RELATIONAL OPERATORS #2

CS 564- Spring 2018

ACKs: Jeff Naughton, Jignesh Patel, AnHai Doan

WHAT IS THIS LECTURE ABOUT?

Algorithms for relational operators:
* joins
* setoperators

* aggregation

JOINS

CS 564 [Spring 2018] - Paris Koutris

JOIN OPERATOR

Algorithms for equijoin:

SELECT *
FROM R, S
WHERE R.a = S.a

Why can’t we compute it as cartesian product?

JOIN ALGORITHMS

Algorithms for equijoin:

* nested loopjoin

* blocknested loopjoin

* index nested loopjoin

* blockindex nested loop join
* sortmerge join

* hash join

NESTED LOOP JOIN (1)

* for each page PrinR
* for each page Pcin S

* join the tuples on Py with the tuples in Pg

I/O = MR + MS | MR Observe that we ignore

* Mjy=number of pages inR the cost of writing

. the output to disk!
* M =number of pagesin$ s s

NESTED LOOP JOIN (2)

e Which relation should be the outer relationin
the loop?

— The smaller of the two relations

* How many buffer pages do we need?

— only 3 pages suffice

BLOCK NESTED LOOP JOIN (1)

Assume B buffer pages
* for each block of B-Z pages from R
 for each page Pcin S
* join the tuples from the block with the tuples
in P

I/O=1\4R‘|'1\45‘[ﬂ

B—-2

BLOCK NESTED LOOP JOIN (2)

* Toincrease CPU efficiency, create an in-memory
hash table for each block
— what will be the key of the hash table?

 What happensif R fits in memory?
— The I/0O costis only M, + Ms !

NLJ VS BNL]J

Example:

Mg =500 pages
M =1000 pages
100 tuples / page
B=12

NL]J 1/0 = 500 + 500*1,000 = 500,500
BNLJ 1/0 = 500 + 2222999 _ 50, 500

CS 564 [Spring 2018] - Paris Koutris 10

INDEX NESTED LOOP JOIN

S has an index on the join attribute
* for each page P,inR
* for eachtuplerinR

* probe the index of S to retrieve any matching
tuples
[/O=Mgp+ |R|-I"

 ["isthel/0 cost of searching an index, and depends on
the type of index and whether itis clustered or not

BLOCK INDEX NESTED LOOP JOIN

* for each block of B-Z pagesinR
 sort the tuples in the block
* for each tuple rin the block

* probe the index of S to retrieve any matching
tuples

* Why do we need to sort here?

SORT MERGE JOIN

CS 564 [Spring 2018] - Paris Koutris

13

SORT MERGE JOIN: BASIC VERSION

The basic version:

* sortR and S on the join attribute (using external
merge sort)

* read the sorted relationsin the buffer and merge

CS 564 [Spring 2018] - Paris Koutris 14

READ AND MERGE

disk buffer B = 3 frames
] — — : co :
R(A,B) 1L5)] [82)] |60 | read !
S —— e ——————)) M\ -
Y — — i T }
sia0 ! [(La)| |2b)]| |Ba)| | |
N / N)
poTTTTTTTEETETEETEEEEEETTEEETTE TS N (T \
(| : |
: i write : i
! : ———— temmmmm e 4
output | |
| |
1 1
1 1
\ /
R ’ the two relations are already
sorted on attribute A

READ AND MERGE

disk buffer B = 3 frames
Cr— : e :
R(A’B) i (1;5) (3)2) (576) i read i (175) i
S e e ——————)) M\ :
1 o] e ‘: T/ 1
s;a0 ¢+ |(La)] [2Zb)| |B)| P ((La)]
N e o e e s N)
oI TTETTEEEEEEEEEEEEETEEEEEEE TS N (" \
[1 ' [(1,5,)] |
| i write ! (1,5, E
| | (e R ’
Output : :
a ,5
N e ‘ read 1 page from each list

merge the tuples

READ AND MERGE

disk buffer B = 3 frames
Y : C— :
R(A’B) i (1;5) (3)2) (576) i read i (3;2) i
S e e ——————)) M\ :
" ol sl ‘: /] 1
sa0 | |[(La)| [(2b)] || i | (2b)]
N e e e e e e e o ’ N J
P S N ;
i (1,5,a) i write : E
i | (e e ’
Output : :
a ,5
N e ‘ sine 2<3, we have to read
a new page from S

READ AND MERGE

disk buffer B = 3 frames

Y : C— :

R(AB)y [(1,5)] [(B2)| [(56)] read 1 [(32)]

S e e ——————)) M\ :

T — — — \ ((— !

sa0 § [(La)] [Zb)] [Bd| i B

K it 5 (— :

! (1,5,a) E write i\ (3,2,¢) E

output | ——

S — 4 and so on...

SORTING WITH DUPLICATES

disk buffer B = 3 frames
C—] — : o :
R(A,B) i (1,5) (1,2) (1,6) i read i i
S e e ——————)) M\ :
Y) — i S -
s@a0 ! |(La)| [(Lb)] |(1c) ! ! =
e ——— J -]
I (|
i i write : i
! | (e smmssssseses ’
output : :
\ /; in the case of multiple duplicate
"""""""""""""" values, merging may not take

linear time!

SORTING WITH DUPLICATES

output

B = 3 frames
Y] — : C— :
C[(LS)) [(L2)) |(L6)| read 1 [(1,3)]
S e e ——————)) M\ :
e sl ol ‘: C— 1
 ((La)] [(Lb)]| | (Le) 5 @) |
F ittt 5 c :
! (1,5,a) | | (1,5,b) i write ! i
i | (e Eass aae ’
'\\ /; which page should we read next?
"""""""""""""""" we need to backup to compute

the full result

SMJ: 1/0 COST

 [f thereis no backup, the I/0 cost of read + merge
is only M, + M

 If there is backup, in the worst case the 1/0 cost
could be M * M

* this happens when there is a single join value

Total I/0 cost ~ sort(R) + sort(S) + My + Mg

SORT MERGE JOIN: OPTIMIZED

e (Generatesorted runs of size ~2B for Rand S

* Merge the sorted runs for Rand S

— while merging check for the join condition and output
the join tuples

[/O cost ~3(Mp+ M)

But how much memory do we need for this to happen?

SMJ]: MEMORY ANALYSIS

* In the first phase, we create runs of length ~2B

M +Mg

* Hence, the number of runs is

 Toperforma k-way merge, we need k+1 buffer
pages, so:

“S < B — 1or B2 > max{Ms, M}

If B2 is larger than the maximum number of pages of the
two relations, then SM] has [/0 cost ~ 3(My + M)

HASH JOIN

CS 564 [Spring 2018] - Paris Koutris

24

HASH FUNCTION REFRESHER

We will use a hash function h to map values of the
join attribute (A) into buckets [1, B-1]

Tuple tis then hashed to bucket h(t.A)

A hash collision occurs when x !=y but h(x) = h(y)

Note however that it will never happen thatx =y
but h(x) != h(y)

HASH JOIN: OVERVIEW

Start with a hash function h on the join attribute
* Partition phase: partition Rand S into k
partitions using h

* Matching phase: join each partition of R with the
corresponding (same hash value) partition of S
using BNL]

PARTITION PHASE

3 frames

%)
(@)
o
=
fw
A o mmmmmmel mmmmmmmy pmmmm——— 3o}
' ' Yo Y =
“ _“ 11 QN
1 1 11 1 1
PR | 1] 11 _k
o | L 11 I
G | 1] 11 1 (ab]
O | 1 11 1 &
= i il S
o] 1| 11 1 =
\ 1y 11] &)
/l ||||||| \ll ||||||| \/l ||||||| 4 H
D]
= £ >
=
ot 2
s N e N g N
1 I 1 1 1 1
1 i 1 P 1
i P b i
H e Neown] B I
1l © o | o o i
1 = = 1 1 1 1 1
-53 1 1 11 1
]| — — i 1 P I
1 I 1 1 1 1
1 i 1 P 1
1 i I P 1
== ! . “
I L I
2= Lo :
i~] 1 L i
1
1 1 11 1
L o o I
S P L “
I o o i
RSt ' !
|l — | | P I
]| ~— — I 1 1 I
1 i I P 1
I P 1ol I
’, IIIIIIIIII \ ,l IIIIIII \\ ,l IIIIIII \\
—
=)
S — N
(o (=W (=W

PARTITION PHASE

disk
R(A,B) (1,a) (1,c) (5,a)
l2b)| [ed] [Be)]|
{' --------------------------------- }
PL |
{' --------------------------------- |
P2 i i

—————————————————————————————————

buffer B = 3 frames

————————————

! (1,a) !
read ! !
S— :‘ (Z;b) ::
[—)

i | (La)| | h()=1

wite. | [opy] | &=
 C— i ‘ i

reach one page at a time
hash the tuples to the partition

PARTITION PHASE

disk buffer B = 3 frames
— — T — \ Sl 1
RAB):! [(La)| (LA | [Ga)| | |reaa | [L9]
Cleb)| (ed] |Be)| (=== [2d]
Ny /’ ll"- """"" \|
A — . C [(La)]| | h()=1
! i (Lo
P1 | | g
:\ _________________________________ l: write g (Z,b) \i h(2)=2
(T : (2,d)
P2 T ”
S 2 next page in

PARTITION PHASE

disk buffer B = 3 frames
— — T — \ el 1
RAB) [(La)| [Wo)] [Ga)| | [read | |DA)]
i (2,b) (2,d) (3,e) i e —— :\ (3,e) /:
Ny /’ l, """""" \|
R, \ L [(5a)] | ns)=1
[I : i
o (1,a) i R ;
: (1’(:) : FmTTTTTTTTEETS \
el / write ! E h(3)=2
e, = ! (3,9) :
[y i i
ez | [@D) N
- L2 ;
R e e L L e R e ‘ read next page

PARTITION PHASE

disk
R(A,B) ; (1,a) (1,c) (3,a) E
L [eb)]| [2d] [Be)] |
¢)
L | (La)| [(5.a) |
o e 5
{' --------------------------------- |
P2 i (Z,b) (3,@) i
L [2d) E

—————————————————————————————————

write

buffer B = 3 frames
’ ~\
! |
| Ga) |
1 1
1 1
1 (3’6) I
\\ ,I
| \
1 1
1 1
1 1
1 1
1 1
1 1
\\ ,I
' ------------
[\
1 1
1 |
1 1
1 1
1 |
1 1
‘\ ll

write to disk

BUCKET SIZE

* We can create up to k = B-1 partitions in one pass

* How big are the buckets we create?
— Ideally, each bucket has ~ M/(B-1) pages

— but hash collisions can occur!

— or we may have many duplicate values on the join attribute (skew)

* Inthe matching phase, we join two buckets from R, S with
the same hash value

— We want to do thisin linear time using BNL], so we must guarantee
that each bucket from one of the two relations is at most B-1 pages

HJ: 1/0 COST

* Suppose M, < Mg
* The partition phase gives buckets of size ~ My /B

 To make BNL] run in one pass we need to make sure that:

% < B — 2 orequivalently: B* > M,

If B2 is larger than the minimum number of pages of the
two relations, then HJ has /0 cost ~ 3(M, + My)

COMPARISON OF JOIN ALGORITHMS

Hash Join vs Block Nested Loop Join
* the same if smaller table fits into memory

* otherwise, hash join is much better

COMPARISON OF JOIN ALGORITHMS

Hash Join vs Sort Merge Join

* Suppose My > M

* Todo atwo-passjoin, SM] needs B > \/M_R
— the I/0 cost is: 3(My + My)

* Todo atwo-passjoin, Hf needs B > \/VS
— the I/0 costis: 3(My + M)

GENERAL JOIN CONDITIONS

* Equalities over multiple attributes
— e.g., Rsid=S.sidand R.rname=S.sname
— for Index Nested Loop
. index on <sid, sname>
- index on sid or sname

— for SMJ and HJ, we can sort/hash on combination of join
attributes

GENERAL JOIN CONDITIONS

* Inequality conditions
— e.g., Rrname < S.sname
— For BINL, we need (clustered) B+ tree index
-~ SMJ and HJ not applicable
— BNL]J likely to be the winner (why?)

SET OPERATIONS & AGGREGATION

SET OPERATIONS

Intersection is a special case of a join
Union and difference are similar
Sorting:

— sort both relations (on all attributes)

— merge sorted relations eliminating duplicates
Hashing:

— partitionR and S

— build in-memory hash table for partition R;
— probe with tuples in S;, add to table if not a duplicate

AGGREGATION: SORTING

* sorton group by attributes (if any)

* scan sorted tuples, computing running aggregate
— max/min: max/min

— average: sum, count

* when the group by attribute changes, output
aggregate result

* cost = sorting cost

AGGREGATION: HASHING

Hash on group by attributes (if any)

— Hash entry = group attributes + running

aggregate
Scan tuples, probe hash table, update hash entry
Scan hash table, and output each hash entry
cost = scan relation

What happensif we have many groups?

AGGREGATION: INDEX

* Without grouping
— Can use B+ tree on aggregate attribute(s)
* With grouping
— B+ tree on all attributes in SELECT, WHERE and GROUP
BY clauses
* Index-only scan

* If group-by attributes prefix of search key, the data
entries/tuples are retrieved in group-by order

