
TRANSACTION MANAGEMENT

CS	564- Spring	2018

ACKs:	Jeff	Naughton,	Jignesh Patel,	AnHai Doan

WHAT IS THIS LECTURE ABOUT?

• Transaction	(TXN)	management
• ACID properties
– atomicity
– consistency
– isolation
– durability

• Logging
• Scheduling &	locking

2CS	564	[Spring	2018]	- Paris	Koutris

THE ACID	PROPERTIES

3CS	564	[Spring	2018]	- Paris	Koutris

ACID PROPERTIES

Atomicity:	all	actions	in	the	TXN	happen,	or	none	
happen
Consistency:	a	database	in	a	consistent	state	will	
remain	in	a	consistent	state	after	the	TXN
Isolation:	the	execution	of	one	TXN	is	isolated	from	
other	(possibly	interleaved)	TXNs
Durability:	once	a	TXN	commits,	its	effects	must	
persist

4CS	564	[Spring	2018]	- Paris	Koutris

ACID:	ATOMICITY

Atomicity:	All	actions	in	the	transaction	happen,	or	
none	happen

• Two	possible	outcomes	for	a	TXN
– commit:	all	the	changes	are	made
– abort:	no	changes	are	made

5CS	564	[Spring	2018]	- Paris	Koutris

ACID:	CONSISTENCY

Consistency:	a	database	in	a	consistent	state	will	
remain	in	a	consistent	state	after	the	transaction

• Examples:
– account	number	is	unique
– stock	amount	can’t	be	negative

• How	consistency	is	achieved:
– the	programmermakes	sure	a	TXN	takes	a	consistent	
state	to	a	consistent	state

– the	DBMSmakes	sure	that	the	TXN	is	atomic

6CS	564	[Spring	2018]	- Paris	Koutris

ACID:	ISOLATION

Isolation:	the	execution	of	one	transaction	is	
isolated	from	other	(possibly	interleaved)	
transactions

Example:
• if	T1,	T2	are	interleaved,	the	result	should	be	the	same	as	
executing	first	T1	then	T2,	or	first	T2	then	T1	

7CS	564	[Spring	2018]	- Paris	Koutris

ACID:	DURABILITY

Durability:	if	a	transaction	commits,	its	effects	must	
persist
• for	example,	if	the	system	crashes	after	a	commit,	the	
effects	must	remain	

• essentially,	this	means	that	we	have	to	write	to	disk

8CS	564	[Spring	2018]	- Paris	Koutris

CONCURRENCY

9CS	564	[Spring	2018]	- Paris	Koutris

CONCURRENCY

• The	DBMS	runs	multiple	TXNs	concurrently
• To	achieve	better	performance,	interleaving the	
operations	of	the	TXNs	is	critical
– possibly	slow	TXNs
– CPU/IO	overlap

• But	interleaving	can	lead	to	problems!

10CS	564	[Spring	2018]	- Paris	Koutris

Remember:	we	must	guarantee	isolation	&	consistency!

EXAMPLE

11CS	564	[Spring	2018]	- Paris	Koutris

T1:	transfer	$100	from	A	to	B	

BEGIN TRANSACTION ;
UPDATE account
SET balance = balance – 100
WHERE account_name = A;

UPDATE account
SET balance = balance + 100
WHERE account_name = B;

COMMIT ;

T2:	add	10%	interest	to	both	accounts

BEGIN TRANSACTION ;
UPDATE account
SET balance = balance * 1.1

COMMIT ;

Let’s	see	how	the	DBMS	can	schedule	the	2	transactions

EXAMPLE

12CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

A	ß A	- 100

B	ß B	+	100

A	ß A	*	1.1

B	ß B	*	1.1

First	run	T1,	then	run	T2

time

Beginning
• A	=	200,		B	=	100
End
• A	=	110,			B	=	220

This	is	called	a	serial schedule

EXAMPLE

13CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

A	ß A	*	1.1

B	ß B	*	1.1

A	ß A	- 100

B	ß B	+	100

First	run	T2,	then	run	T1

time

Beginning
• A	=	200,		B	=	100
End
• A	=	120,			B	=	210

This	is	also	a	serial	schedule

EXAMPLE

14CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

A	ß A	*	1.1

A	ß A	- 100

B	ß B	*	1.1

B	ß B	+	100

Interleaving the	operations	of	T1	and	T2

time

Beginning
• A	=	200,		B	=	100
End
• A	=	120,			B	=	210

Same	result	as	if	we	run	serially	T2	and	then	
T1!	This	is	called	a	serializable schedule

EXAMPLE

15CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

A	ß A	*	1.1

A	ß A	- 100

B	ß B	+	100

B	ß B	*	1.1

Different	interleaving	of	the	operations	of	T1	and	T2

time

Beginning
• A	=	200,		B	=	100
End
• A	=	120,			B	=	220

Different	result	from	both	serial	schedules!	
This	is	called	a	not	serializable schedule

SCHEDULES:	DEFINITIONS

Schedule:	an	interleaving	of	actions	from	a	set	of	TXNs,	
where	the	actions	of	any	TXN	are	in	the	original	order
Serial	schedule:	a	schedule	where	there	is	no	
interleaving	of	actions	from	different	TXNs
Equivalent	schedules:	two	schedules	are	equivalent	if	
for	every	database	state,	they	will	have	the	same	effect
Serializable schedule:	a	schedule	that	is	equivalent	to	
some serial	schedule

16CS	564	[Spring	2018]	- Paris	Koutris

Note:	we	assume	that	all	TXNs	commit	in	the	schedules!

THE DBMS’S VIEW OF THE SCHEDULE

17CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

A	ß A	*	1.1

A	ß A	- 100

B	ß B	+	100

B	ß B	*	1.1

time

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)Each	action	is	a	read	(R)
followed	by	a	write	(W)

CONFLICTS IN SCHEDULES

Two	actions	conflict if	they	are	part	of	different	
TXNs,	involve	the	same	variable,	and	at	least	one	of	
them	is	a	write
• Write-Read	conflict	
• Read-Write	conflict	
• Write-Write	conflict

18CS	564	[Spring	2018]	- Paris	Koutris

A	conflict	does	not	always	lead	to	a	problem	when	interleaving!

CONFLICTS VS ANOMALIES

Conflicts help	us	characterize	different	schedules
• present	in	both	“good”	and	“bad”	schedules

Anomalies are	instances	where	isolation	and/or	
consistency	is	broken	because	of	a	“bad”	schedule
• we	often	characterize	different	anomaly	types	by	what	
types	of	conflicts	predicated	them

19CS	564	[Spring	2018]	- Paris	Koutris

DIRTY READ

20CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

W(A)

R(B)

R(A)

Commit

W(C)

time

A	dirty	read occurs	when	a	TXN	
reads	data	that	was	modified	by	a	not	
yet	committed	TXN
• in	the	example,	T1	reads	A,	which	
was	previously	modified	by	T2

• occurs	because	of	a	W-R	conflict!

UNREPEATABLE READ

21CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

R(A)

W(A)

R(B)

Commit

R(A)

time

An	unrepeatable	read occurs	when	
a	TXN	reads	data	twice,	but	in	
between	the	data	was	modified	by	a	
not	yet	committed	TXN
• in	the	example,	T2	reads	A,	T1	then	
modifies	T1,	and	T2	reads	again

• occurs	because	of	a	R-W	conflict!

OVERWRITING UNCOMMITTED DATA

22CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

W(A)

W(A)

W(B)

Commit

W(B)

time

This	occurs	when	a	TXN	overwrites	
the	data	of	an	uncommitted	TXN
• in	the	example,	the	last	version	of	A	
and	B	would	not	be	consistent	with	
any	serial	schedule

• occurs	because	of	a	W-W	conflict!

CONFLICT SERIALIZABILITY

23CS	564	[Spring	2018]	- Paris	Koutris

CONFLICT SERIALIZABILITY

• Two	schedules	are	conflict	equivalent if:
– they	involve	the	same	actions	of	the	same	TXNs
– every	pair	of	conflicting	actions of	two	TXNs	are	ordered	
in	the	same	way

• A	schedule	is	conflict	serializable if	it	is	conflict	equivalent
to	some serial	schedule

• This	provides	us	with	a	way	to	distinguish	“good”	from	
“bad”	schedules

24CS	564	[Spring	2018]	- Paris	Koutris

Conflict	serializable	⇒ serializable
So	if	we	have	conflict	serializable,	we	have	consistency	&	isolation

EXAMPLE

25CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

• In	both,	W(A)	in	T2	
comes before	R(A)	in	T1

• The	same	happens with
all	other	pairs	of	
conflicting	actions

• Since	the	left	schedule	is
serial,	the	right	schedule	
is	conflict	serializable!

EXAMPLE

26CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

T1 T2

R(A)

R(A)

W(A)

W(A)

R(B)

W(B)

R(B)

W(B)

• The	order	has	changed	
now!

• The	two	schedules	are
not	conflict	equivalent

• We	still	need	to	check	
all	other	serial	
schedules!

THE CONFLICT GRAPH

• The	conflict	graph	looks	at	conflicts	at	the	
transaction	level

• the	nodes	are	TXNs
• there	is	an	edge	from	Ti to	Tj if	any	actions	in	Ti
precede and	conflict with	any	actions	in	Tj

27CS	564	[Spring	2018]	- Paris	Koutris

THE CONFLICT GRAPH

28CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

T2 T1

• Since	W(A)	in	T2	is	before	R(A)	in	T1,	we	
add	an	edge	from	T2	to	T1

• There	is	no	edge	from	T1	to	T2	in	this	case!		

THE CONFLICT GRAPH

29CS	564	[Spring	2018]	- Paris	Koutris

T2 T1

• Since	R(A)	in	T1	is	before	W(A)	in	T2,	we	
add	an	edge	from	T1	to	T2

• Since	W(B)	in	T2	is	before	R(B)	in		T1,	we	
also	add	an	edge	from	T2	to	T1

T1 T2

R(A)

R(A)

W(A)

W(A)

R(B)

W(B)

R(B)

W(B)

THE CONFLICT GRAPH:	THEOREM

30CS	564	[Spring	2018]	- Paris	Koutris

Theorem:	a	schedule	is	conflict	serializable if	and	
only	if	its	conflict	graph	is	acyclic (i.e.	it	has	no	
directed	cycles)

• A	topological	ordering	of	a	directed	graph	is	a	linear	
ordering	of	its	vertices	that	respects	all	the	directed	edges

• A	directed	acyclic	graph	(DAG)	always	has	one	or	more	
topological	orderings
– if	there	are	cycles,	there	exists	no	such	ordering!

0
1

2

3 There	are	2	possible	topological	orderings:
• 0,	2,	1,	3
• 0,	1,	2,	3

THE CONFLICT GRAPH

31CS	564	[Spring	2018]	- Paris	Koutris

• In	the	conflict	graph,	a	topological	ordering	of	the	nodes	
corresponds	to	a	serial	ordering	of	TXNs	(serial	schedule)

• Thus	an	acyclic conflict	graph	à conflict	serializable!

T2 T1
top	ordering:	T2,	T1
this	is	conflict	equivalent	to	a	
serial	schedule	with	first	T2,	then	T1

T2 T1
there	is	a	cycle,	so	no	topological	ordering
not	conflict	serializable!

LOCKING

32CS	564	[Spring	2018]	- Paris	Koutris

LOCKING

• Locking	is	a	technique	for	concurrency	control
• Lock	information	maintained	by	a	lock	manager:
– stores	(TID,	RID,	Mode)	triples
– mode	is	either	Shared	(S)	or	Exclusive	(X)

• If	a	transaction	cannot	get	a	lock,	it	has	to	wait	in	a	
queue

33CS	564	[Spring	2018]	- Paris	Koutris

-- S X

--

S

X

√

√

√

√ √

√

STRICT 2	PHASE LOCKING

• Each	transaction	must	obtain	a	S lock	on	object	before	
reading,	and	an	X lock	on	object	before	writing

• If	a	transaction	holds	an	X lock	on	an	object,	no	other	
transaction	can	get	a	lock	(S	or	X)	on	that	object

• All	locks	held	by	a	transaction	are	released	only	when	
the	transaction	completes

34CS	564	[Spring	2018]	- Paris	Koutris

Strict	2PL	guarantees	conflict serializability!

STRICT 2PL:	FIGURE

35CS	564	[Spring	2018]	- Paris	Koutris

time

#locks

lock	acquisition Lock	Release
On	TXN	commit!

DEADLOCKS

• If	a	schedule	follows	strict	2PL	and	locking,	it	is	
conflict	serializable
– and	thus	serializable
– and	thus	maintains	isolation	&	consistency!

• Not	all	serializable schedules	are	allowed	by	strict	2PL	
• But	running	a	strict	2PL	protocol	has	some	issues!

36CS	564	[Spring	2018]	- Paris	Koutris

STRICT 2PL

• If	a	schedule	follows	strict	2PL	and	locking,	it	is	
conflict	serializable
– and	thus	serializable
– and	thus	maintains	isolation	&	consistency!

• Not	all	serializable schedules	are	allowed	by	strict	2PL	
• But	running	a	strict	2PL	protocol	has	some	issues!

37CS	564	[Spring	2018]	- Paris	Koutris

DEADLOCKS

38CS	564	[Spring	2018]	- Paris	Koutris

T1 T2

R(B)

W(B)

R(A)

W(A)

R(A)

R(B)

T1	gets	an	X-lock	on	B

T2	gets	an	X-lock	on	A

T1	wants	to	read	A,	but	has	to	wait…

T2	wants	to	read	B,	but	also	has	to	wait…

We	now	have	a	deadlock!

DEADLOCKS

• Deadlocks	can	cause	the	system	to	wait	forever
• We	need	to	detect	deadlocks	and	break,	or	
prevent	deadlocks

• Simple	mechanism:	timeout	and	abort
• More	sophisticated	methods	exist

39CS	564	[Spring	2018]	- Paris	Koutris

PERFORMANCE OF LOCKING

• Locks	have	a	performance	penalty:
– blocked actions
– aborted transactions

• Because	of	blocking,	we	can	not	increase	forever	
the	throughput	of	transactions

• At	the	point	where	the	throughput	cannot	
increase,	we	say	that	the	system	thrashes

40CS	564	[Spring	2018]	- Paris	Koutris

TRANSACTIONS IN SQL

41CS	564	[Spring	2018]	- Paris	Koutris

TRANSACTIONS IN SQL

• What	object	should	we	lock?
SELECT COUNT(*)
FROM Employee
WHERE age = 20 ;

• We	can	apply	locking	at	different	granularities:
– lock	the	whole	table	Employee
– lock	only	the	rows	with	age	=	20

42CS	564	[Spring	2018]	- Paris	Koutris

TRANSACTIONS IN SQL

Transaction	characteristics:
• Access	mode:	READ ONLY, READ WRITE
• Isolation	level
– Serializable:	default	 (Strict	2PL)
– Repeatable	reads:	(R/W	locks,	but	phantom	can	occur)

• Read	only	committed	records
• Between	two	reads	by	the	same	transaction,	no	
updates	by	another	transaction

– Read	committed	(W	locks	longterm,	R	locks	shortterm)
• Read	only	committed	records

– Read	uncommitted	(only	reads,	no	locks)
43CS	564	[Spring	2018]	- Paris	Koutris

