Homework 3
Due on May 1

A: Views and Rewriting [15%]

1. [15%] Find an equivalent rewriting of the query

\[Q() : \neg R(X_1, X_2), R(X_2, X_3), R(X_3, X_4), R(X_4, X_5), R(X_5, X_1), X_1 < X_2 \]

using the following views:

\[V_1(X_1, X_3) : \neg R(X_1, X_2), R(X_2, X_3) \]
\[V_2(X_1, X_3) : \neg R(X_3, X_4), R(X_4, X_5), R(X_5, X_1) \]

B: Parallel Query Processing [25%]

1. The task is to compute the query \(Q(x_1, x_2, x_3) : \neg R_1(x_1), R_2(x_2), R_3(x_3) \) in parallel using \(p \) machines. The query is a cartesian product of three unary relations. Let the sizes of the relations be \(N_1, N_2, N_3 \) respectively.

 (a) [10%] Suppose that we compute \(Q \) in a single round by distributing the data once (using the HyperCube technique). What is the minimum amount of data that each machine can receive? What is the total communication?

 (b) [10%] Suppose that we compute \(Q \) in two rounds. In the first round we compute the cartesian product of \(R_1, R_2 \), and the second round the cartesian product of the intermediate result with \(R_3 \). What is the minimum amount of data that each machine can receive in each round? What is the total communication across both rounds?

 (c) [5%] Which of the above two strategies achieves the best load per machine? Which one the best total communication?

C: Data Streaming [30%]
1. [15%] In *reservoir sampling*, we want to produce a uniform sample of size k from a stream of unknown size. The algorithm works by placing the i-th item in the reservoir (of size k) with probability k/i (all the first k items go in the reservoir initially). Show that at any point where we have seen n total items, the probability of each item being in the reservoir is k/n.

2. [15%] Recall the application of the Misra-Gries algorithm for the case where we want to find the top-k most frequent elements. For any element j, let f_j be its actual frequency in the stream, and \hat{f}_j its estimated frequency. We showed in class that $f_j - \frac{m}{k} \leq \hat{f}_j \leq f_j$, where m is the total length of the stream.

Show that this bound can be improved to $f_j - \frac{m-\hat{m}}{k} \leq \hat{f}_j \leq f_j$, where \hat{m} is the sum of the estimated frequencies \hat{f}_j.

D: Uncertain Data [30%]

1. [15%] Consider a tuple-independent probabilistic database with three relations: $R(A, B), S(A, C), T(A, D)$. Suppose we want to answer the boolean query

$$Q() : \neg R(x, y), S(x, 'a'), T(x, w)$$

Describe a safe plan for computing the probability of Q if one exists; otherwise, explain why it is not possible to obtain one.

2. [15%] Consider an inconsistent database, where the integrity constraints are primary keys. The database consists of two relations $R(A, B)$ and $S(B, C, D)$. We want to obtain the consistent answers for the query $Q(x) : \neg R(x, y), S(y, z, 'a')$, which can be computed through a first-order rewriting. Write a query in SQL that computes the consistent answers for Q.

Deliverables

Submit a single PDF document using the Dropbox in learn@uw (Homework 3). It is strongly suggested to use \LaTeX{} to write your solution.