
RELATIONAL OPERATORS #2

CS	564- Spring	2018

ACKs:	Jeff	Naughton,	Jignesh Patel,	AnHai Doan



WHAT IS THIS LECTURE ABOUT?

Algorithms	for	relational	operators:
• joins
• set	operators
• aggregation

2CS	564	[Spring	2018]	- Paris	Koutris



JOINS

3CS	564	[Spring	2018]	- Paris	Koutris



JOIN OPERATOR

Algorithms	for	equijoin:

SELECT *
FROM R, S
WHERE R.a = S.a

Why	can’t	we	compute	it	as	cartesian product?

4CS	564	[Spring	2018]	- Paris	Koutris



JOIN ALGORITHMS

Algorithms	for	equijoin:
• nested	loop	join
• block	nested	loop	join
• index	nested	loop	join
• block	index	nested	loop	join
• sort	merge	join
• hash	join

5CS	564	[Spring	2018]	- Paris	Koutris



NESTED LOOP JOIN (1)

• for	each	page	PR in	R
• for	each	page	PS in	S
• join	the	tuples	on	PRwith	the	tuples	in PS

I/O	=𝑀𝑅 +𝑀$ % 𝑀𝑅

• MR =	number	of	pages	in	R
• MS =	number	of	pages	in	S

6CS	564	[Spring	2018]	- Paris	Koutris

Observe	that	we	ignore	
the	cost	of	writing
the	output	to	disk!



NESTED LOOP JOIN (2)

• Which	relation	should	be	the	outer relation	in	
the	loop?
– The	smaller	of	the	two	relations

• How	many	buffer	pages	do	we	need?	
– only	3	pages	suffice

7CS	564	[Spring	2018]	- Paris	Koutris



BLOCK NESTED LOOP JOIN (1)

Assume	B	buffer	pages
• for	each	block	of	B-2	pages	from	R
• for	each	page	PS in	S
• join	the	tuples	from	the	block	with	the	tuples	
in PS

I/O	=	𝑀𝑅 +𝑀$ %
'(
)*+

8CS	564	[Spring	2018]	- Paris	Koutris



BLOCK NESTED LOOP JOIN (2)

• To	increase	CPU	efficiency,	create	an	in-memory	
hash	table	for	each	block
– what	will	be	the	key	of	the	hash	table?

• What	happens	if	R fits	in	memory?
– The	I/O	cost	is	only	𝑀𝑅 +𝑀$ !

9CS	564	[Spring	2018]	- Paris	Koutris



NLJ VS BNLJ

Example:
• MR =	500	pages	
• MS =	1000	pages
• 100	tuples	/	page
• B =	12	

NLJ	I/O	=	500	+	500*1,000	=	500,500

BNLJ	I/O	=	500	+	,--∗/,---/+*+ =	50,500

10CS	564	[Spring	2018]	- Paris	Koutris

The	difference	in	I/O	cost	in	an	order	of	magnitude!



INDEX NESTED LOOP JOIN

S has	an	index	on	the	join	attribute
• for	each	page	PR in	R
• for	each	tuple	r in	R
• probe	the	index	of	S	to	retrieve	any	matching	
tuples

I/O	=	𝑀𝑅 + 𝑅 % 𝐼∗

• 𝐼∗ is	the	I/O	cost	of	searching	an	index,	and	depends	on	
the	type	of	index	and	whether	it	is	clustered	or	not

11CS	564	[Spring	2018]	- Paris	Koutris



BLOCK INDEX NESTED LOOP JOIN

• for	each	block	of	B-2 pages	in	R
• sort	the	tuples	in	the	block
• for	each	tuple	r in	the	block		
• probe	the	index	of	S	to	retrieve	any	matching	
tuples

• Why	do	we	need	to	sort	here?

12CS	564	[Spring	2018]	- Paris	Koutris



SORT MERGE JOIN

13CS	564	[Spring	2018]	- Paris	Koutris



SORT MERGE JOIN:	BASIC VERSION

The	basic	version:
• sortR and	S on	the	join	attribute	(using	external	
merge	sort)

• read	the	sorted	relations	in	the	buffer	and	merge

14CS	564	[Spring	2018]	- Paris	Koutris

If	R,	S are	already	sorted	on	the	join	attribute	
we	can	skip	the	first	step!



READ AND MERGE

15CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,5) (3,2) (5,6)R(A,B)

S(A,C)

read

write

B	=	3	frames

output

the	two	relations	are	already
sorted	on	attribute	A

(2,b) (3,c)(1,a)



READ AND MERGE

16CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,5)(3,2) (5,6)R(A,B)

S(A,C)

read

write

B	=	3	frames

output

read	1	page	from	each	list
merge	the	tuples

(2,b) (3,c) (1,a)

(1,5,a)

(1,5)

(1,a)



READ AND MERGE

17CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(3,2)(5,6)R(A,B)

S(A,C)

read

write

B	=	3	frames

output

sine	2<3,	we	have	to	read
a	new	page	from	S

(2,b)(3,c)

(1,5,a)

(1,5)

(1,a)

(3,2)

(2,b)



READ AND MERGE

18CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(3,2)(5,6)R(A,B)

S(A,C)

read

write

B	=	3	frames

output

and	so	on…

(3,c)

(1,5,a) (3,2,c)

(1,5)

(1,a)

(3,2)

(3,c)(2,b)



SORTING WITH DUPLICATES

19CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,5) (1,2) (1,6)R(A,B)

S(A,C)

read

write

B	=	3	frames

output

in	the	case	of	multiple	duplicate
values,	merging	may	not	take
linear	time!

(1,b) (1,c)(1,a)



SORTING WITH DUPLICATES

20CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,5) (1,2) (1,6)R(A,B)

S(A,C)

read

write

B	=	3	frames

output

which	page	should	we	read next?
we	need	to	backup to	compute
the	full	result

(1,b) (1,c)(1,a)

(1,5,a) (1,5,b)

(1,5)

(1,b)



SMJ:	I/O COST

• If	there	is	no	backup,	the	I/O	cost	of	read	+	merge	
is	only	𝑀𝑅 + 𝑀$

• If	there	is	backup,	in	the	worst	case	the	I/O	cost	
could	be	𝑀𝑅 ∗ 𝑀$
• this	happens	when	there	is	a	single join	value

Total	I/O	cost	~	𝑠𝑜𝑟𝑡 𝑅 + 𝑠𝑜𝑟𝑡 𝑆 + 	𝑀𝑅 +𝑀$

21CS	564	[Spring	2018]	- Paris	Koutris



SORT MERGE JOIN:	OPTIMIZED

• Generate	sorted	runs	of	size	~2B for	R and	S
• Merge	the	sorted	runs	for	R and	S
– while	merging	check	for	the	join	condition	and	output	
the	join	tuples

I/O	cost	 ~	3(𝑀𝑅 +𝑀$)

But	how	much	memory	do	we	need	for	this	to	happen?

22CS	564	[Spring	2018]	- Paris	Koutris



SMJ:	MEMORY ANALYSIS

• In	the	first	phase,	we	create	runs	of	length	~2B

• Hence,	the	number	of	runs	is			';<'=
+)

• To	perform	a	k-way	merge,	we	need	k+1	buffer	
pages,	so:

';<'=
+)

≤ 𝐵 − 1 or	𝐵+ ≥ max 𝑀$, 𝑀𝑅	

23CS	564	[Spring	2018]	- Paris	Koutris

If	B2 is	larger	than	the	maximumnumber	of	pages	of	the	
two	relations,	then	SMJ	has	I/O	cost	~	3(𝑀𝑅 + 𝑀$)



HASH JOIN

24CS	564	[Spring	2018]	- Paris	Koutris



HASH FUNCTION REFRESHER

• We	will	use	a	hash	function	h to	map	values	of	the	
join	attribute	(A)	into	buckets	[1,	B-1]

• Tuple	t is	then	hashed	to	bucket	h(t.A)

• A	hash	collision	occurs	when	x	!=	y	but	h(x)	=	h(y)
• Note	however	that	it	will	never	happen	that	x	=	y	
but	h(x)	!=	h(y)	

25CS	564	[Spring	2018]	- Paris	Koutris



HASH JOIN:	OVERVIEW

Start	with	a	hash function	h on	the	join	attribute
• Partition	phase:	partition	R and	S into	k
partitions	using	h

• Matching	phase:	join	each	partition	of	Rwith	the	
corresponding	(same	hash	value)	partition	of	S	
using	BNLJ

26CS	564	[Spring	2018]	- Paris	Koutris



PARTITION PHASE

27CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,a)
(2,b)

(1,c)
(2,d)

(5,a)
(3,e)

R(A,B) read

write

B	=	3	frames

P1

we	will	create	k=2	partitions	
P2



PARTITION PHASE

28CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,a)
(2,b)

(1,c)
(2,d)

(5,a)
(3,e)

R(A,B) read

write

B	=	3	frames

P1

reach	one	page	at	a	time
hash	the	tuples	to	the	partition

P2

(1,a)
(2,b)

(1,a) h(1)=1

h(2)=2(2,b)



PARTITION PHASE

29CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,a)
(2,b)

(1,c)
(2,d)

(5,a)
(3,e)

R(A,B) read

write

B	=	3	frames

P1

next	page	in

P2

(1,a)
(1,c)

h(1)=1

h(2)=2(2,b)
(2,d)

(1,c)
(2,d)



PARTITION PHASE

30CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,a)
(2,b)

(1,c)
(2,d)

(5,a)
(3,e)

R(A,B) read

write

B	=	3	frames

P1

read	next	page

P2

(1,a)
(1,c)

h(5)=1

h(3)=2

(2,b)
(2,d)

(5,a)
(3,e)

(5,a)

(3,e)



PARTITION PHASE

31CS	564	[Spring	2018]	- Paris	Koutris

bufferdisk

(1,a)
(2,b)

(1,c)
(2,d)

(3,a)
(3,e)

R(A,B) read

write

B	=	3	frames

P1

write	to	disk

P2

(1,a)
(1,c)

(2,b)
(2,d)

(5,a)
(3,e)

(5,a)

(3,e)



BUCKET SIZE

• We	can	create	up	to	k	=	B-1	partitions	in	one	pass
• How	big	are	the	buckets	we	create?

– Ideally,	each	bucket	has	~	M/(B-1)	pages
– but	hash	collisions	can	occur!
– or	we	may	have	many	duplicate	values	on	the	join	attribute	(skew)

• In	the	matching	phase,	we	join	two	buckets	from	R,	S	with	
the	same	hash	value
– We	want	to	do	this	in	linear	time	using	BNLJ,	so	we	must	guarantee	
that	each	bucket	from	one	of	the	two	relations	is	at	most	B-1	pages

32CS	564	[Spring	2018]	- Paris	Koutris



HJ:	I/O COST

• Suppose	𝑀𝑅	 ≤ 𝑀$
• The	partition	phase	gives	buckets	of	size	~	MR/B
• To	make	BNLJ	run	in	one	pass	we	need	to	make	sure	that:

';

) ≤ 𝐵 − 2 or	equivalently:	𝐵+ ≥𝑀𝑅

33CS	564	[Spring	2018]	- Paris	Koutris

If	B2 is	larger	than	the	minimum	number	of	pages	of	the	
two	relations,	then	HJ	has	I/O	cost	~	3(𝑀𝑅 +𝑀$)



COMPARISON OF JOIN ALGORITHMS

Hash	Join	vs Block	Nested	Loop	Join
• the	same	if	smaller	table	fits	into	memory
• otherwise,	hash	join	is	much	better

34CS	564	[Spring	2018]	- Paris	Koutris



COMPARISON OF JOIN ALGORITHMS

Hash	Join	vs Sort	Merge	Join
• Suppose	MR >	MS

• To	do	a	two-pass	join,	SMJ	needs	𝐵 > 	 𝑀;

– the	I/O	cost	is:	3(𝑀𝑅 +𝑀$)
• To	do	a	two-pass	join,	HJ	needs	𝐵 > 	 𝑀$
– the	I/O	cost	is:	3(𝑀𝑅 +𝑀$)

35CS	564	[Spring	2018]	- Paris	Koutris



GENERAL JOIN CONDITIONS

• Equalities	over	multiple	attributes	
– e.g.,	R.sid=S.sidand R.rname=S.sname
– for	Index	Nested	Loop

• index	on	<sid,	sname>
• index	on	sid or	sname

– for	SMJ	and	HJ,	we	can	sort/hash	on	combination	of	join	
attributes

36CS	564	[Spring	2018]	- Paris	Koutris



GENERAL JOIN CONDITIONS

• Inequality	conditions	
– e.g.,	R.rname <	S.sname
– For	BINL,	we	need	(clustered)	B+	tree	index
– SMJ	and	HJ	not	applicable
– BNLJ	likely	to	be	the	winner	(why?)

37CS	564	[Spring	2018]	- Paris	Koutris



SET OPERATIONS &	AGGREGATION

38CS	564	[Spring	2018]	- Paris	Koutris



SET OPERATIONS

• Intersection is	a	special	case	of	a	join
• Union and	difference are	similar
• Sorting:

– sort	both	relations	(on	all	attributes)
– merge	sorted	relations	eliminating	duplicates

• Hashing:
– partition	R	and	S
– build	in-memory	hash	table	for	partition	Ri
– probe	with	tuples	in	Si,	add	to	table	if	not	a	duplicate

39CS	564	[Spring	2018]	- Paris	Koutris



AGGREGATION:	SORTING

• sort	on	group	by	attributes	(if	any)
• scan	sorted	tuples,	computing	running	aggregate
– max/min:	max/min
– average:	sum,	count

• when	the	group	by	attribute	changes,	output	
aggregate	result

• cost =		sorting	cost

40CS	564	[Spring	2018]	- Paris	Koutris



AGGREGATION:	HASHING

• Hash	on	group	by	attributes	(if	any)
– Hash	entry =	group	attributes	+	running	
aggregate

• Scan	tuples,	probe	hash	table,	update	hash	entry
• Scan	hash	table,	and	output	each	hash	entry
• cost =	scan	relation
• What	happens	if	we	have	many	groups?

41CS	564	[Spring	2018]	- Paris	Koutris



AGGREGATION:	INDEX

• Without	grouping
– Can	use	B+	tree	on	aggregate	attribute(s)

• With	grouping
– B+	tree	on	all	attributes	in	SELECT,	WHERE	and	GROUP	
BY	clauses
• Index-only	scan
• If	group-by	attributes	prefix	of	search	key,	the	data	
entries/tuples	are	retrieved	in	group-by	order

42CS	564	[Spring	2018]	- Paris	Koutris


