
THE B+	TREE INDEX

CS	564- Spring	2018

ACKs:	Jignesh Patel,	AnHai Doan



WHAT IS THIS LECTURE ABOUT?

The	B+	tree	index
• Basics
• Search/Insertion/Deletion
• Design	&	Cost

2CS	564	[Spring	2018]	- Paris	Koutris



INDEX RECAP

• We	have	the	following	query:
SELECT * 
FROM Sales
WHERE price > 100 ;

• How	do	we	organize	the	file	to	answer	this	query	
efficiently?

3CS	564	[Spring	2018]	- Paris	Koutris



INDEXES

• Hash	index:	
– good	for	equality	search	
– in	expectation	constant	I/O	cost	for	search	and	insert

• B+	tree	index:	
– good	for	range and	equality search

4CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE BASICS

5CS	564	[Spring	2018]	- Paris	Koutris



THE B+	TREE INDEX

• a	dynamic	tree-structured	index
– adjusted	to	be	always	height-balanced
– 1	node	=	1	physical	page

• supports	efficient	equality and	range search
• widely	used	in	many	DBMSs
– SQLite	uses	it	as	the	default	index
– SQL	Server,	DB2,	…

6CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE INDEX:	BASIC STRUCTURE

non-leaf	nodes

leaf	nodes

CS	564	[Spring	2018]	- Paris	Koutris 7

root	node

data	entries	
• exist	only in	the	leaf	nodes	
• are	sorted	according	to	the	search	key

a	node	corresponds	
to	a	disk	page



B+	TREE:	NODE

• Parameterd is	the	order of	the	tree
• Each	non-leaf	node	contains	𝑑	 ≤ 𝑚	 ≤ 2𝑑 entries
– minimum	50%	occupancy	at	all	times

• The	root	node	can	have	1	≤ 𝑚	 ≤ 2𝑑 entries

8CS	564	[Spring	2018]	- Paris	Koutris

k1 k2 … km



NON-LEAF NODES

9CS	564	[Spring	2018]	- Paris	Koutris

An	non-leaf	(or	internal)	node	with	m entries	has	
m+1 pointers	to	lower-level	nodes

k1 k2 … km

pointer	to	a	page	
with	values	<	k1 pointer	to	a	page	with	

k1≤	values	<	k2

pointer	to	a	page	
with	values	≥	km



LEAF NODES

A	leaf	node	with	m entries	has	
• m pointers	to	the	data	records	(rids)
• pointers	to	the	next and	previous leaves

10CS	564	[Spring	2018]	- Paris	Koutris

r1 k1 r2 k2 … rm km
pointer	to	the	
previous	page

pointer	to	the	
next	page

record record record



B+	TREE OPERATIONS

11CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE OPERATIONS

A	B+	tree	supports	the	following	operations:
• equality	search
• range	search
• insert
• delete
• bulk	loading

12CS	564	[Spring	2018]	- Paris	Koutris



SEARCH

• start	from	the	root	node
• examine	the	index	entries	in	non-leaf	nodes	to	find	
the	correct	child

• traverse	down	the	tree	until	a	leaf	node	is	reached
– for	equality	search,	we	are	done
– for	range	search,	traverse	the	leaves	sequentially	using	
the	previous/next	pointers

13CS	564	[Spring	2018]	- Paris	Koutris



EQUALITY SEARCH:	EXAMPLE

14CS	564	[Spring	2018]	- Paris	Koutris

60

70 80 9020 40

5 12 25 34 35 55 62 63 64

key	=	34
34<60



EQUALITY SEARCH:	EXAMPLE

15CS	564	[Spring	2018]	- Paris	Koutris

60

70 80 9020 40

5 12 25 34 35 55 62 63 64

key	=	34
34<60

20≤34<40

To	locate	the	correct	data	entry	in	the	leaf	node,	
we	can	do	either	linear	or	binary	search



RANGE SEARCH:	EXAMPLE

16CS	564	[Spring	2018]	- Paris	Koutris

60

70 80 9020 40

5 12 25 34 35 55 62 63 64

34≤ key≤63		
34<60

20≤34<40

After	we	find	the	leftmost	point	of	the	range,	
we	traverse	sequentially!



INSERT

• find	correct	leaf	node	L
• insert	data	entry	in	L

– If	L has	enough	space,	DONE!
– Else,	we	must	split L (into	L and	a	new	node	L’)

• redistribute	entries	evenly,	copy	up	the middle	key
• insert	index	entry	pointing	to	L’ into	parent	of	L

• This	can	propagate	recursively to	other	nodes!
– to	split	a	non-leaf	node,	redistribute	entries	evenly,	but	
push	up	the	middle	key

17CS	564	[Spring	2018]	- Paris	Koutris



INSERT:	EXAMPLE

18CS	564	[Spring	2018]	- Paris	Koutris

13 17 24 30

2 3 5 7

insert	8

14 16 19 20 22 24 27 29 33 34 38 39

order	d =	2



INSERT:	EXAMPLE

19CS	564	[Spring	2018]	- Paris	Koutris

13 17 24 30

2 3 5 7

insert	8

14 16 19 20 22 24 27 29 33 34 38 39

order	d =	2

the	leaf	node	is	full	so	
we	must	split	it!

2 3 5 7 8

d	entries d+1	entries



INSERT:	EXAMPLE

20CS	564	[Spring	2018]	- Paris	Koutris

13 17 24 30

insert	8

14 16 19 20 22 24 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

5

the	middle	key	(5)	must	be	copied	up,	
but	the	root	node	is	full	as	well!



INSERT:	EXAMPLE

21CS	564	[Spring	2018]	- Paris	Koutris

24 30

insert	8

14 16 19 20 22 24 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

17

5 13

the	new	middle	key	(17)	is	now
pushed	up	only	(and	not	copied)



INSERT PROPERTIES

The	B+	Tree	insertion	algorithm	has	several	
attractive	qualities:	
• ~	same	cost	as	exact	search	
• it	is	self-balancing:	the	tree	remains	balanced
(with	respect	to	height)	even	after	multiple	
insertsions

22CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE:	DELETE

• find	leaf	node	Lwhere	entry	belongs
• remove	the	entry

– If	L is	at	least	half-full,	DONE!	
– If	L has	only	d-1 entries,

• Try	to	re-distribute,	borrowing	from	sibling
• If	re-distribution	fails,	merge L and	sibling

• If	a	merge	occurred,	we	must	delete	an	entry	from	
the	parent	of	L

23CS	564	[Spring	2018]	- Paris	Koutris



DELETE :	EXAMPLE 1

24CS	564	[Spring	2018]	- Paris	Koutris

24 30

delete	22

14 16 19 20 22 24 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

17

5 13

since	by	deleting	22	the	node
remains	half-full,	we	simply	remove	it	



DELETE :	EXAMPLE 1

25CS	564	[Spring	2018]	- Paris	Koutris

24 30

delete	22

14 16 19 20 24 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

17

5 13



DELETE :	EXAMPLE 2

26CS	564	[Spring	2018]	- Paris	Koutris

24 30

delete	20

14 16 19 20 24 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

17

5 13

by	removing	20	the	node	is	not	half-full	anymore,
so	we	attempt	to	redistribute!



DELETE :	EXAMPLE 2

27CS	564	[Spring	2018]	- Paris	Koutris

27 30

delete	20

14 16 19 24 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

17

5 13

by	removing	20	the	node	is	not	half-full	anymore,
so	we	attempt	to	redistribute!

the	middle	key	is	again	copied	up!



DELETE :	EXAMPLE 3

28CS	564	[Spring	2018]	- Paris	Koutris

27 30

delete	24

14 16 19 24 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

17

5 13

in	this	case,	we	have	to	merge	nodes!

the	entry	with	key=27must	be
removed	as	well



DELETE :	EXAMPLE 3

29CS	564	[Spring	2018]	- Paris	Koutris

30

delete	24

14 16 19 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

17

5 13

we	are	not	done,	since	the	resulting
non-leaf	node	is	not	half-full!



DELETE :	EXAMPLE 3

30CS	564	[Spring	2018]	- Paris	Koutris

delete	24

14 16 19 27 29 33 34 38 39

order	d =	2

2 3 5 7 8

we	are	not	done,	since	the	resulting
non-leaf	node	is	not	half-full!

5 13 17 30



B+	TREE:	DELETE

• Redistribution	of	entries	can	also	be	possible	for	
the	non-leaf	nodes

• We	can	also	try	to	redistribute	using	all	siblings,	
and	not	only	the	neighboring	one	

31CS	564	[Spring	2018]	- Paris	Koutris



DUPLICATES

• duplicate	keys:	many	data	entries	with	the	same	
key	value

• Solution	1:	
– All	entries	with	a	given	key	value	reside	on	a	single	page
– Use	overflow	pages

• Solution	2:	
– Allow	duplicate	key	values	in	data	entries
– Modify	search	operation

32CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE DESIGN &	COST

33CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE DESIGN

How	large	is	d?	
• Example
– key	size	=	4	bytes	
– pointer	size	=	8	bytes
– block	size	=	4096	bytes	

We	want	each	node	to	fit	on	a	single	block/page	
		2𝑑 & 4	 + 2𝑑 + 1 & 8	 ≤ 	4096

𝒅 ≤ 170	

34CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE:	FANOUT

Fanout:	the	number	of	pointers	to	child	nodes	
coming	out	of	a	node	
• compared	to	binary	trees	(fanout =2),	B+	trees	have	a	high	
fanout (between	 d+1 and	2d+1)

• high	fanout ->	smaller	depth	->	less	I/O	per	search
• The	fanout of	B+	trees	is	dynamic,	but	we	will	often	assume	
it	is	constant	to	come	up	with	approximate	equations

35CS	564	[Spring	2018]	- Paris	Koutris



B+	TREES IN PRACTICE

• typical	order:	d =	100		
• typical	fill	factor =		67%

– average	node	fanout =	133
• typical	B+	tree	capacities:

– height	4:	1334 =	312,900,700	records
– height	3:	1333 =					2,352,637	records

• It	can	often	store	the	top	levels	in	buffer	pool:
– level	1	=											1	page		 =					8	KB
– level	2	=						133	pages	 =					1	MB
– level	3	=	17,689	pages	=	133	MB

36CS	564	[Spring	2018]	- Paris	Koutris

The Fill-factor is	the	percent	of	
available	slots	in	the	B+	Tree	that	
are	filled;	it	is	usually	<	1	to	leave	
slack	for	(quicker)	insertions!	



COST MODEL FOR SEARCH

Parameters:
• f	=	fanout,	which	is	in	[d+1,	2d+1]	(assume	it	is	constant	for	

our	cost	model)	
• N	=	total	number	of	pages	we	need	to	index
• F	=	fill-factor	(usually	~	2/3)	
We	need	to	index	N/F	pages.	For	different	heights:
• h	=	1		->	f	pages
• h	=	2		->	f2 pages
• h	=	k		->	fk pages

37CS	564	[Spring	2018]	- Paris	Koutris

height	must	be	ℎ	 = 𝑙𝑜𝑔5
6
7



COST MODEL FOR SEARCH

To	do	equality	search:
• we	read	one	page	per	level	of	the	tree
• levels	that	we	can	fit	in	buffer	are	free!
• finally	we	read	in	the	actual	record	

If	we	have	B	available	buffer	pages,	we	can	store	𝑳B levels	of	
the	B+	Tree	in	memory:
• 𝑳B is	the	number	of	levels	such	that	the	sum	of	all	the	
levels’	nodes	fit	in	the	buffer:	

			𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓=>?@

38CS	564	[Spring	2018]	- Paris	Koutris

I/O	cost	 = 𝑙𝑜𝑔5
6
7 − 𝐿G + 1



COST MODEL FOR SEARCH

To	do	range	search:
• we	read	one	page	per	level	of	the	tree
• levels	that	we	can	fit	in	buffer	are	free!
• we	read	sequentially	the	pages	in	the	range

Here,	OUT	is	the	I/O	cost	of	loading	the	additional	leaf	nodes	
we	need	to	access	+	the	IO	cost	of	loading	each	page	of	the	
results.

39CS	564	[Spring	2018]	- Paris	Koutris

I/O	cost	 = 𝑙𝑜𝑔5
6
7 − 𝐿G + 𝑂𝑈𝑇


