiy search, range search, etc.
Time to access a record

Time to inserta record

['ime to delete a record
How much space does it use?

HASH INDEXES

* efficient for equality search

* notappropriate for range search

* Types of hash indexes:

— static hashing
— extendible (dynamic) hashing

STATIC HASHING

* A hashindexis a collection of buckets

— bucket = primary page + overflow pages
— each bucket contains one or more data entries

 To find the bucket for each record, we use a hash
function h applied on the search key k
— N = number of buckets
— h(k) mod N = bucketin which the data entry belongs

* Records with different search key may belong in
the same bucket

STATIC HASHING: EXAMPLE

Person(name,zipcode,phone)

* search key: zipcode

* hash function h: last 2 digits

bucket 0

bucket 1

bucket 2

bucket 3

primary pages

(John, 53400, 23218564)
(Alice, 54768, 60743111)

4 buckets

each bucket has 2 data
entries (full record)

overflow pages

(Paris, 53409, 23200564)

(Maria, 34411, 29010533)

| (Anna, 53632, 23209964)

OPERATIONS ON HASH INDEXES

Equality search (search-key = value)

* apply the hash function on the search key to locate
the appropriate bucket

* search through the primary page (plus overflow
pages) to find the record(s)

CS 564 [Spring 2018] - Paris Koutris

OPERATIONS ON HASH INDEXES

* Deletion

— find the appropriate bucket, delete the record
* Insertion

— find the appropriate bucket, insert the record

— if there is no space, create a new overflow page

HASH FUNCTIONS

* An ideal hash function must be uniform: each
bucket is assigned the same number of key values

* A bad hash function maps all search key values to
the same bucket
* Examples of good hash functions:

— h(k) =a *k + b, where a and b are constants

— arandom function

BUCKET OVERFLOW

* Bucket overflow can occur because of
— insufficient number of buckets
— skew in distribution of records
* many records have the same search-keyvalue

e the hash function results in a non-uniform
distribution of key values

* Bucket overflow is handled using overflow buckets

PROBLEMS OF STATIC HASHING

[n static hashing, there is a fixed number of
buckets in the index

Issues with this:

— if the database grows, the number of buckets will be too
small: long overflow chains degrade performance

— if the database shrinks, space is wasted

— reorganizing the index is expensive and can block query
execution

EXTENDIBLE HASHING

EXTENDIBLE HASHING

* Extendible hashing is a type of dynamic hashing

- It keepsa directory of pointers to buckets

- On overflow, it reorganizes the index by doubling
the directory (and not the number of buckets)

EXTENDIBLE HASHING

To search, use the last 2 digits of the binary form of the
search keyvalue [ocal depth

global depth 2| (John, 12, 23218564)
\ (Alice, 8, 60743111)
2
00 2: (Paris, 9,23200564)
01
10
2
11 :
2 | (Maria, 11, 29010533)

EXTENDIBLE HASHING: INSERT

[f there is space in the bucket, simply add the record

local depth
global depth 2| (John, 12, 23218564)
\ (Alice, 8, 60743111)
2
00 2: (Paris, 9,23200564)
01 (Zoe, 13,23345563)
10
2
11 .
2 | (Maria, 11,29010533)

EXTENDIBLE HASHING: INSERT

[f the bucketis full, split the bucket and redistribute the

entries 3> (Alice, 8, 60743111)
local depth increases for
global depth the split bucket!
increases by 1 3[(Natalie, 4, 23200564)
| "| John,12,23218564)
3
000 2 | (Paris, 9,23200564)
> e local depth remains
100 LR T 885 S0 the same for the other
001 buckets
2
101 R
010 '
110
2 :
011 : (Maria, 11,29010533)
111

EXAMPLE

each page can hold at most two records

1=1
(0,..) (4.

\ 4

Y

1=1

4 (1,..) (7,

CS 564 [Spring 2018] - Paris Koutris

17

EXAMPLE

1=2

=2 -

8 1(4,.)

00 1=2 _

01 .
1 (2,..) (22,...)

10

11 1=1
e

CS 564 [Spring 2018] - Paris Koutris 18

EXAMPLE

1=2
=2 -
& 1(4,..) (32,..)
00 o
01 :
1 (2,..) (22,..)
10
11 1=1
J(1,..) (7...)

CS 564 [Spring 2018] - Paris Koutris

EXAMPLE

1=2
=2 -
8 1(4,.) (32,.)
00 .
01 :
1 (2,..) (22,..)
10
11 [=2
{(1,..)
= “The bucket is splitinto two
{(3,.) (7,.)

CS 564 [Spring 2018] - Paris Koutris 20

EXTENDIBLE HASHING: DELETE

LLocate the bucket of the record and remove it

If the bucket becomes empty, it can be removed
(and update the directory)

Two buckets can also be coalesced together if the
sum of the entries fit in a single bucket

Decreasing the size of the directory can also be
done, but it is expensive

MORE ON EXTENDIBLE HASHING

 How many disk accesses for equality search?
— One if directory fits in memory, else two
* Directory growsin spurts, and, if the distribution

of hash values is skewed, the directory can grow
very large

- We may need overflow pages when multiple
entries have the same hash value!

