THE B+ TREE INDEX

CS 564- Spring 2018

ACKs: Jignesh Patel, AnHai Doan



WHAT IS THIS LECTURE ABOUT?

The B+ tree index

* Basics

* Search/Insertion/Deletion
* Design & Cost



INDEX RECAP

* We have the following query:
SELECT *
FROM Sales
WHERE price > 100 ;

 How do we organize the file to answer this query
efficiently?



INDEXES

* Hash index:
— good for equality search
— in expectation constant I /0 cost for search and insert

B+ treeindex:
— good for range and equality search



B+ TREE BASICS




THE B+ TREE INDEX

* a dynamic tree-structured index

— adjusted to be always height-balanced

— 1 node = 1 physical page
* supports efficient equality and range search
* widely used in many DBMSs

— SQLite uses it as the default index
— SQL Server,DB2, ...



B+ TREE INDEX: BASIC STRUCTURE

— -

non-leaf nodes /

leaf nodes

data entries
* existonlyin the leaf nodes
* aresorted according to the search key

CS 564 [Spring 2018] - Paris Koutris



B+ TREE: NODE

 Parameterd is the order of the tree

 Each non-leafnode containsd < m < 2d entries
— minimum 50% occupancy at all times

e Therootnodecanhave 1 <m < 2d entries

k, k, k,




NON-LEAF NODES

An non-leaf (or internal) node with m entries has
m+1 pointers to lower-level nodes

\ k1 I kZ km

\

pointer to a page pointer to a page
with values <k;  pointer to a page with with values = k;,

ki< values <k,



LEAF NODES

A leafnode with m entries has

* m pointers to the datarecords (rids)

* pointers to the nextand previous leaves

K

Ky

—
=

Koy

pointer to the
previous page

record

record

record

pointer to the
next page



B+ TREE OPERATIONS




B+ TREE OPERATIONS

A B+ tree supports the following operations:
* equality search

* range search

* Insert

* delete

* bulk loading



SEARCH

e start from the root node
e examinethe index entriesin non-leaf nodes to find
the correct child

* traverse down the tree until a leaf node is reached

— for equality search, we are done

— for range search, traverse the leaves sequentially using
the previous/next pointers



EQUALITY SEARCH: EXAMPLE

34<60
- \\
20 40 |~ \\7< 90
5 12 [« 25 34 35 [+ 55 —> 62 63 64 [

CS 564 [Spring 2018] - Paris Koutris



EQUALITY SEARCH: EXAMPLE

34<60
60 |~
20<34<40 \\\\\\\\‘
20 [ 20 |~ \7< 90
50 |12 [ 25.34 35 | 55— |62| | 63| | 64 —

To locate the correct data entry in the leaf node,
we can do either linear or binary search

CS 564 [Spring 2018] - Paris Koutris



RANGE SEARCH: EXAMPLE

34<60

60 |~

20<34<40

20 90

64 [e——>

After we find the leftmost point of the range,
we traverse sequentially!

CS 564 [Spring 2018] - Paris Koutris



INSERT

 find correctleaf nodelL

* insertdata entryin L
— If L has enough space, DONE!
— Else, we must split L (into L and a new node L)
* redistribute entries evenly, copy up the middle key
* insertindex entry pointing to L' into parent of L

* This can propagate recursively to other nodes!

— to split a non-leaf node, redistribute entries evenly, but
push up the middle key



INSERT: EXAMPLE

orderd = 2

.~

13

17

N

—

Lot

16 |*

19

20

22 |

" 24

27

29 |«

CS 564 [Spring 2018] - Paris Koutris

» 33

34

38

39

18



INSERT: EXAMPLE

orderd = 2

N

—> 24 | 27

29 |

d entries

d+1 entries

CS 564 [Spring 2018] - Paris Koutris

» 33

34

38

39

19



INSERT: EXAMPLE

orderd = 2

13 |,

17

J 30

=~

=

N

16 |+

» 19

20

22 |

» 24

27

29 |

CS 564 [Spring 2018] - Paris Koutris

» 33

34

38

39

20



INSERT: EXAMPLE

orderd = 2

CS 564 [Spring 2018] - Paris Koutris

21



INSERT PROPERTIES

The B+ Tree insertion algorithm has several
attractive qualities:

e ~ same cost as exactsearch

* itis self-balancing: the tree remains balanced
(with respectto height) even after multiple
insertsions



B+ TREE: DELETE

* find leafnode L where entry belongs

* remove the entry
— If L is at least half-full, DONE!

— If L has only d-1 entries,
* Try to re-distribute, borrowing from sibling

* If re-distribution fails, merge L and sibling

* If a merge occurred, we must delete an entry from
the parentof L



DELETE : EXAMPLE 1

N

N\

orderd = 2
17
| 5 || 13 30
,// /
3> 5|7 |8 |*14| 16 [*> 19 24

27

29 |

» 33

34

38

39

CS 564 [Spring 2018] - Paris Koutris

24



DELETE : EXAMPLE 1

30 | ]

N\

orderd =2
17 | N
\
| 5 | |13 | 24
—/ /
357|814 |16 |~ 19| 20 |

» 24 | 27

29 |«

CS 564 [Spring 2018] - Paris Koutris

» 33

34

38

39

25



DELETE : EXAMPLE 2

orderd =2
17 | N
\
| 5 |13, , | 24 30 | ]
7/ N
3> 5|7 |8 14| 16 [*—> 19 24 | 27 | 29 = 33| 34 | 38 | 39

CS 564 [Spring 2018] - Paris Koutris 26



DELETE : EXAMPLE 2

orderd = 2 delete 20
| 5 |13, .| 30|

g \

3578 27 | 29 |* 33|34 | 38| 39

CS 564 [Spring 2018] - Paris Koutris 27



DELETE : EXAMPLE 3
orderd = 2 “delete 24

AN

17 | <

‘///5/ / B \<\
357|814 161:19‘—‘27 29 |+ 33|34 | 38| 39

CS 564 [Spring 2018] - Paris Koutris



DELETE : EXAMPLE 3

orderd = 2

17

13

\_

30

\

16 |*

» 19

27

29 |*

CS 564 [Spring 2018] - Paris Koutris

" 33

34

38

39

29



DELETE : EXAMPLE 3
orderd = 2 “delete 24

| 5 |13 ) |17] |30

CS 564 [Spring 2018] - Paris Koutris 30



B+ TREE: DELETE

* Redistribution of entries can also be possible for
the non-leafnodes

* We can also try to redistribute using all siblings,
and not only the neighboring one



DUPLICATES

* duplicate keys: many data entries with the same
key value

* Solution 1:
— All entries with a given key value reside on a single page
— Use overflow pages

* Solution 2:

— Allow duplicate key values in data entries

— Modify search operation



B+ TREE DESIGN & COST




B+ TREE DESIGN

How largeis d?

 Example
— keysize = 4 bytes
— pointer size = 8 bytes
— block size = 4096 bytes

We want each node to fit on a single block/page
2d -4 +(2d+1)-8 < 4096
d<170



B+ TREE: FANOUT

Fanout: the number of pointersto child nodes
coming out of a node

* compared to binary trees (fanout =2), B+ trees have a high
fanout (between d+1 and 2d+1)

* high fanout ->smaller depth ->less /0O per search

* The fanout of B+ trees is dynamic, but we will often assume
it is constant to come up with approximate equations



B+ TREES IN PRACTICE

typical order: d = 100 The Fill-factor is the percent of
: - _ 0 available slots in the B+ Tree that
typlcal fill factor = 67% are filled; it is usually < 1 to leave
— average node fanout = 133 slack for (quicker) insertions!

typical B+ tree capacities:
— height4:133* = 312,900,700 records
— height3:1333= 2,352,637 records
[t can often store the top levelsin buffer pool:
— level 1 = 1page = 8KB
— level2= 133 pages = 1 MB
— level 3=17,689 pages = 133 MB



COST MODEL FOR SEARCH

Parameters:

 f=fanout, whichisin [d+1, 2d+1] (assume it is constant for
our cost model)

N =total number of pages we need to index

« F=fill-factor (usually ~ 2/3)

We need to index N/F pages. For different heights:
* h=1 ->fpages

e h=2 ->f?pages
hekofpages  NOESIOSRSORE]

CS 564 [Spring 2018] - Paris Koutris 37




COST MODEL FOR SEARCH

To do equality search:

 weread one page per level of the tree
* levelsthat we can fit in buffer are free!

* finally weread in the actual record

[f we have B available buffer pages, we can store Ly levels of
the B+ Tree in memory:

e Lgisthe number of levels such that the sum of all the

levels’ nodes fit in the buffer:
B=1+4+f+--+fts~1

CS 564 [Spring 2018] - Paris Koutris

38



COST MODEL FOR SEARCH

To do range search:

 weread one page per level of the tree
* levelsthat we can fit in buffer are free!

* weread sequentially the pages in the range

Here, OUT is the I/0 cost of loading the additional leaf nodes
we need to access + the 10 cost of loading each page of the
results.

CS 564 [Spring 2018] - Paris Koutris 39



