Homework 1

Due on October 6

A: QUERY CONTAINMENT [50%]

1. **[9%]** For each of the following pair of queries q, q' decide whether $q \subseteq q'$, $q' \subseteq q$, both or none. Explain your answer.

```
(a) q(x,y) : -R(x,z), S(z,z), R(z,y)

q'(y,w) : -R(y,z), S(z,t), R(t,w)

(b) q(x) : -R(x,y), R(y,z), R(z,x)

q'(x) : -R(x,y), R(y,z), R(z,u), R(u,v), R(v,z)

(c) q(x) : -R(x,y), R(x,z), R(z,y)

q'(x) : -R(x,y), R(y,z), R(z,u)
```

- 2. **[6%]** Find the minimal equivalent CQ to $S_k(x) : -R(x,z_1), R(x,z_2), \ldots, R(x,z_k)$ for any $k \ge 1$. Explain your answer.
- 3. **[10%]** Consider the following two CQs: $q_1(x) : -R(x,y)$, R(y,z) and $q_2(x) : -R(x,y)$. The notation $q \subseteq q'$ means that $q \subseteq q'$, but that q is not equivalent to q'. Does there exist a conjunctive query q such that $q_1 \subseteq q \subseteq q_2$? Explain your answer.
- 4. **[10%]** Consider the following two queries in CQ[<]:

$$q(): -R(x,10), x < 10$$

 $q'(): -R(y,10), R(9,y), y \le 10$

Decide whether $q \subseteq q'$, $q' \subseteq q$, both or none. Explain your answer.

5. **[15%]** We say that a conjunctive query q has a *self join* if its body contains two atoms of the same relation. For example, the query q():-R(x,y),R(y,z) has a self-join, but the query q'(x):-R(x,y),S(y,z,w) does not. What is the complexity for query containment of CQs that have no self join? You should either provide a polynomial time algorithm or show that the problem is NP-complete.

1

B: QUERY COMPLEXITY [50%]

- 1. [15%] We have shown that the combined complexity of query evaluation for CQs is NP-complete. However, the reduction uses queries where the relations are binary (have arity 2).
 - (a) What is the combined complexity of CQ evaluation if we restrict the relations to be *unary* (i.e. have arity exactly 1)? For example, such a query would be q(x) = R(x), S(x), T(y).
 - (b) What is the combined complexity of CQ^{\neq} evaluation (we can add disequalities) with relations that are unary? For example, such a query would be $q() = R(x), S(y), T(z), x \neq y, y \neq z$.
- 2. [15%] For the following conjunctive queries, determine if they are acyclic or not. If the query is acyclic, construct the join tree of the query as well.
 - (a) $q_1(): -R(x,t_1,y), S(y,t_2,z), T(z,t_3,x), U(x,y,z)$
 - (b) $q_2(): -R(x,y,z), S(y,z,w), T(x,y,w), U(x,z,w)$
 - (c) $q_3(): -R(x,y,z), S(x,y), T(y,z), U(z,x)$
- 3. [10%] For the following CQs, construct a GHD with the smallest possible ghw.
 - (a) The k-th spider-web query W_k :

$$W_k(x): -R(x,z_1), R(x,z_2), \dots R(x,z_k), R(z_1,z_2), R(z_2,z_3), \dots, R(z_k,z_1)$$

- (b) $V_k(): -R(x_1, x_2), R(x_2, x_3), \ldots, R(x_k, x_1), R(x_1, x_2), R(x_2, x_3), \ldots, R(x_k, x_1)$, for any $k \ge 1$. This query can be drawn as two cycles of length k connected at variable x_1 .
- 4. **[10%]** Among all CQs with *n* atoms in the body, what is the maximum possible ghw as a function of *n*? Describe a class of queries that achieves this ghw.

DELIVERABLES

Submit a single PDF document using Canvas (Homework 1). It is strongly suggested to use LATEX to write your solution.