
RELATIONAL OPERATORS #1

CS	564- Spring	2018

ACKs:	Jeff	Naughton,	Jignesh Patel,	AnHai Doan



WHAT IS THIS LECTURE ABOUT?

Algorithms	for	relational	operators:
• select
• project

2CS	564	[Spring	2018]	- Paris	Koutris



ARCHITECTURE OF A DBMS

3CS	564	[Spring	2018]	- Paris	Koutris

query

Query	Execution

data	access

Storage	Manager

I/O	access



LOGICAL VS PHYSICAL OPERATORS

• Logical	operators
– what they	do
– e.g.,	union,	selection,	project,	join,	grouping

• Physical	operators
– how they	do	it
– e.g.,	nested	loop	join,	sort-merge	join,	hash	join,	
index	join

4CS	564	[Spring	2018]	- Paris	Koutris



EXAMPLE QUERY

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’ 

• Assume	that	Person	has	a	B+	tree	index	on	city

5CS	564	[Spring	2018]	- Paris	Koutris



EXAMPLE:	LOGICAL PLAN

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’ 

6CS	564	[Spring	2018]	- Paris	Koutris

SELECT
SELECT
city	=	‘Madison’

JOIN
buyer	=	name

PROJECT
on	buyer

Purchase Person



EXAMPLE:	PHYSICAL PLAN

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’ 

7CS	564	[Spring	2018]	- Paris	Koutris

Table	Scan Index	Scan

Nested	Loop	Join

Hash-based	
Project

Purchase Person



SELECTION

8CS	564	[Spring	2018]	- Paris	Koutris



SELECT OPERATOR

access	path =	way	to	retrieve	tuples	from	a	table
• File	Scan
– scan	the	entire	file
– I/O	cost:	O(N),	where	N	=	#pages

• Index	Scan:	
– use	an	index	available	on	some	predicate
– I/O	cost:	it	varies	depending	on	the	index

9CS	564	[Spring	2018]	- Paris	Koutris



INDEX SCAN COST

I/O	cost	for	index	scan
• Hash	index:	O(1)	
– but	we	can	only	use	it	with	equality	predicates

• B+	tree	index:	height	+	X
– X	depends	on	whether	the	index	is	clustered	or	not:

• unclustered:	X	=	#	selected	tuples	in	the	worst	case
• clustered:	X	=	(#selected	tuples)/	(#tuples	per	page)
• optimization:	we	can	sort	the	rids	by	page	number	
before	we	retrieve	them	from	the	unclustered index

10CS	564	[Spring	2018]	- Paris	Koutris



B+	TREE SCAN EXAMPLE
• A	relation	with	1,000,000	records
• 100	records	on	a	page
• 500	(key,	rid)	pairs	on	a	page
• height	of	B+	tree	=	3

11CS	564	[Spring	2018]	- Paris	Koutris

1%	Selectivity 10%	Selectivity

clustered 3+100 3+1000

unclustered 3+10,000 3+100,000

unclustered +	sorting 3+(~10,000) 3+(~10,000)

selectivity =	percentage	of	tuples
that	satisfy	the	selection	condition

if	we	first	sort,	we	will	read	at	most	all	the	pages	in	the	B+	tree



GENERAL SELECTIONS

• So	far	we	studied	selection	on	a	single	attribute
• How	do	we	use	indexes	when	we	have	multiple	
selection	conditions?
– R.A = 10 AND R.A > 10
– R.A = 10 OR R.B < 20

12CS	564	[Spring	2018]	- Paris	Koutris



INDEX MATCHING

We	say	that	an	index	matches a	selection	predicate	if	the	
index	can	be	used	to	evaluate	it

• relation	R(A,B,C,D)
• hash	index	on	composite	key	(A,B)

13CS	564	[Spring	2018]	- Paris	Koutris

SELECT *
FROM R
WHERE A = 10 AND B = 5 ;

SELECT *
FROM R
WHERE A = 5 ;

matches	the	index! does	not	match	the	index!



INDEX MATCHING:	HASH INDEX

selection		=		pred1 AND pred2 AND …

A	hash	index	on	(𝐴,𝐵,… )	matches the	selection	
condition	if:
• all attributes	in	the	index	search	key	appear	in	a	predicate	
with	equality	(=)

14CS	564	[Spring	2018]	- Paris	Koutris



EXAMPLE

15CS	564	[Spring	2018]	- Paris	Koutris

relation	R(A,B,C,D)

selection	condition hash	index	on	(A,B,C) hash	index	on	(B)
A=5	AND B=3 no yes

A>5	AND B<4	 no no

B=3 no yes

A=5	AND C>10 no no

A=5	AND B=3	AND C=1 yes yes

A=5	AND B=3	AND C=1 ANDD	>6 yes yes

The	predicates	A=5,	B=3,	C=1	that	match	the	index	are	called	primary	conjuncts



INDEX MATCHING:	B+	TREE

selection		=		pred1 AND pred2 AND …

A	B+	tree	index	on	(𝐴,𝐵, …)	matches	the	above	
selection	condition	if:
• the	attributes	in	the	predicates	form	a	prefix	of	the	search	
key	of	the	B+	tree	

• any	operations	can	be	used	(=,	<	,	>	,	…)

16CS	564	[Spring	2018]	- Paris	Koutris



EXAMPLE

17CS	564	[Spring	2018]	- Paris	Koutris

relation	R(A,B,C,D)

selection	condition B+	tree	on (A,B,C) B+	tree on	(B,C)
A=5	AND B=3 yes yes

A>5	AND B<4	 yes yes

B=3 no yes

A=5	AND C>10 yes no

A=5	AND B=3	AND C=1 yes yes

A=5	AND B=3	AND C=1 ANDD	>6 yes yes



MORE ON INDEX MATCHING

A	predicate	can	match	more	than	one	index

• hash	index	on	(A)	and	B+	tree	index	on	(B,	C)	
• selection:	A=7 AND B=5 AND C=4
Which	index	should	we	use?
1. use	the	hash	index,	then	check	the	conditions	B=5,	C=4	for	

every	retrieved	tuple
2. use	the	B+	tree,	then	check	the	condition	A=7	for	every	

retrieved	tuple
3. use	both	indexes,	intersect	the	rid	sets,	and	only	then	fetch	the	

tuples
18CS	564	[Spring	2018]	- Paris	Koutris



SELECTION WITH DISJUNCTION (1)	

• hash	index	on	(A)	+ hash	index	on	(B)	

• selection: A=7 OR B>5

• Only	the	first	predicate	matches	an	index
• The	only	option	is	to	do	a	file	scan	

19CS	564	[Spring	2018]	- Paris	Koutris



SELECTION WITH DISJUNCTION

• hash	index	on	(A)	+ B+	tree	on	(B)	
• A=7 OR B>5

• One	solution	is	to	do	a	file	scan
• A	second	solution	is	to	use	both	indexes,	fetch	the	rids,	
and	then	do	a	union,	and	only	then	retrieve	the	tuples

20CS	564	[Spring	2018]	- Paris	Koutris

Why	do	we	need	to	perform	the	union	before	fetching	the	tuples?



SELECTION WITH DISJUNCTION

• hash	index	on	(A)	+ B+	tree	on	(B)	

• (A=7 OR C>5) AND B > 5

• We	can	use	the	B+	tree	to	fetch	the	tuples	that	satisfy	
the	second	predicate	(B	>5),	then	filter	according	to	
the	first

21CS	564	[Spring	2018]	- Paris	Koutris



CHOOSING THE RIGHT INDEX

Selectivity of	an	access	path	=	fraction of	tuples	that	
need	to	be	retrieved

• We	want	to	choose	the	most	selective	path!
• Estimating	the	selectivity	of	an	access	path	is	
generally	a	hard	problem

22CS	564	[Spring	2018]	- Paris	Koutris



ESTIMATING SELECTIVITY (1)

• selection:	A=3 AND B=4 AND C=5
• hash	index	on	(A,B,C)

The	selectivity	can	be	approximated	by:	1/#keys
• #keys	is	known	from	the	index
• this	assumes	that	the	values	are	distributed	uniformly
across	the	tuples

23CS	564	[Spring	2018]	- Paris	Koutris



EXAMPLE

• selection:	A=3 AND B=4 AND C=5
• clustered hash	index	on	(A,B,C)
• #pages	=	10,000
• #keys	in	hash	index	=	100	

• selectivity	=	1%
• number	of	pages	retrieved	= 	10,000 ∗ 1%	 = 	100
• I/O	cost	~	100	+	(a	small	constant)

24CS	564	[Spring	2018]	- Paris	Koutris



ESTIMATING SELECTIVITY (2)

• selection:	A=3 AND B=4 AND C=5
• hash	index	on	(B,A)

If	we	don’t	know	the	#keys	for	the	index,	we	can	estimate	
selectivity	as	follows:
• multiply	the	selectivity for	each	primary	conjunct
• If	#keys	is	not	known	for	an	attribute,	use	1/10	as	default	
value

• this	assumes	independence	of	the	attributes!

25CS	564	[Spring	2018]	- Paris	Koutris



ESTIMATING SELECTIVITY (3)

• Selection:	A>10 AND A<60

• If	we	have	a	range	condition,	we	assume	that	the	
values	are	uniformly	distributed

• The	selectivity	will	be	approximated	by		 -./01234
5-6789:;

Example:	if A	takes	values	in	[0,100]	then	the	selectivity	
will	be	~	<=8>=

>==8=
= 50%

26CS	564	[Spring	2018]	- Paris	Koutris



PROJECTION

27CS	564	[Spring	2018]	- Paris	Koutris



PROJECT OPERATOR

Simple	case:	SELECT R.A, R.D
– scan	the	file	and	for	each	tuple	output	R.A,	R.D

Hard	case:	SELECT DISTINCT R.A, R.D
– project	out	the	attributes	
– eliminate	duplicate	tuples	(this	is	the	difficult	part!)

28CS	564	[Spring	2018]	- Paris	Koutris



PROJECT:	SORT-BASED

Naïve	algorithm:
1. scan	the	relation	and	project	out	the	attributes
2. sort	the	resulting	set	of	tuples	using	all	attributes
3. scan	the	sorted	set	by	comparing	only	adjacent	
tuples	and	discard	duplicates

29CS	564	[Spring	2018]	- Paris	Koutris



RUNNING EXAMPLE

R(A,B,C,D,E)
• N =	1000	pages
• B =	20	buffer	pages
• Each	field	in	the	tuple	has	the	same	size
• Suppose	we	want	to	project	on	attribute	A

30CS	564	[Spring	2018]	- Paris	Koutris



SORT-BASED COST ANALYSIS

• initial	scan	=	1000	I/Os
• after	projection	T	=(1/5)*1000	=	200	pages
• cost	of	writing	T	=	200	l/Os
• sorting	in	2	passes	=		2	* 2	*	200	=	800	l/Os
• final	scan	=	200	I/Os

total	cost	=	2200	I/Os

31CS	564	[Spring	2018]	- Paris	Koutris

We	will	generally	ignore	the	cost
of	writing	the	final	result	to	disk,	since
it	will	be	the	same	for	every	algorithm!



PROJECT:	SORT-BASED

We	can	improve	upon	the	naïve	algorithm	by	
modifying	the	sorting	algorithm:
1. In	Pass	0 of	sorting,	project	out	the	attributes
2. In	subsequent	passes,	eliminate	the	duplicates	
while	merging	the	runs

32CS	564	[Spring	2018]	- Paris	Koutris



SORT-BASED COST ANALYSIS

• we	can	sort	in	2	passes	
• pass	0 costs	1000	+	200	=	1200	I/Os
• pass	1 costs	200	I/Os (not	counting	writing	the	
result	to	disk)	

total	cost	=	1400		I/Os

33CS	564	[Spring	2018]	- Paris	Koutris



PROJECT:	HASH-BASED

2-phase	algorithm:
• partitioning	
– project	out	attributes	and	split	the	input	into	B-1	
partitions	using	a	hash	function	h

• duplicate	elimination
– read	each	partition	into	memory	and	use	an	in-memory	
hash	table	(with	a	differenthash	function)	to	remove	
duplicates

34CS	564	[Spring	2018]	- Paris	Koutris



PROJECT:	HASH-BASED

When	does	the	hash	table	fit	in	memory?
• size	of	a	partition	=	𝑇	/	(𝐵 − 1),	where	T	is	#pages	
after	projection

• size	of	hash	table	=	𝑓 D 𝑇	/	(𝐵 − 1),	where	is	a	
fudge	factor	(typically	~	1.2)

• So,	it	must	be	𝐵	 > 	𝑓 D 𝑇	/	(𝐵 − 1),	or	
approximately	𝐵 > 	 𝑓 D 𝑇

35CS	564	[Spring	2018]	- Paris	Koutris



HASH-BASED COST ANALYSIS

• T	=	200	so	the	hash	table	fits	in	memory!
• partitioning	cost	=	1000	+	200	=	1200	I/Os
• duplicate	elimination	cost	=	200	I/Os

total	cost	=	1400	I/Os

36CS	564	[Spring	2018]	- Paris	Koutris



COMPARISON

• Benefits	of	sort-based	approach	
– better	handling	of	skew
– the	result	is	sorted

• The	I/O	costs	are	the	same	if	B2 >	T
– 2	passes	are	needed	by	both	algorithms

37CS	564	[Spring	2018]	- Paris	Koutris



PROJECT:	INDEX-BASED

• Index-only	scan
– projection	attributes	subset	of	index	attributes
– apply	projection	algorithm	only	to	data	entries	

• If	an	ordered index contains	all	projection	
attributes	as	prefix of	search	key:
1. retrieve	index	data	entries	in	order
2. discard	unwanted	fields
3. compare	adjacent	entries	to	eliminate	duplicates

38CS	564	[Spring	2018]	- Paris	Koutris


