
CS 784: Foundations of Data Management Spring 2017

Lecture 6: Size Bounds for Joins
Instructor: Paris Koutris

As we discussed in previous lectures, the output size of a join query often dominates the running
time, since the algorithm has to enumerate all the output tuples. Thus, being able to compute the
output size, or even provide a good upper bound on the output size becomes an important task.
In this lecture, we discuss the following question: given a conjunctive query q, where each relation
Rj has size Nj, what is the largest possible output?

We start with two examples.

Example 6.1. Consider the join query q(x, y, z) = R1(x, y), R2(y, z) where the sizes of the relations are
N1 and N2 respectively. The largest possible output is N1 · N2, which occurs when the join behaves like a
cartesian product (i.e. there is a single value of the y variable). One can also observe that we can construct a
trivial algorithm that runs in time N1 · N2 by considering all possible pairs of tuples and checking whether
they join or not.

Example 6.2. Consider the triangle query ∆(x, y, z) = R(x, y), S(y, z), T(z, x), where relations have
sizes NR, NS, NT. A first straightforward bound is NR · NS · NT. We can get a better bound by noticing
that the join of any two relations is an upper bound on the total size, so we get an improved bound of
min{NR · NS, NR · NT, NT · NS}.

Can we do any better? We will see that another upper bound on the size of the query is
√

NR · NS · NT.
Notice that, depending on the relation between NR, NS, NT, this can be a better or worse bound than the
above three quantities.

6.1 The AGM Bound

We start by introducing some notation. Let H(q) the hypergraph of a CQ q.

Definition 6.3 (Fractional Edge Cover). The fractional edge cover of a hypergraph H = (V, E) is a
vector u, which assigns a weight uj to each hyperedge ej ∈ E, such that for every vertex x ∈ V, we have
that ∑j:x∈ej

uj ≥ 1.

We say fractional edge cover to distinguish from the (integral) edge cover, which assigns to each
hyperedge a weight of 0 or 1. The value of the minimum fractional edge cover of the hypergraph
H(q) is denoted by ρ∗(q).

Example 6.4. Consider again the triangle query ∆. A possible fractional edge cover is uR = uS = 1, and
uT = 0. In this case, the sum of the weights is 2. Another fractional edge cover is uR = uS = uT = 1/2,
which has a smaller sum 3/2.
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The AGM inequality, first proved in [AGM08], bounds the output size of a join query without
projections using any fractional edge cover of the query.

Theorem 6.5 (AGM Bound). Let q be a full conjunctive query that takes as an input relations Sj with
size at most Nj. For every fractional edge cover u of H(q), the output size is bounded as follows:

|q(I)| ≤
`

∏
j=1

N
uj
j

Notice that in the case we have the same upper bound N on the sizes of the relations, i.e. Nj = N,
we have that |q(I)| ≤ minu N∑j uj = Nρ∗(q). In other words, the best bound is achieved by the
minimum fractional edge cover ρ∗(q).

Example 6.6. For the triangle query, the fractional edge cover is uR = uS = uS = 1/2 gives the√
NR · NS · NT bound. The fractional edge covers (uR, uS, uT) = (1, 1, 0), (1, 0, 1), (0, 1, 1) give the

NR · NS, NR · NT and NS · NT upper bounds respectively.

Example 6.7. Consider the Loomis Whitney join LWk, where each relation has size at most N:

LWk = R1(x2, . . . , xk), R2(x1, x3, . . . , xk), . . . , Rk(x1, . . . , xk−1)

The smallest fractional edge cover assigns an equal weight of 1/(k− 1) to each Rj (observe that each variable
belongs to exactly k− 1 atoms). The bound we get then is

|LWk(I)| ≤ N∑k
j=1 uk = Nk/(k−1).

6.2 Proof of the AGM Bound

We will prove the AGM bound using a tool from information theory called Shannon entropy.
Recall that the Shannon entropy of a random variable X that has N outcomes with probabilities
p1, . . . , pN is defined as:

H(X) = −
N

∑
i=1

pi log pi.

Let x1, . . . , xn the variables in q. For each variable xi, we define a random variable Xi, such that the
random variable X = (X1, . . . , Xn) is uniformly distributed over the output tuples in q(I). In other
words,

Pr[X = t] =

{
1/|q(I)|, t ∈ q(I)

0, otherwise

Since X is a uniform distribution over the output, we have H(X) = log |q(I)|. Moreover, for each
hyperedge ej ∈ E, the marginal distribution of X on ej (denoted Xj) has support at most Nj. Hence,
we also have that H(Xj) ≤ log Nj.
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We now apply a powerful tool called Shearer’s lemma. This tells us that for every fractional edge
cover u of a hypergraph, we have:

H(X) ≤∑
j

ujH(Xj)

Applying Shearer’s lemma, we have:

log |q(I)| = H(X) ≤∑
j

ujH(Xj) ≤∑
j

uj log Nj.

6.3 Tightness of the AGM Bound

The AGM bound gives us an infinite number of upper bounds on the output size. Given the
cardinalities of each relation, how can we find the best (minimum) possible bound? In the case of
equal cardinalities N it suffices to find ρ∗, but in the general case we can achieve this by minimizing
the quantity ∏`

j=1 N
uj
j by solving the following linear program (LP):

min ∑
j

log2(Nj) · uj

s.t.∀xi ∈ V : ∑
j:xi∈ej

uj ≥ 1

∀ej ∈ E : uj ≥ 0

The fractional edge cover obtained by the above LP will give the best possible bound. It turns out
that this bound is tight; in other words, we can always find a database instance I, such that |q(I)|
is equal to the worst-case upper bound. The idea is simple: we first take the dual of the LP.

max ∑
i

wi

s.t.∀ej ∈ E : ∑
i:xi∈ej

wi ≤ log2(Nj)

∀xi ∈ V : wi ≥ 0

We create an instance I as follows. For every variable xi, we assign a domain of size 2wi . Each
relation is then created by taking the cartesian product of the domains of its variables. One can
verify that each relation Rj in the instance has size at most 2∑i:xi∈ej

wi ≤ Nj. Moreover, the output
will be of size 2∑i wi , which is exactly equal to the AGM bound.
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