
CS 784: Foundations of Data Management Spring 2019

Lecture 7: Worst-Case Optimal Joins
Instructor: Paris Koutris

In this lecture, we ask the following question: can we compute a (full) Conjunctive Query in running
time bounded by the AGM bound? We will answer this positively, and describe two algorithmic
techniques that can achieve this optimal result. But first we will sketch the main technical ideas
using as an example the triangle query.

7.1 Computing the Triangle Query

Consider the triangle query

∆(x, y, z) = R(x, y), S(y, z), T(z, x)

where the three relations have sizes NR, NS, NT respectively. Recall that the AGM bound gives a
bound (NRNSNT)

1/2 for the output size, which becomes N3/2 when all relation sizes are equal to
N. We first show that it is not possible to achieve a running time of O(N3/2) using only join plans.

Example 7.1. Let {a0, . . . , an}, {b0, . . . , bn}, {c0, . . . , cn} be the domains for variables x, y, z respectively.
We define:

R = ({a0} × {b0, . . . , bn}) ∪ ({a0, . . . , an} × {b0})

S and T are defined in a symmetric way. Each relation has size 2n + 1, and the output has size 3n + 1.
However, observe that every pairwise join (R ./ S, S ./ T, R ./ T) has size n2 + n = Ω(n2). Hence, no
join plan can achieve the O(n3/2) bound.

The reason that the join plan from the above example fails is that the values a0, b0, c0 are all very
skewed. To overcome this obstacle, we will deal with such values differently. We say that a value a
is heavy if |σx=aR| · |σx=aT| ≥ |S|; otherwise, it is light.

P2C algorithm. The Power of 2 Choices algorithm works as follows:

1. Compute L← πx(R) ∩ πx(T)

2. For each a ∈ L do:

(a) If a is light: compute σx=aR ./ σx=aT and semijoin with S.

(b) If a is heavy: for each tuple (b, c) ∈ S, check whether (a, b) ∈ R and (c, a) ∈ T.

7-1

Lecture 7: Worst-Case Optimal Joins 7-2

Analysis. Assume for now that we have computed the appropriate indexes for each relation
(which we can do in time linear to the input size). It is easy to see that we can compute L in linear
time. For the main loop, the key observation is that the running time can be bounded by:

T = ∑
a∈L

min{|σx=aR| · |σx=aT|, NS}

≤ ∑
a∈L

(|σx=aR| · |σx=aT| · NS)
1/2

= N1/2
S ∑

a∈L
(|σx=aR| · |σx=aT|)1/2

≤ N1/2
S

(
∑
a∈L
|σx=aR|

)1/2

·
(

∑
a∈L
|σx=aT|

)1/2

≤ N1/2
S N1/2

R N1/2
T

Here, the first inequality used the fact that min{x, y} ≤ √xy, and the second inequality used the
Cauchy-Schwarz inequality.

7.2 The GenericJoin algorithm

We now discuss a general algorithmic framework that works for all CQs called GenericJoin [NRR13].
Let H(q) = (V , E) be the hypergraph for the query q. For any I ⊆ V , define:

EI = {F ∈ E | F ∩ I 6= ∅}

We can now present GenericJoin.

Algorithm 1: GenericJoin
Input: hypergraph (V , E)
OUT ← ∅ ;
if |V| = 1 then

return ∩F∈ERF ;
end
pick I : ∅ (I (V ;
L← GenericJoin(./F∈EI πI(RF)) ;
for tI ∈ L do

J ← V \ I ;
q[tI]← GenericJoin(./F∈EJ πJ(RF n tI)) ;

end
return OUT

Implementation. We next discuss a concrete implementation of the GenericJoin algorithm, called
Leapfrog Triejoin [V14]. Leapfrog Triejoin is implemented and extensively used as part of the Log-
icBlox engine. It has the following characteristics:

Lecture 7: Worst-Case Optimal Joins 7-3

• It picks I to be always of size 1 (i.e., picks a single variable). Any order of the variables will
work (in the worst-case analysis), but in practice certain variable orders can be orders of
magnitude faster.

• It merges unary relations using Leapfrog join. If the relations are already sorted (according
to the same total order), then Leapfrog join needs time linear to the smallest relation.

• The relations are indexed using tries. A trie is a tree with depth equal to the arity of the rela-
tion (plus 1). Each level has values of a particular variable, and each tuple is represented by
a path from the root of the trie to a leaf. Moreover, the children of each node are distinct from
one another and sorted, with the leftmost child being the smallest. The variable ordering in
a trie must agree with the ordering chosen by the Leapfrog Triejoin algorithm.

Analysis. Finally, we analyze the running time of GenericJoin. Let {uF | F ∈ E be a fractional
edge cover for H. We analyze the running time for GenericJoin using induction on the size of V .

For the base case where |V| = 1, we perform merging between unary relations. If these are sorted,
we can compute their intersection in time Õ(minF |RF|) = Õ(∏F |RF|uF).

For the inductive step, the running time is (asymptotically):

∏
F∈EI

|RF|uF + ∑
tI∈L

∏
F∈EJ

|RF n tI |uF ≤ ∏
F∈EI

|RF|uF + ∏
F∈E
|RF|uF ≤ 2 ∏

F∈E
|RF|uF

Here, the second inequality comes from the so-called query decomposition lemma [NRR13].

References

[Alice] S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”

[AGM08] A. ATSERIAS, M. GROHE and D. MARX, “Size bounds and query plans for relational
joins,” FOCS 2008.

[NRR13] H. NGO, C. RE and A. RUDRA, “Skew Strikes Back: New Developments in the Theory
of Join Algorithms,” SIGMOD Record, 2013.

[V14] T. VELDHUIZEN, “Leapfrog Triejoin: a worst-case optimal join algorithm,” ICDT, 2014.

