
QUERY OPTIMIZATION

CS	564- Spring	2018

ACKs:	Jeff	Naughton,	Jignesh Patel,	AnHai Doan

WHAT IS THIS LECTURE ABOUT?

• What	is	a	query	optimizer?

• Generating	query	plans

• Cost	estimation	of	query	plans

2CS	564	[Spring	2018]	- Paris	Koutris

ARCHITECTURE OF AN OPTIMIZER

3CS	564	[Spring	2018]	- Paris	Koutris

query	(SQL)

Query	Parser

parsed	query	(Relational	Algebra)

Query	Optimizer
• Plan	generator
• Plan	cost	estimator

query	plan	(annotated	RA	tree)

System	Catalog

Relational	Algebra
is	the	glue!

EXAMPLE:	FROM SQL TO RA

EMP(ssn, ename, addr, sal, did)
DEPT(did, dname, floor, mgr)

SELECT DISTINCT ename
FROM Emp E, Dept D
WHERE E.did = D.did
AND D.dname = ‘Toy’ ;

4CS	564	[Spring	2018]	- Paris	Koutris

EMP DEPT

σdname =‘Toy’

πename

⋈

QUERY OPTIMIZATION:	BASICS

The	query	optimizer

1. identifies	candidate	equivalent	RA	trees
2. for	each	RA	tree,	it	finds	the	best	annotated	

version	(using	any	available	indexes)
3. chooses	the	best	overall	plan	by	estimating	the	

I/O	cost	of	each	plan

5CS	564	[Spring	2018]	- Paris	Koutris

GENERATING QUERY PLANS

6CS	564	[Spring	2018]	- Paris	Koutris

QUERY PLANS

• The	space	of	possible	query	plans	is	typically	huge	
and	it	is	hard	to	navigate	through

• Relational	Algebra	provides	us	with	mathematical	
rules	that	transform	one	RA	expression	to	an	
equivalent	one
– push	down	selections	&	projections
– join	reordering

• These	transformations	allow	us	to	construct	many	
alternative	query	plans

7CS	564	[Spring	2018]	- Paris	Koutris

PUSHING DOWN SELECTIONS

A	selection	can	be	pushed	down	through
• projections
• joins
• other	selections

8CS	564	[Spring	2018]	- Paris	Koutris

EMP DEPT

σdname =‘Toy’

πename

⋈

EMP DEPT

σdname =‘Toy’

πename

⋈

selection	pushed
through	join

PUSHING DOWN SELECTIONS

9CS	564	[Spring	2018]	- Paris	Koutris

R(A,B,C)

πA,B

selection	pushed
through	projection

σA=10

R(A,B,C)

πA,B

σA=10

SELECTION REORDERING

10CS	564	[Spring	2018]	- Paris	Koutris

R(A,B,C)

σB>0

selection	pushed	through	
another	selection

σA=10

R(A,B,C)

σB>0

σA=10

It	is	always	possible	to	change	the	order	of	selections

PUSHING DOWN PROJECTIONS

A	projection	can	be	pushed	down	through
• selections
• joins

11CS	564	[Spring	2018]	- Paris	Koutris

R(A,B,D)

πA,C

⋈

S(B,C)
R(A,B,D)

⋈

S(B,C)πA,B

πA,C

D	is	projected	out
earlier	in	the	plan!

SELECTIONS &	PROJECTIONS

• Heuristically,	we	want	selections	and	projections	
to	occur	as	early	as	possible	in	the	query	plan	

• The	reason:	we	will	have	fewer	tuples	in	the	
intermediate	steps	of	the	plan
– this	could	fail	if	the	selection	condition	is	very	very	
expensive	

– projection	could	be	a	waste	of	effort,	but	more	rarely	

12CS	564	[Spring	2018]	- Paris	Koutris

EXAMPLE

13CS	564	[Spring	2018]	- Paris	Koutris

R(A,B)

πA

⋈

S(B,C)

⋈

T(C,D)

σC=10

R(A,B)

πA

⋈

S(B,C)

T(C,D)

σC=10

πC
πA,C

⋈

JOIN REORDERING

• Commutativity of	join
𝑅 ⋈ 𝑆	 ≡ 𝑆 ⋈ 𝑅

• Associativity	of	join
𝑅 ⋈ 𝑆 ⋈ 𝑇 ≡ 𝑅 ⋈ (𝑆 ⋈ 𝑇)

We	can	reorder	the	computation	of	joins	in	any	way	
(exponentially	many	orders)!

14CS	564	[Spring	2018]	- Paris	Koutris

JOIN REORDERING

𝑅(𝐴,𝐵) ⋈ 𝑆(𝐵, 𝐶) ⋈ 𝑇(𝐶, 𝐷) ⋈ 𝑈(𝐷,𝐸)

15CS	564	[Spring	2018]	- Paris	Koutris

R S

⋈ T

⋈

⋈

U

left-deep	join	plans

T U

⋈ S

⋈

⋈

R

R U

⋈ T

⋈

⋈

S

correct,	but	not	
a	good	plan!

JOIN REORDERING

𝑅(𝐴,𝐵) ⋈ 𝑆(𝐵, 𝐶) ⋈ 𝑇(𝐶, 𝐷) ⋈ 𝑈(𝐷,𝐸)

16CS	564	[Spring	2018]	- Paris	Koutris

R S

⋈

⋈bushy	plan

T U

⋈

PLAN GENERATION:	RECAP

• selections	can	be	evaluated	in	any	order
• joins	can	be	evaluated	in	any	order
• selections	and	projections	can	be	pushed	down	the	
tree	using	the	RA	equivalence	transformations

17CS	564	[Spring	2018]	- Paris	Koutris

QUERY PLAN COST ESTIMATION

18CS	564	[Spring	2018]	- Paris	Koutris

COST ESTIMATION

Estimating	the	cost	of	a	query	plan	involves:
• estimating	the	cost of	each	operation	in	the	plan
– depends	on	input	cardinalities
– algorithm	cost	(we	have	seen	this!)

• estimating	the	size of	intermediate	results
– we	need	statistics	about	input	relations
– for	selections	and	joins,	we	typically	assume	
independence	of	predicates

19CS	564	[Spring	2018]	- Paris	Koutris

COST ESTIMATION

• Statistics	are	stored	in	the	system	catalog:
– number	of	tuples	(cardinality)
– size	in	pages
– #	distinct	keys	(when	there	is	an	index	on	the	attribute)
– range	(for	numeric	values)

• The	system	catalog	is	updated	periodically	
• Commercial	systems	use	additional	statistics,	
which	provide	more	accurate	estimates:
– histograms
– wavelets

20CS	564	[Spring	2018]	- Paris	Koutris

REAL-WORLD EXAMPLE

21CS	564	[Spring	2018]	- Paris	Koutris

SELECT CONCAT(customer.last_name, ',	', customer.first_name) AS customer,
address.phone, film.title

FROM rental	
INNER JOIN customer	ON rental.customer_id = customer.customer_id
INNER JOIN address	ON customer.address_id = address.address_id
INNER JOIN inventory	ON rental.inventory_id = inventory.inventory_id
INNER JOIN film	ON inventory.film_id = film.film_id
WHERE rental.return_date IS NULL
AND rental_date + INTERVAL film.rental_duration DAY	< CURRENT_DATE() LIMIT 5;

EXAMPLE:	COST ESTIMATION

• EMP(ssn, ename, addr, sal, did)
– 10000	tuples,	1000	pages

• DEPT(did, dname, floor, mgr)
– 500	tuples,	50	pages
– 100	distinct	values	for	dname

SELECT DISTINCT ename
FROM Emp E, Dept D
WHERE E.did = D.did
AND D.dname = ‘Toy’ ;

22CS	564	[Spring	2018]	- Paris	Koutris

EXAMPLE:	COST ESTIMATION

23CS	564	[Spring	2018]	- Paris	Koutris

Sort Merge Join

EMP DEPT

σdname =‘Toy’

πename

buffer	size	B=	40

cost	of	SMJ	=		3 ∗ (1000 + 50)

intermediate	result	~	2000	pages	

intermediate	result	~	20	pages	

after	each	operator,	we	
write	(materialize)	the	
result	to	disk

cost	of	selection	=		2000

cost	of	projection	=		20

total	I/O	cost	=	
OUT	
+20	
+20		{materialize}
+2000
+2000	{materialize}	
+3150	
=	7550	+	OUT

PIPELINING

24CS	564	[Spring	2018]	- Paris	Koutris

Sort Merge Join

EMP DEPT

σdname =‘Toy’

πename
After	each	operator,	we	have	2	choices:
• materialize the	intermediate	result	
before	we	start	the	next	operator

• pipeline the	result	to	the	next	
operator	without	writing	to	disk!	

We	can	apply	the	selection	condition	
as	the	tuples	are	generated	from	the	
join	operator,	before	writing	the	full	
result	to	disk!

PIPELINING

• By	using	pipelining	we	benefit	from:
– no	reading/writing	to	disk	of	the	temporary	relation
– overlapping	execution	of	operators

• Pipelining	is	not	always	possible!
• Left-deep	join	plans	allow	for	fully	pipelined	
evaluation!

25CS	564	[Spring	2018]	- Paris	Koutris

R S

⋈ T

⋈

⋈

U

COST ESTIMATION W/	PIPELINING

26CS	564	[Spring	2018]	- Paris	Koutris

Sort Merge Join

EMP DEPT

σdname =‘Toy’

πename

buffer	size	B=	40

cost	of	SMJ	=		3 ∗ (1000 + 50)

intermediate	result	~	2000	pages	

intermediate	result	~	20	pages	

we	pipeline	the	result
after	the	join	operator

cost	of	selection	=		0

cost	of	projection	=		20

total	I/O	cost	=	
OUT	
+20	
+20	{materialize}
+0
+0	{pipeline}	
+3150	
=	3550	+	OUT

EXAMPLE:	COST ESTIMATION

27CS	564	[Spring	2018]	- Paris	Koutris

BNLJ

DEPT EMP

σdname =‘Toy’

πename

buffer	size	B=	40

use	index	
on	dnamecost	of	selection	~		1

intermediate	result	~	1	page	

intermediate	result	~	20	pages	

cost	of	BNLJ	=	1000 + 1

cost	of	projection	=		20

total	I/O	cost	=	
OUT	
+20	
+20	{materialize}
+1001
+1	{materialize}	
+1
=	1043	+	OUT

