A: SIZE BOUNDS FOR JOINS [25%]

1. [15%] Compute the maximum possible output size for the following join queries. Assume that all relations have the same size N.

 (a) $q(x, y, z) : - R(x), T(y), U(z), S(x, y, z)$.

 (b) $q(x, y, z, w, t) : - R(x, y), S(y, z), T(z, w), U(w, x), V(x, t)$.

 (c) $q(x, y, z) : - R(x, y, z), S(x, z, w), T(x, y, w), U(y, z, w)$.

2. [10%] Suppose that relation R_i has size N_i (in tuples). Compute the maximum output size for the following query. (Hint: there will be different cases depending on the given N_i).

 $q(x_1, x_2, x_3, x_4, x_5) : - R_1(x_1, x_2), R_2(x_2, x_3), R_3(x_3, x_4), R_4(x_4, x_5)$.

B: DATALOG [75%]

1. [20%] Suppose P is some boolean property of graphs (represented as an edge relation $E(x, y)$) that can be defined by a Datalog program. For example, P can be: the graph G has a cycle of odd length. Show that if G is a graph that satisfies P, then:

 (a) every supergraph of G also satisfies P.

 (b) if h is a graph homomorphism, then $h(G)$ also satisfies P.

2. [20%] A Datalog program P with a single recursive predicate is said to be bounded if there is a positive integer n_0 such that, on every database instance I, the bottom-up evaluation of P terminates within at most n_0 steps. Otherwise, we say that P is unbounded.

 (a) Prove that transitive closure is unbounded.

 (b) Give an example of a Datalog program that is bounded and has at least one recursive predicate.

3. [10%] Consider the following Datalog program:
\begin{verbatim}
T(x,y) :- R(x,y).
T(x,t) :- T(x,y), T(y,z), T(z,w), R(w,t).

Can you write an equivalent linear Datalog program? If yes, provide the program; otherwise, explain why this is not the case.

4. [20\%] Perform the magic set transformation for the following Datalog program:

\begin{verbatim}
T(x,y) :- F(x,y).
T(x,y) :- up(x,z1), T(z1,z2), F(z2,z3), T(z3, z4), down(z4,y).
q(y) :- T(a,y).
\end{verbatim}

5. [5\%] Find all possible stratifications for the following Datalog program with negation:

\begin{verbatim}
T(x) :- S(x), not R(x).
S(x) :- T(x), not R(x).
U(x) :- R(x), not T(x), not S(x).
V(x,y) :- V(x,y), not U(x), not U(y), .
\end{verbatim}
\end{verbatim}

Deliverables

Submit a single PDF document using Learn@uw (Homework 2). It is strongly suggested to use \LaTeX to write your solution.