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ABSTRACT
We study consistent query answering with respect to key depen-

dencies. Given a (possibly inconsistent) database instance and a set

of key dependencies, a repair is an inclusion-maximal subinstance

that satisfies all key dependencies. Consistent query answering

for a Boolean query is the following problem: given a database

instance as input, is the query true in every repair? In [Koutris

and Wijsen, ICDT 2019], it was shown that for every self-join-free

Boolean conjunctive query and set of key dependencies containing

exactly one key dependency per relation name (also called the pri-

mary key), this problem is in FO, L-complete, or coNP-complete,

and it is decidable which of the three cases applies. In this paper,

we consider the more general case where a relation name can be

associated with more than one key dependency. It is shown that

in this more general setting, it remains decidable whether or not

the above problem is in FO, for self-join-free Boolean conjunctive

queries. Moreover, it is possible to effectively construct a first-order

query that solves the problem whenever such a query exists.
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1 INTRODUCTION
Key dependencies (or “keys” for short) are the most prevalent in-

tegrity constraints in relational databases. In database theory, key

dependencies are usually introduced as a special kind of functional
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dependencies. In practice, however, it is generally sufficient to have

keys, because a relational database schema in Boyce-Codd Normal

Form (BCNF) uses no functional dependencies other than keys. SQL

provides the constructs PRIMARY KEY and UNIQUE for defining

keys. In this paper, we deal with a dirty data scenario where keys

are known, but violated by the database instance. This situation can

occur, for example, in data integration [2]. A common approach

to deal with the inconsistency is to repair the instance, i.e., find

an inclusion-maximal consistent subinstance. Given that there can

be many repairs, we are particularly interested in finding query

answers that are consistent, i.e., they are query answers in every

repair.

Assume a vocabulary of relation names, where every relation

name 𝑅 is associated with an arity arity(𝑅) and a set of keys. Every
key 𝐾 of 𝑅 is a subset of {1, . . . , arity(𝑅)}. We say that a database

instance db is consistent if for every relation name 𝑅 and every

key 𝐾 of 𝑅, the following holds: if db contains two distinct facts

𝑅( ®𝑎1) and 𝑅( ®𝑎2), then ®𝑎1 and ®𝑎2 disagree on some position of 𝐾 . A

repair of a database instance is any inclusion-maximal consistent

subinstance. Given a Boolean query𝑞, we are interested in the (data)

complexity of the following problem:

INPUT: A database instance db.
QUESTION: Is 𝑞 true in every repair of db?
We denote this problem by CERTAINTY(𝑞), where it is understood
that the integrity constraints are the keys associated with the re-

lation names that occur in 𝑞. For the results in the current paper,

the distinction between Boolean and non-Boolean queries is not

theoretically fundamental; this will be explained in Section 8.2.

In [17, 19], the authors study consistent query answering (CQA)

for queries in sjfBCQ , the class of self-join-free Boolean conjunctive

queries. It is shown that when every relation name is equipped with

exactly one key dependency, which is called the primary key, every
problem in {CERTAINTY(𝑞) | 𝑞 ∈ sjfBCQ} is in FO, L-complete,

or coNP-complete, and it is decidable (in polynomial time), given

𝑞 ∈ sjfBCQ , to which of these complexity classes CERTAINTY(𝑞)
belongs. Moreover, whenever CERTAINTY(𝑞) is in L, it can be

expressed in symmetric stratified Datalog with some aggregation

operator.

In this paper, we investigate the more general setting where

relation names can be equippedwithmore than one key dependency.

We argue next that the two-keys case is already fundamentally

different from the primary-key case. In the case of primary keys, two

distinct database facts 𝑅( ®𝑎1) and 𝑅( ®𝑎2) conflict with one another if

®𝑎1 and ®𝑎2 have the same value for the primary key of 𝑅. The binary

relation “conflicts with” on the set of database facts is symmetric

and transitive. Thus, the reflexive closure of this binary relation is

an equivalence relation, whose equivalence classes are commonly
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called blocks. Every repair is obtained by selecting exactly one fact

from each block. It follows that all repairs have the same cardinality,

and that every primary-key value occurs (exactly once) in every

repair. If a relation name can have two (or more) keys, a significant

difference emerges: the relation “conflicts with” is no longer always
transitive. Consider, for example, the instance shown next where

{𝐴} and {𝐵} are both keys.
1

𝑅 𝐴 𝐵

𝑐 𝑒

𝑐 𝑓

𝑑 𝑓

.

The fact 𝑅(𝑐, 𝑒) conflicts with 𝑅(𝑐, 𝑓 ), and 𝑅(𝑐, 𝑓 ) conflicts with
𝑅(𝑑, 𝑓 ), but 𝑅(𝑐, 𝑒) does not conflict with 𝑅(𝑑, 𝑓 ). This instance has
two repairs, i.e., consistent subsets that are maximal with respect

to set inclusion:

𝐴 𝐵

𝑐 𝑒

𝑑 𝑓

and

𝐴 𝐵

𝑐 𝑓
.

The two repairs have different cardinalities, and the right-hand

repair does not contain the 𝐴-value 𝑑 nor the 𝐵-value 𝑒 . An easy

yet significant observation is that every repair corresponds to an

inclusion-maximal matching of the undirected bipartite graph with

edges the tuples in 𝑅. In fact, we will show that in the presence of

two keys, there are queries 𝑞 such that CERTAINTY(𝑞) is equiva-
lent (under logspace reductions) to the complement of Bipartite
Perfect Matching (BPM), which is known to be NL-hard [5]. Con-

sequently, in the presence of two (or more) keys, it is possible that

CERTAINTY(𝑞) is neither in L nor coNP-complete (under standard

complexity assumptions), which cannot occur if we have only a

single key per relation.

The difficulties that emerge for two keys will be captured by the

novel notion of bi-tanglement. As it will turn out, the addition of a

third key incurs some new difficulties, which will be captured by

the notion of tri-tanglement. For the results in the current paper, it

turns out that the addition of a fourth (fifth, sixth,. . . ) key does not

create more complexity, and can be fully captured in terms of bi-

and tri-tanglements.

In the case of multiple key dependencies per relation name, an

ambitious research goal is to exhibit a fine-grained complexity

classification of all problems in the set {CERTAINTY(𝑞) | 𝑞 ∈
sjfBCQ}. This goal is currently unrealistic when one realizes that

the exact complexity of BPM is already a notorious open problem

(see, for example, [9, 10]). Nevertheless, in this paper we take a

first important step by establishing, in the above set, the boundary

between problems in FO and problems outside FO. By definition,

CERTAINTY(𝑞) is in FO if there exists a first-order query 𝑄 such

that for every database instance db, the following are equivalent:

(1) 𝑞 is true in every repair of db; and
(2) 𝑄 is true in db.

Such a query𝑄 , if it exists, is called a consistent first-order rewriting
of 𝑞. Since database systems are primarily founded on first-order

1
As is common in database theory, we assume in this example that attribute names

can be used to denote positions.

queries, it is significant to ask which queries have a consistent first-

order rewriting. This question is answered in the current paper by

means of the following theorem.

Theorem 1.1 (main theorem). Let 𝑞 be a self-join-free Boolean
conjunctive query, where each relation name is associated with one
or more key dependencies. It is decidable (in polynomial time in the
size of 𝑞 and its associated set of key dependencies) whether or not
the problem CERTAINTY(𝑞) is in FO. Moreover, if CERTAINTY(𝑞)
is in FO, then a consistent first-order rewriting of 𝑞 can be effectively
constructed.

Guiding Example. This example shows some of the intricacies

of our result, as well as our technical contributions. Consider the

following database instance for the Eurovision Song Contest.

Host Year Country
2017 Ukraine

2018 Portugal

2019 Israel

Results Year Country Place
2018 Portugal 26th

2019 Netherlands 1st

2019 Italy 2nd

2019 Israel 23rd

The only key of Host is {Year}: the contest is organized in one

country every year. The keys of Results are {Year,Country} and
{Year, Place}. The former key expresses that a country cannot oc-

cupy different places in a same year; the latter key expresses that

there are no ties.

Consider now the following two queries:

𝑞0 = ∃𝑦∃𝑢 (Host (𝑦,𝑢) ∧ Results(𝑦,𝑢, “1st”)) ; (1)

𝑞1 = ∃𝑦∃𝑢∃𝑝 (Host (𝑦,𝑢) ∧ Results(𝑦,𝑢, 𝑝)) . (2)

The first query asks: “Did it happen that the hosting country was

also the winner?” The second query asks: “Did it happen that the

hosting country was also ranked?” (only countries reaching the

“grand final” are ranked).

We will show in this paper that the problem CERTAINTY(𝑞0) is
equivalent under first-order reductions to CERTAINTY(𝑞′

0
), where

𝑞′
0

= ∃𝑦∃𝑢∃𝑝
(
Host (𝑦,𝑢) ∧ Results(𝑦,𝑢, 𝑝) ∧ Pc (𝑝)

)
, (3)

a query that is constant-free. Here, Pc is an always consistent rela-

tion (as the superscript c indicates) whose primary key is the empty

set; hence every instance of 𝑃c can contain at most one tuple. As

we will see later, this elimination of constants turns out to be a very

helpful simplification in the technical treatment.

In order to decide whether a problem CERTAINTY(𝑞) is first-
order rewritable, we show that the tool of attack graph [17, 22]

can be extended to deal with the case of multiple keys. For our

example, the attack graphs of both queries 𝑞′
0
and 𝑞1 will turn out

to be acyclic. However, in contrast to the case of primary keys,

acyclicity of a query’s attack graph is only a necessary (but not

a sufficient) condition for the existence of a consistent first-order

rewriting. Informally, this is because attack graphs capture well

the interaction between keys belonging to different relation names,

but fall short in capturing the interplay between different keys of a

same relation name. We coin the term “tanglement” to refer to this

interplay between keys.

For our example, 𝑞1 has a bi-tanglement (tanglement between

two keys; details will be given in Examples 5.2–6.3). Even if the at-

tack graph of𝑞1 is acyclic, our results imply thatCERTAINTY(𝑞1) is
NL-hard, and hence not in FO. In contrast, 𝑞′

0
has no bi-tanglement,



and CERTAINTY(𝑞0) is in FO. In particular, a consistent first-order

rewriting of 𝑞0 is:

∃𝑦

©­­­­­­­­«

∃𝑢Host (𝑦,𝑢)

∧ ∀𝑢

©­­­­­­«
Host (𝑦,𝑢) →

©­­­­­­«

Results(𝑦,𝑢, “1st”)∧

¬∃𝑢 ′∃𝑝
©­­­«
Results(𝑦,𝑢 ′, 𝑝)∧©­«
(𝑢 ′ = 𝑢 ∧ 𝑝 ≠ “1st”)

∨
(𝑝 = “1st” ∧ 𝑢 ′ ≠ 𝑢)

ª®¬
ª®®®¬
ª®®®®®®¬
ª®®®®®®¬

ª®®®®®®®®¬
.

(4)

The consistent first-order rewritings in our study can be easily en-

coded in SQL or Datalog. Nonetheless, it remains an open question

whether and when such queries can be executed more efficiently

than generic SAT-based implementations of CERTAINTY(𝑞) [8].

Organization. The next section discusses related work. After that,
the paper step by step introduces new constructs and intermediate

results that are needed in the proof of the main Theorem 1.1. Sec-

tion 3 defines the basic concepts and terminology. Section 4 shows

that for every self-join-free Boolean conjunctive query 𝑞, the prob-

lem CERTAINTY(𝑞) is equivalent under first-order reductions to a

problem CERTAINTY(𝑞′) such that 𝑞′ has no atom containing con-

stants or repeated variables. Section 5 introduces the construct of

attacks among keys, and extends attack graphs to deal with multiple

keys. Section 6 introduces the notion of bi-tanglement (tanglement

of two keys), and Section 7 the notion of tri-tanglement (tangle-

ment of three keys), At that point, we have all ingredients to tackle

the proof of the main Theorem 1.1 in Section 8. While the main

focus of this paper is on consistent first-order rewriting, Section 9

gives a glimpse of what happens beyond first-order rewritability.

Section 10 discusses open problems for CQA with respect to keys,

and shows some relationships with notorious complexity problems

in theoretical computer science.

2 RELATEDWORK
Consistent query answering (CQA) started with an article at PODS

1999 by Arenas, Bertossi and Chomicki [1]. Twenty years later,

the significance of their contribution was acknowledged through

a Gems of PODS session [3]. An overview of complexity results

in CQA appeared recently in the Database Principles column of

SIGMOD Record [24].

In CQA, the existence of consistent first-order rewritings, for dif-

ferent classes of queries and integrity constraints, is a recurrent re-

search problem. For self-join-free conjunctive queries and primary

keys, the problem has been studied in depth since 2005 [12, 13]. In

this setting, the problem was first solved in [22, 23], albeit under the

restriction that queries are 𝛼-acyclic; a solution without this restric-

tion appeared later in [17]. The latter solution was extended in [18]

to self-join-free conjunctive queries with clique-guarded negated

atoms. Negation is clique-guarded if whenever two variables oc-

cur together in some negated atom, they also occur together in

some non-negated atom. To the best of our knowledge, for primary

keys, it remains an open problem to determine the FO-boundary
in the set {CERTAINTY(𝑞) | 𝑞 ∈ BCQ}, where BCQ is the class of

Boolean conjunctive queries, possibly with self-joins.

The importance of first-order rewritings is also recognized in the

Description Logic (DL) community, where it was amajor motivation

for the DL-Lite family of description logics [4]. The description

logic DLR-LiteA,⊓ even allows for the use of 𝑛-ary relations, rather

than binary roles, and key assertions. Given a DL-Lite TBox and a

conjunctive query𝑞 in the signature of the TBox, the certain answers
to 𝑞 on an ABox can be obtained by issuing a first-order rewriting of

𝑞 against the ABox. Certain answers in DL are similar to consistent

answers: whenever there is more than one model, one is interested

in the intersection of query answers, where the intersection is

taken over all models. In [4], the study of first-order rewriting

of (unions of) conjunctive queries with respect to DLR-LiteA,⊓
TBoxes assumes that key assertions are not violated, and therefore

is fundamentally different from our study.

The goal of the current paper is the effective classification of

problemsCERTAINTY(𝑞) as either in FO or outside FO. Another im-

portant problem is that of classifying problems CERTAINTY(𝑞) as
either in PTIME or coNP-complete. A long line of work [12, 13, 15–

17] has shown that for self-join-free conjunctive queries and pri-

mary keys, CERTAINTY(𝑞) is either in PTIME or coNP-complete.

In particular, this class of problems exhibits a stronger dichotomy,

because CERTAINTY(𝑞) is either in L or coNP-complete [19]. Un-

fortunately, not much is known beyond this case.

Beyond CQA, related to this paper is recent work [21] that stud-

ied the problem of computing a cardinality-maximal subset repair

with respect to functional dependencies. For the binary relation

𝑅 in Section 1 with functional dependencies 𝐴 → 𝐵 and 𝐵 → 𝐴,

every cardinality-maximal subset repair is a matching of maximal

cardinality (and vice versa). The proof of Lemma 6.4 reduces the

problem of finding such a matching to the problem of finding a

falsifying repair for a query with a bi-tanglement.

3 PRELIMINARIES
This section introduces basic concepts. For the sake of rigor, we

repeat some constructs that were already introduced, somewhat

informally, in Section 1.

Key Dependencies. We assume a schema with a fixed vocabulary

of relation names. Each relation name 𝑅 has an associated arity

arity(𝑅) and a non-empty set of key dependencies. A key depen-
dency (KD) is an expression ⟦𝑅 : 𝐾⟧ where 𝐾 is a (possibly empty)

subset of {1, . . . , arity(𝑅)}.
An atom is an expression 𝑅(𝑠1, . . . , 𝑠𝑛) where 𝑛 = arity(𝑅), and

each 𝑠𝑖 is a constant or a variable. If 𝐴 is an atom, then vars(𝐴) is
the set of variables that occur in 𝐴. If vars(𝐴) = ∅, then 𝐴 is a fact.
A database instance is a finite set of facts. A database instance db
satisfies ⟦𝑅 : 𝐾⟧ if it contains no two distinct 𝑅-facts that agree on

all positions in 𝐾 . If 𝑅 has only one key, then this key, called the

primary key, is usually underlined.

Wewill assume that for any two distinct KDs ⟦𝑅 : 𝐾⟧ and ⟦𝑅 : 𝐿⟧
with the same relation name 𝑅, we have that 𝐾 and 𝐿 are not

comparable by set inclusion. The hypothesis that every relation

name is associated with at least one KD is without loss of generality.

Informally, this is because every set of 𝑅-facts is duplicate-free and

hence satisfies the trivial KD ⟦𝑅 : {1, . . . , arity(𝑅)}⟧. If ⟦𝑅 : 𝐾⟧ is

associated with 𝑅, then we also say that ⟦𝑅 : 𝐾⟧ is a KD of 𝑅.
A database instance db is consistent if it satisfies all KDs associ-

ated with the relation names that occur in db. A repair of db is an

inclusion-maximal consistent subset of db. We write rset(db) for



the set of repairs of db, and adom(db) for the active domain of db
(i.e., the set of all constants that occur in db).

The conflict graph of db is an undirected graph whose vertex-set

is db; two distinct vertices are adjacent if they violate some KD.

In the case that every relation name is associated with a single

key, then maximality with respect to set inclusion coincides with

maximality with respect to cardinality. This is no longer true if

two or more keys can be associated with a same relation name, as

illustrated in Section 1.

Consistent Query Answering. A Boolean query maps every data-

base instance to true or false. For a Boolean query𝑞,CERTAINTY(𝑞)
is the following problem:

INPUT: A database instance db.
QUESTION: Is 𝑞 true in every repair of db?

Our results will be proved for self-join-free Boolean conjunc-

tive queries. A Boolean conjunctive query 𝑞 is a closed first-order

sentence of the form ∃®𝑥 (𝑅1 ( ®𝑥1) ∧ · · · ∧ 𝑅𝑚 ( ®𝑥𝑚)). In the techni-

cal treatment, such a query is identified with its set of atoms, i.e.,

𝑞 = {𝑅𝑖 ( ®𝑥𝑖 )}𝑚𝑖=1
. A conjunctive query is self-join-free if no relation

name occurs more than once in it, i.e., if 𝑖 ≠ 𝑗 implies 𝑅𝑖 ≠ 𝑅 𝑗 .

We denote by sjfBCQ the set of self-join-free Boolean conjunctive

queries. We write vars(𝑞) for the set of variables occurring in 𝑞.
Once a self-join-free query 𝑞 = {𝑅𝑖 ( ®𝑥𝑖 )}𝑚𝑖=1

is fixed in some

context, there is no ambiguity when we use a relation name at

places where an atom is expected: when we refer to the atom 𝑅𝑖 ,

we mean the atom of 𝑞 with relation name 𝑅𝑖 , that is, 𝑅𝑖 ( ®𝑥𝑖 ).
To simplify our technical treatment, we associate with each rela-

tion name amode, which is a value in {i, c}. Informally, i and c stand
respectively for (possibly) inconsistent and (necessarily) consistent.
The notation 𝑅c is used to indicate that 𝑅 is a relation name of

mode c. For a Boolean query 𝑞, CERTAINTY(𝑞) is then the follow-

ing problem:

INPUT: A database instance db such that for every relation name

𝑅 of mode c, the set of 𝑅-facts in db is consistent.

QUESTION: Is 𝑞 true in every repair of db?
Lemma 3.1 shows that every problem CERTAINTY(𝑞) is equiv-

alent under first-order reductions to a problem CERTAINTY(𝑞′)
such that 𝑞′ contains no atoms of mode c. Therefore, in the com-

plexity classification of CERTAINTY(𝑞), atoms of mode c can be

seen as (very convenient) syntactic sugar.

Lemma 3.1 (mode c elimination). For every query 𝑞 ∈ sjfBCQ ,
it is possible to compute in linear time (in the size of 𝑞) a query
𝑞′ ∈ sjfBCQ such that

(1) 𝑞′ contains no atom of mode c; and
(2) CERTAINTY(𝑞) and CERTAINTY(𝑞′) are equivalent under

first-order reductions.

In the next section, we show that in the complexity classification

of {CERTAINTY(𝑞) | 𝑞 ∈ sjfBCQ}, it can be assumed without loss

of generality that no atom contains constants or repeated variables.

4 ELIMINATION OF ATOMSWITH
CONSTANTS OR REPEATED VARIABLES

In this section, we show that for every 𝑞 ∈ sjfBCQ , there exists

some constant-free query 𝑞′ ∈ sjfBCQ such that CERTAINTY(𝑞)

and CERTAINTY(𝑞′) are equivalent under first-order reductions,
and no atom of 𝑞′ contains repeated variables. Moreover, 𝑞′ can
be effectively computed, given 𝑞. The elimination of atoms with

constants or repeated variables allows for a significant syntactic

simplification, as explained in Section 4.2: it allows us to use vari-

ables as attribute names.

4.1 Elimination Lemmas
In the following lemma and elsewhere, it is understood that every

relation name is equipped with a set of KDs (instead of just one

primary key).

The following lemma explains how to eliminate repeated vari-

ables from an atom of a query. The lemma states, for example,

that an atom 𝑅(𝑥, 𝑥, ®𝑦) can be replaced with two atoms 𝑅(𝑥, 𝑣, ®𝑦),
𝑆c (𝑥, 𝑣), where 𝑆c has two keys {1} and {2}. Informally, this means

that an instance of 𝑆c is a one-one mapping which can be used to

capture equality between positions 1 and 2 in 𝑅.

Lemma 4.1 (Elimination of repeated variables). Let 𝑞 ∈
sjfBCQ , and let 𝐹 := 𝑅(𝑡1, . . . , 𝑡𝑛) be an atom of 𝑞 in which the
variable 𝑥 occurs more than once. Let 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 < 𝑗

be integers such that 𝑡𝑖 = 𝑡 𝑗 = 𝑥 . Let 𝑣 be a fresh variable, and let
𝐹 ′ := 𝑅(𝑡 ′

1
, . . . , 𝑡 ′𝑛) be an 𝑅-atom such that 𝑡 ′

𝑗
= 𝑣 and 𝑡 ′

ℓ
= 𝑡ℓ for

ℓ ≠ 𝑗 . Let 𝑝 = {𝐹 ′, 𝑆c (𝑥, 𝑣)}, where 𝑆 is a fresh relation name of
mode c whose set of KDs is the pair {⟦𝑆c : {1}⟧, ⟦𝑆c : {2}⟧}. Then
CERTAINTY(𝑞) and CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝) are equivalent un-
der first-order reductions.

The following lemma explains how to eliminate constants from

an atom of a query. The lemma states that an atom 𝑅(𝑎, ®𝑦) can be

replaced with two atoms 𝑅(𝑣, ®𝑦), 𝐶c (𝑣), where the empty set is a

key of𝐶c
. Informally, this means that an instance of𝐶c

can contain

at most one value, which can be used to capture the occurrence of

a constant at position 1 in 𝑅.

Lemma 4.2 (Elimination of constants). Let 𝑞 ∈ sjfBCQ , and
let 𝐹 := 𝑅(𝑡1, . . . , 𝑡𝑛) be an atom of 𝑞 in which a constant occurs.
Let 𝑗 ∈ {1, . . . , 𝑛} such that 𝑡 𝑗 is a constant. Let 𝑣 be a fresh vari-
able, and let 𝐹 ′ := 𝑅(𝑡 ′

1
, . . . , 𝑡 ′𝑛) be an 𝑅-atom such that 𝑡 ′

𝑗
= 𝑣 and

𝑡 ′
ℓ
= 𝑡ℓ for ℓ ≠ 𝑗 . Let 𝑝 = {𝐹 ′,𝐶c (𝑣)}, where 𝐶 is a fresh relation

name of mode c whose only KD is ⟦𝐶c
: ∅⟧. Then CERTAINTY(𝑞)

and CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝) are equivalent under first-order re-
ductions.

Corollary 4.3. For every query 𝑞 ∈ sjfBCQ , there exists a query
𝑞′ ∈ sjfBCQ such that

• no constant occurs in 𝑞′;
• 𝑞′ contains no atom in which some variable occurs more than
once; and

• CERTAINTY(𝑞) and CERTAINTY(𝑞′) are equivalent under
first-order reductions.

Moreover, the query 𝑞′ can be computed in linear time in the size of 𝑞.

4.2 Syntactic Simplification
Let 𝑞 ∈ sjfBCQ be a query in which no atom contains constants or

repeated variables. Assume that 𝑞 contains an atom 𝑅(𝑥1, . . . , 𝑥𝑛).
We have that for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑖 ≠ 𝑗 implies 𝑥𝑖 ≠ 𝑥 𝑗 (the

converse holds vacuously). This allows for a far-reaching syntactic



simplification: for every 𝑖 ∈ {1, . . . , 𝑛}, we can use the variable

𝑥𝑖 at all places where the position 𝑖 is expected. For instance, if

we refer to the constant occurring at the position of 𝑥𝑖 in some

𝑅-fact, we mean the constant occurring at position 𝑖 . Formally,

for an 𝑅-fact 𝐹 = 𝑅(𝑎1, . . . , 𝑎𝑛), we define the expression 𝐹@𝑥𝑖 to
denote the constant 𝑎𝑖 (where the 𝑅-atom of the query𝑞 is implicitly

understood).

For example, if 𝑞 contains 𝑅(𝑥,𝑦, 𝑧), then we can say that the

constant at the position of 𝑦 in 𝑅(𝑎, 𝑏, 𝑐) is 𝑏. Formally, we write

𝑅(𝑎, 𝑏, 𝑐)@𝑦 = 𝑏.

The blurring of variables and positions naturally extends to other

expressions: if we say that the 𝑅-facts𝐴 and 𝐵 agree on some subset

𝑋 of {𝑥1, . . . , 𝑥𝑛}, then we mean that for every 𝑥𝑖 ∈ 𝑋 , we have
𝐴@𝑥𝑖 = 𝐵@𝑥𝑖 .

For example, if 𝑞 contains 𝑅(𝑥,𝑦, 𝑧), then it is correct to say that

𝑅(𝑎, 𝑏, 𝑐) and 𝑅(𝑎, 𝑏, 𝑒) agree on {𝑥,𝑦}.
Furthermore, if 𝑅 is associated with the KD ⟦𝑅 : 𝐾⟧, then we can

also refer to this KD as ⟦𝑅 : 𝐾 ′⟧ with 𝐾 ′ = {𝑥𝑖 | 𝑖 ∈ 𝐾}. From here

on, to make the difference explicit, we will call ⟦𝑅 : 𝐾 ′⟧ a key of𝑞, or
alternatively, a key of 𝑅. That is, we will use the term key whenever

variables are used instead of positions. As a shorthand, we may also

say that 𝐾 ′
is a key of 𝑅, with the meaning that ⟦𝑅 : 𝐾 ′⟧ is a key

of 𝑅.

For example, if 𝑞 contains 𝑅(𝑥,𝑦, 𝑧) and ⟦𝑅 : {1, 2}⟧ is a KD of

𝑅, then it is correct to say that ⟦𝑅 : {𝑥,𝑦}⟧ is a key of 𝑅. For short,

we can also say that {𝑥,𝑦} is a key of 𝑅.

5 ATTACKS AMONG KEYS
We extend the notion of attack graph, initially introduced in [23]

for primary keys, to the case with multiple keys per relation name.

We then show that if the attack graph of a query 𝑞 contains a cycle,

then CERTAINTY(𝑞) is L-hard, and therefore not in FO.
Let 𝑞 ∈ sjfBCQ be a query in which no atom contains constants

or repeated variables. A variable of vars(𝑞) is called a join variable
if it occurs more than once in 𝑞. Since no atom contains repeated

variables, a join variable must necessarily occur in at least two

distinct atoms.

A functional dependency on 𝑞 is an expression 𝑋 → 𝑌 with 𝑋 ∪
𝑌 ⊆ vars(𝑞). We define K(𝑞) as the set of functional dependencies
on 𝑞 containing 𝐾 → vars(𝑅) whenever ⟦𝑅 : 𝐾⟧ is a key of 𝑞. For

every atom 𝑅 of 𝑞, we define:

K(𝑞 ⊖ 𝑅) :=

{
K(𝑞 \ {𝑅}) if 𝑅 has mode i
K(𝑞) if 𝑅 has mode c

Example 5.1. Let 𝑞 = {𝑅c (𝑥,𝑦), 𝑆 (𝑦, 𝑥)} with keys ⟦𝑅 : {𝑥}⟧ and

⟦𝑆 : {𝑦}⟧. Then, K(𝑞 ⊖ 𝑅) ≡ {𝑥 → 𝑦, 𝑦 → 𝑥} and K(𝑞 ⊖ 𝑆) ≡
{𝑥 → 𝑦}.

For every set𝑉 ⊆ vars(𝑅), we define [𝑅 : 𝑉 ]⊖,𝑞 as the following

set of variables:

[𝑅 : 𝑉 ]⊖,𝑞 := {𝑥 ∈ vars(𝑞) | K(𝑞 ⊖ 𝑅) |= 𝑉 → 𝑥}.
Let ⟦𝑅 : 𝐾⟧ be a key of 𝑞, and 𝑣 a variable of vars(𝑞). We say that

⟦𝑅 : 𝐾⟧ attacks 𝑣 , denoted ⟦𝑅 : 𝐾⟧
𝑞
⇝ 𝑣 , if for some ℓ ≥ 0, there

exists a sequence 𝑣0, 𝑣1, . . . , 𝑣ℓ of variables, all belonging to vars(𝑞)\
[𝑅 : 𝐾]⊖,𝑞 , such that 𝑣0 ∈ vars(𝑅), 𝑣ℓ = 𝑣 , and every two adjacent

variables occur together in some atom of 𝑞.

We write ⟦𝑅 : 𝐾⟧
𝑞
⇝ ⟦𝑆 : 𝐿⟧ if ⟦𝑅 : 𝐾⟧ attacks some variable of

𝐿, where it is understood that ⟦𝑆 : 𝐿⟧ is a key of 𝑞. If ⟦𝑅 : 𝐾⟧
𝑞
⇝

⟦𝑆 : 𝐿⟧, we also say that ⟦𝑅 : 𝐾⟧ attacks ⟦𝑆 : 𝐿⟧.
Informally, an attack ⟦𝑅 : 𝐾⟧

𝑞
⇝ 𝑣 means that there exists a

“yes”-instance db of CERTAINTY(𝑞) containing distinct facts 𝑅( ®𝑎1)
and 𝑅( ®𝑎2) that agree on 𝐾 , but join, through the variable sequence

𝑣0, 𝑣1, . . . , 𝑣ℓ = 𝑣 , with different values of 𝑣 .

Example 5.2. For 𝑞1 in Equation (2), the keys are ⟦Host : {𝑦}⟧,
⟦Results : {𝑦,𝑢}⟧, and ⟦Results : {𝑦, 𝑝}⟧. We have

K(𝑞1 ⊖ Host) ≡ {{𝑦,𝑢} → {𝑝}, {𝑦, 𝑝} → {𝑢}} ;

K(𝑞1 ⊖ Results) ≡ {{𝑦} → {𝑢}} .
Since𝑢 belongs to vars(Host) but not to [Host : {𝑦}]⊖,𝑞1 = {𝑦}, the
singleton sequence 𝑢 shows that ⟦Host : {𝑦}⟧

𝑞1

⇝ 𝑢. The sequence

𝑢, 𝑝 shows that ⟦Host : {𝑦}⟧
𝑞1

⇝ 𝑝 . Consequently, the key of Host
attacks each key of Results.

Since 𝑝 is in vars(Results) but not in [Results : {𝑦,𝑢}]⊖,𝑞1 =

{𝑦,𝑢}, the singleton sequence 𝑝 shows that ⟦Results : {𝑦,𝑢}⟧
𝑞1

⇝
𝑝 . From [Results : {𝑦, 𝑝}]⊖,𝑞1 = vars(Results), it follows that no
variable is attacked by the key {𝑦, 𝑝} of Results.

Example 5.3. For 𝑞′
0
in Equation (3), the keys are ⟦Host : {𝑦}⟧,

⟦Results : {𝑦,𝑢}⟧, ⟦Results : {𝑦, 𝑝}⟧, and ⟦Pc : ∅⟧. We have

K(𝑞′
0
⊖ Host) ≡ {{𝑦,𝑢} → {𝑝}, {𝑦, 𝑝} → {𝑢}, ∅ → {𝑝}} ;

K(𝑞′
0
⊖ Results) ≡ {{𝑦} → {𝑢}, ∅ → {𝑝}} .

Since [Host : {𝑦}]⊖,𝑞′0 = vars(Host), it follows that the key of

Host attacks no variable. Since [Results : {𝑦,𝑢}]⊖,𝑞′0 = [Results :

{𝑦, 𝑝}]⊖,𝑞′0 = vars(Results), no variable is attacked by one of the

keys of Results.

Lemma 5.4. Let 𝑞 ∈ sjfBCQ be a query in which no atom contains
constants or repeated variables. Let ⟦𝑅 : 𝐾⟧ be a key of 𝑞. Let 𝑆 be
an atom of 𝑞 such that 𝑆 ≠ 𝑅. If ⟦𝑅 : 𝐾⟧ attacks some variable of
vars(𝑆), then ⟦𝑅 : 𝐾⟧ attacks every key of 𝑆 .

Proof. Assume ⟦𝑅 : 𝐾⟧
𝑞
⇝ 𝑣 with 𝑣 ∈ vars(𝑆). Let ⟦𝑆 : 𝐿⟧ be a

key of 𝑆 .

The desired result trivially holds if 𝑣 ∈ 𝐿. Assume 𝑣 ∉ 𝐿 from

here on. We can assume a sequence

𝑣0, 𝑣1, . . . , 𝑣ℓ

such that 𝑣0 ∈ vars(𝑅), 𝑣ℓ = 𝑣 , no 𝑣𝑖 belongs to [𝑅 : 𝐾]⊖,𝑞 , and every
two adjacent variables occur together in some atom of 𝑞. It must

be the case that 𝐿 ⊈ [𝑅 : 𝐾]⊖,𝑞 , or else 𝑣ℓ ∈ vars(𝑆) ⊆ [𝑅 : 𝐾]⊖,𝑞 ,
a contradiction. Therefore, there is a variable 𝑥 ∈ 𝐿 such that

𝑥 ∉ [𝑅 : 𝐾]⊖,𝑞 . The sequence
𝑣0, 𝑣1, . . . , 𝑣ℓ , 𝑥

shows that ⟦𝑅 : 𝐾⟧
𝑞
⇝ 𝑥 , and therefore ⟦𝑅 : 𝐾⟧

𝑞
⇝ ⟦𝑆 : 𝐿⟧. □

We will prove that CERTAINTY(𝑞) is L-hard if two keys of dif-

ferent atoms attack one another. Now if two keys of different atoms

attack one another, then, by Lemma 5.4, every key of either atom

attacks every key of the other atom. Therefore, to detect mutual

attacks, we can use a granularity of atoms rather than individual

keys, which motivates the following definition.



The attack graph of a query 𝑞 is a directed graph whose vertices

are the atoms of 𝑞. There is a directed edge from an atom 𝑅 to an

atom 𝑆 if 𝑅 ≠ 𝑆 and some key of 𝑅 attacks some (and therefore

every) key of 𝑆 .

From Example 5.2, it follows that the attack graph of the query

𝑞1 in Equation (2) contains a single edge from Host to Results. Ap-
pendix D contains a proof of the following result.

Lemma 5.5. Let 𝑞 ∈ sjfBCQ be a query in which no atom contains
constants or repeated variables. If the attack graph of 𝑞 has a cycle,
then CERTAINTY(𝑞) is L-hard.

6 BI-TANGLEMENT
Before giving the definition of bi-tanglement, we recall that Bipar-
tite Perfect Matching (BPM) is the following problem:

INPUT: An undirected bipartite graph 𝐺 with the same number

of vertices in each partition.

QUESTION: Does 𝐺 have a perfect matching?

Since the complexity of BPM is still unsettled as of today, we

introduce the following terminology. A decision problem P is said

to be coBPM-hard under first-order reductions if there exists a first-

order reduction from the complement of BPM to P. Since BPM
is NL-hard [5], and since NL is closed under complement, every

coBPM-hard problem is NL-hard.
We now define what it means that a query 𝑞 has a bi-tanglement;

in the next section we will introduce the related concept of tri-
tanglement. These notions are used to show some complexity lower

bounds: we will prove shortly that if 𝑞 has a bi-tanglement, then

CERTAINTY(𝑞) is coBPM-hard. In Section 7, we will show that if

𝑞 has a tri-tanglement, then CERTAINTY(𝑞) is L-hard.

Definition 6.1. (bi-tanglement) Let 𝑞 ∈ sjfBCQ be a query in

which no atom contains constants or repeated variables. We say

that 𝑞 has a bi-tanglement if 𝑞 has an atom 𝑅 of mode i with two

distinct keys ⟦𝑅 : 𝐾⟧, ⟦𝑅 : 𝐿⟧ such that vars(𝑅) \𝐾 contains a join

variable and 𝐾 ⊈ [𝑅 : 𝐾 ∩ 𝐿]⊖,𝑞 .

Example 6.2. The query 𝑞1 of Equation (2) has a bi-tanglement

between the keys ⟦Results : {𝑦,𝑢}⟧ and ⟦Results : {𝑦, 𝑝}⟧. The in-
tersection of these keys is {𝑦}. The variable 𝑢 is a join variable.

Since the key {𝑦, 𝑝} does not contain the variable 𝑢 and is not in-

cluded in [Results : {𝑦}]⊖,𝑞1 = {𝑦,𝑢}, it is correct to conclude that

𝑞1 has a bi-tanglement.

Example 6.3. The query 𝑞′
0
of Equation (3) has no bi-tanglement

between the keys ⟦Results : {𝑦,𝑢}⟧ and ⟦Results : {𝑦, 𝑝}⟧, because
[Results : {𝑦}]⊖,𝑞′0 = vars(Results) includes both keys.

Lemma 6.4 (bi-tanglement). Let 𝑞 ∈ sjfBCQ be a query in
which no atom contains constants or repeated variables. If 𝑞 has a bi-
tanglement, then CERTAINTY(𝑞) is coBPM-hard (under first-order
reductions).

Proof. Assume that 𝑞 has a bi-tanglement. Therefore, we can

assume that 𝑞 contains an 𝑅-atom of mode i with two distinct

keys ⟦𝑅 : 𝐾⟧, ⟦𝑅 : 𝐿⟧ such that the following two conditions are

satisfied:

(A) some variable of vars(𝑅) \ 𝐾 is a join variable (i.e., occurs

also in 𝑞 \ {𝑅}); and

(B) K(𝑞⊖𝑅) ̸|= 𝐾 ∩ 𝐿 → 𝐾 (or equivalently,𝐾 ⊈ [𝑅 : 𝐾 ∩ 𝐿]⊖,𝑞 ).
The proof is a first-order reduction from BPM to the complement

of CERTAINTY(𝑞). Let (𝑃1, 𝑃2, 𝐸) with |𝑃1 | = |𝑃2 | and 𝐸 ⊆ 𝑃1 × 𝑃2

be an instance of BPM. We construct a database instance db as

follows. Let 𝑉 = [𝑅 : 𝐾 ∩ 𝐿]⊖,𝑞 . Thus 𝐾 ⊈ 𝑉 .
For every bipartite edge (𝑎, 𝑏) in 𝐸, db contains an 𝑅-fact Γ𝑎,𝑏

such that for every 𝑥 ∈ vars(𝑅),

Γ𝑎,𝑏@𝑥 =


𝑎𝑥 if 𝑥 ∈ 𝐾 \𝑉
⊥𝑥 if 𝑥 ∈ 𝐾 ∩𝑉
𝑏𝑥 if 𝑥 ∈ 𝐿 \ 𝐾
⟨𝑎, 𝑏⟩𝑥 otherwise

The subscripting with 𝑥 is not essential, but has been added for clar-

ity to indicate that values can be typed according to their position.

Moreover, for every vertex 𝑎 in 𝑃1, db contains 𝜃𝑎 (𝑞) where 𝜃𝑎
is the valuation over vars(𝑞) such that for every 𝑥 ∈ vars(𝑞),

𝜃𝑎 (𝑥) =
{

⊥𝑥 if 𝑥 ∈ 𝑉
𝑎𝑥 otherwise

Let db := db0 ∪ db1 where

db0
:= {Γ𝑎,𝑏 | (𝑎, 𝑏) ∈ 𝐸};

db1
:= {𝜃𝑎 (𝑞) | 𝑎 ∈ 𝑃1}.

For edges (𝑎, 𝑏), (𝑎′, 𝑏 ′) in 𝐸, consider the set 𝐶 := {Γ𝑎,𝑏 , Γ𝑎′,𝑏′}.
Note that 𝐾 \𝑉 ≠ ∅, and since 𝐿 ⊈ 𝐾 , also 𝐿 \ 𝐾 ≠ ∅. These two
observations imply that Γ𝑎,𝑏 = Γ𝑎′,𝑏′ if and only if 𝑎 = 𝑎′ and 𝑏 = 𝑏 ′.
Also, the following hold:

(a) If 𝑎 ≠ 𝑎′ and 𝑏 ≠ 𝑏 ′, then 𝐶 is consistent. Indeed, assume

for the sake of contradiction that the two facts of 𝐶 agree

on some key ⟦𝑅 : 𝑁⟧. By our construction, it must be that

𝑁 ⊆ 𝐾 ∩𝑉 . Since no two distinct keys are comparable by set

inclusion, it follows 𝑁 = 𝐾 , hence 𝐾 ⊆ 𝐾 ∩𝑉 , contradicting
𝐾 ⊈ 𝑉 .

(b) If 𝑎 = 𝑎′ and 𝑏 ≠ 𝑏 ′, then 𝐶 is inconsistent. Indeed, in this

case, the two facts of𝐶 agree on 𝐾 (by construction), but are

not equal. To see why the two facts of 𝐶 are not equal, note

that there exists some variable 𝑥 ∈ vars(𝑅) \ 𝐾 such that

Γ𝑎,𝑏@𝑥 ∈ {𝑏𝑥 , ⟨𝑎, 𝑏⟩𝑥 } and Γ𝑎′,𝑏′@𝑥 ∈ {𝑏 ′𝑥 , ⟨𝑎, 𝑏 ′⟩𝑥 }. From
𝑏 ≠ 𝑏 ′, it follows that the two facts of 𝐶 disagree at the

position of 𝑥 .

(c) If 𝑎 ≠ 𝑎′ and 𝑏 = 𝑏 ′, then 𝐶 is inconsistent. Indeed, in this

case, the two facts of 𝐶 agree on 𝐿 (by construction, using

that 𝐾 ∩ 𝐿 ⊆ 𝐾 ∩𝑉 ), but are not equal. To see why the two

facts of 𝐶 are not equal, note that there exists some variable

𝑥 ∈ 𝐾 \ 𝑉 such that Γ𝑎,𝑏@𝑥 = 𝑎𝑥 and Γ𝑎′,𝑏′@𝑥 = 𝑎′𝑥 . From
𝑎 ≠ 𝑎′, it follows that the two facts of 𝐶 disagree at the

position of 𝑥 .

From the above, it is correct to conclude that any repair of db0

corresponds to a maximal matching of the bipartite graph.

Consider next the database instance db1. We first show that for

every relation name 𝑆 distinct from 𝑅, the set of 𝑆-facts in db1 is

consistent. For this purpose, take a key ⟦𝑆 : 𝑀⟧ and assume that 𝜃𝑎
and 𝜃𝑏 with 𝑎 ≠ 𝑏 agree on 𝑀 . Then, K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 → 𝑀 ,

and therefore, since K(𝑞 ⊖ 𝑅) contains 𝑀 → vars(𝑆), we have

K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 → vars(𝑆). By our construction, 𝜃𝑎 and 𝜃𝑏
agree on vars(𝑆).



For edge (𝑎′, 𝑏) in 𝐸 and vertex 𝑎 ∈ 𝑃1, consider the set 𝐷 :=

{𝜃𝑎 (𝑅), Γ𝑎′,𝑏 }. The following hold:
(a) If 𝑎 = 𝑎′, then 𝐷 is inconsistent. Indeed, by our construction

the two facts of𝐷 agree on𝐾 , but they will disagree on every

variable outside of 𝐾 .

(b) If 𝑎 ≠ 𝑎′, then 𝐷 is consistent. Indeed, assume 𝑁 ⊆ vars(𝑅)
such that ⟦𝑅 : 𝑁⟧ is a key of 𝑅 that is violated by 𝐷 . By our

construction, it must be the case that𝑁 ⊆ 𝐾∩𝑉 . Since no two
distinct keys are comparable by set inclusion, it follows 𝑁 =

𝐾 , and consequently, 𝐾 ⊆ 𝑉 , contradicting condition (B).

We now consider the two possibilities for (𝑃1, 𝑃2, 𝐸).

Case that (𝑃1, 𝑃2, 𝐸) is a “yes”-instance of BPM. Let r0 be a repair

of db0 that encodes a perfect matching. Then, we can extend r0 to

a repair of db that contains no 𝑅-fact of db1, since any extension

with an 𝑅-fact from db1 results in inconsistency. By condition (A),

such a repair will falsify 𝑞. Indeed, by condition (A), we can assume

a variable 𝑧 ∈ vars(𝑅) \ 𝐾 that also occurs in 𝑞 \ {𝑅}. All 𝑧-values
in db0 belong to {⟨𝑎, 𝑏⟩𝑧 | (𝑎, 𝑏) ∈ 𝐸} ∪ {𝑏𝑧 | 𝑏 ∈ 𝑃2}, and none of

these values occurs in db1.

Case that (𝑃1, 𝑃2, 𝐸) is a “no”-instance of BPM. Then, for every
repair r0 of db0, we can assume the existence of a vertex 𝑎 ∈ 𝑃1

such that for every 𝑥 ∈ 𝐾 \𝑉 , we have 𝑎𝑥 ∉ adom(r0). Informally,

𝑎 is an unmatched 𝑃1-vertex in the bipartite matching encoded by

r0. From our above observations, r0∪𝜃𝑎 (𝑞) is consistent, and hence
every repair r of db contains one or more 𝑅-facts of db1. It is now

obvious that every repair r of db satisfies 𝑞. □

Lemma 6.5. Let 𝑞 ∈ sjfBCQ be a query in which no atom contains
constants or repeated variables. If 𝑞 has no bi-tanglement, then for
every atom 𝑅 of 𝑞, one of the following holds true:

• there is no key of 𝑅 that attacks another key of 𝑅; or
• every join variable of vars(𝑅) belongs to the intersection of all
keys of 𝑅.

Proof. Assume that 𝑞 has no bi-tanglement. Assume that there

is a join variable in vars(𝑅) that does not belong to the intersection
of all keys of 𝑅. We need to show that there is no key of 𝑅 that

attacks another key of 𝑅. We can assume a join variable 𝑥 ∈ vars(𝑅)
and a key ⟦𝑅 : 𝐾⟧ of 𝑅 such that 𝑥 ∉ 𝐾 .

Let ⟦𝑅 : 𝐿⟧, ⟦𝑅 : 𝑀⟧ be two distinct keys of 𝑅. To conclude the

proof, it suffices to show K(𝑞 ⊖ 𝑅) |= 𝑀 → 𝐿, because this implies

⟦𝑅 : 𝑀⟧
𝑞

̸⇝ ⟦𝐾 : 𝐿⟧. We distinguish two cases:

Case that 𝐾 = 𝐿. Since 𝑞 has no bi-tanglement, it follows that

K(𝑞 ⊖ 𝑅) |= 𝐾 ∩𝑀 → 𝐾 , which implies K(𝑞 ⊖ 𝑅) |= 𝑀 → 𝐿.

Case that 𝐾 ≠ 𝐿. Since 𝑞 has no bi-tanglement, it follows that

K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 → 𝐾 . But then, there must exist a join variable

𝑧 ∈ 𝐾 \ 𝐿. Since 𝑞 has no bi-tanglement, this implies K(𝑞 ⊖ 𝑅) |=
𝐿 ∩𝑀 → 𝐿, hence K(𝑞 ⊖ 𝑅) |= 𝑀 → 𝐿. □

7 TRI-TANGLEMENT
In this section, we introduce the notion of tri-tanglement, and show

that CERTAINTY(𝑞) is L-hard if 𝑞 has a tri-tanglement.

Definition 7.1. (tri-tanglement) Let 𝑞 ∈ sjfBCQ be a query in

which no atom contains constants or repeated variables. We say

that 𝑞 has a tri-tanglement if 𝑞 has an atom 𝑅 of mode i and three

distinct keys ⟦𝑅 : 𝐾⟧, ⟦𝑅 : 𝐿⟧, ⟦𝑅 : 𝑀⟧ such that:

(a) for every 𝑁 ⊆ vars(𝑅) such that ⟦𝑅 : 𝑁⟧ is a key, we have

𝐾 ⊆ [𝑅 : 𝐾 ∩ 𝑁 ]⊖,𝑞 and𝑀 ⊆ [𝑅 : 𝑀 ∩ 𝑁 ]⊖,𝑞 ; and
(b) [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 includes no set among 𝐾 ∩ 𝐿, 𝐾 ∩ 𝑀 ,

𝐿 ∩𝑀 .

Note that the definition is symmetric in 𝐾 and𝑀 (but not in 𝐿).

Example 7.2. Let 𝑞3 = {𝑅(𝑥,𝑦, 𝑧), 𝑆c (𝑥,𝑦, 𝑧)} where the keys are
⟦𝑅 : {𝑥,𝑦}⟧, ⟦𝑅 : {𝑦, 𝑧}⟧, ⟦𝑅 : {𝑥, 𝑧}⟧, ⟦𝑆c : {𝑥}⟧, ⟦𝑆c : {𝑦}⟧, and
⟦𝑆c : {𝑧}⟧. Since 𝑆 has mode c, it cannot be the cause of a bi- or tri-
tanglement. Informally, 𝑆c encodes a set of vertex-disjoint tripartite

triangles. Every repair of 𝑅 encodes a set of edge-disjoint tripartite

triangles: if a repair contains 𝑅(𝑎, 𝑏, 𝑐), encoding triangle 𝑎𝑏𝑐 , then

it cannot contain another triangle with an edge among 𝑎𝑏, 𝑏𝑐 , 𝑎𝑐 .

The query 𝑞3 has no bi-tanglement, because every two distinct

keys of 𝑅 have a nonempty intersection, and [𝑅 : {𝑥}]⊖,𝑞3 = [𝑅 :

{𝑦}]⊖,𝑞3 = [𝑅 : {𝑧}]⊖,𝑞3 = {𝑥,𝑦, 𝑧} includes every key of 𝑅.

On the other hand,𝑞3 has a tri-tanglement. Indeed, satisfaction of

condition (a) in Definition 7.1 follows from the previous paragraph;

for condition (b), note that the three keys of 𝑅 have an empty

intersection, and [𝑅 : ∅]⊖,𝑞3 = ∅ does not include the intersection

of any two keys of 𝑅.

Definition 7.3. Let 𝑞 ∈ sjfBCQ be a query in which no atom

contains constants or repeated variables. Let 𝑅 be an atom of 𝑞, and

𝑁 ⊆ vars(𝑅). Let 𝑥,𝑦 ∈ vars(𝑅). We write 𝑅 : 𝑁 | 𝑥
𝑞
↭ 𝑦 if there

exists a sequence of variables 𝑥0, 𝑥1, . . . , 𝑥𝑛 ∉ [𝑅 : 𝑁 ]⊖,𝑞 such that

𝑥0 = 𝑥 , 𝑥𝑛 = 𝑦, and every two adjacent variables occur together in

some atom of 𝑞 \ {𝑅}. In particular, we have 𝑥,𝑦 ∉ [𝑅 : 𝑁 ]⊖,𝑞 .

For example, for 𝑞3 in Example 7.2, we have 𝑅 : ∅ | 𝑥
𝑞3

↭ 𝑦.

Lemma 7.4. Let 𝑞 ∈ sjfBCQ be a query in which no atom con-
tains constants or repeated variables. If 𝑞 has a tri-tanglement, then
CERTAINTY(𝑞) is L-hard (under first-order reductions).

Proof. Assume that 𝑞 has a tri-tanglement with keys ⟦𝑅 : 𝐾⟧,
⟦𝑅 : 𝐿⟧, and ⟦𝑅 : 𝑀⟧ as in Definition 7.1. The proof is a first-order

reduction from the L-complete problem Undirected Forest Accessi-
bility (UFA) [6]:

INPUT: An acyclic undirected graph 𝐺 = (𝑉 , 𝐸) consisting of

exactly two connected components; two vertices 𝑠, 𝑡 .

QUESTION: Are 𝑠 and 𝑡 connected in 𝐺?

Let (𝑉 , 𝐸, 𝑠, 𝑡) be an instance of UFA. We will assume that the

undirected edges of 𝐸 are encoded in the input as ordered pairs,

where each undirected edge {𝑎, 𝑏} of 𝐸 is ordered as either (𝑎, 𝑏) or
(𝑏, 𝑎) (but not both). Furthermore, we will assume that {𝑠, 𝑡} ∉ 𝐸,
and that every undirected edge of 𝐸 that contains 𝑠 or 𝑡 is ordered

such that the second position is 𝑠 or 𝑡 . The problem UFA obviously

remains L-hard under the restriction that there is no edge {𝑠, 𝑡}. We

construct a database instance db as follows.

For every vertex 𝑎 ∈ 𝑉 , db contains 𝜃𝑎 (𝑞) where 𝜃𝑎 is the valua-

tion over vars(𝑞) such that for every 𝑣 ∈ vars(𝑞),

𝜃𝑎 (𝑣) =
{

⊥𝑣 if 𝑣 ∈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
𝑎𝑣 otherwise

Every fact 𝜃𝑎 (𝑅) will be called a vertex-fact.
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Figure 1: Conflict graph for the 𝑅-facts entailed by an undi-
rected edge {𝑎, 𝑏}, which is encoded in the input as the or-
dered pair (𝑎, 𝑏) or (𝑏, 𝑎). The edge {𝑐, 𝑠} is ordered as (𝑐, 𝑠).
The edge {𝑑, 𝑡} is ordered as (𝑑, 𝑡). For readability, vertex-
facts are depicted as □, and edge-facts as •.

For every relation name 𝑆 with 𝑆 ≠ 𝑅 that occurs in 𝑞, we have

that the set of 𝑆-facts of db is consistent. Indeed, let 𝑎 ≠ 𝑏, and

let ⟦𝑆 : 𝑁⟧ be a key of 𝑞 with 𝑆 ≠ 𝑅. If 𝑁 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 ,
then vars(𝑆) ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 and therefore 𝜃𝑎 (𝑆) = 𝜃𝑏 (𝑆). If
𝑁 ⊈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , then 𝜃𝑎 (𝑆), 𝜃𝑏 (𝑆) do not agree on 𝑁 .

Then, for every ordered pair (𝑎, 𝑏) in the input, db contains 𝑅-

facts Γ𝑎,(𝑎,𝑏) and Ω𝑏,(𝑎,𝑏) defined as follows: for every 𝑥 ∈ vars(𝑅),

Γ𝑎,(𝑎,𝑏)@𝑥 =


⊥𝑥 if 𝑥 ∈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
𝑎𝑥 if 𝑥 ∈ 𝐾 \ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
𝑏𝑥 if 𝑥 ∈ (𝑀 ∩ 𝐿) \ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
⟨𝑎, 𝑏⟩𝑥 otherwise

Ω𝑏,(𝑎,𝑏)@𝑥 =


⊥𝑥 if 𝑥 ∈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
𝑏𝑥 if 𝑥 ∈ 𝑀 \ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
𝑎𝑥 if 𝑥 ∈ (𝐾 ∩ 𝐿) \ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
⟨𝑎, 𝑏⟩𝑥 otherwise

We will call these edge-facts. Finally, db contains two special edge-

facts Γ𝑠,(𝑠,⊥) and Γ𝑡,(𝑡,⊥) .
Note that edge-facts Γ𝑎,(𝑎,𝑏) are well-defined, since the intersec-

tion of 𝐾 \ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 and (𝑀 ∩ 𝐿) \ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞
is empty, because 𝐾 ∩ 𝐿 ∩ 𝑀 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . Likewise,
edge-facts Ω𝑏,(𝑎,𝑏) are well defined.

Claim 7.1. No key of 𝑅 is included in [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 ∪
(𝐾 ∩ 𝐿) or [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 ∪ (𝑀 ∩ 𝐿).

Proof of Claim 7.1. Assume, for the sake of contradiction, a

key ⟦𝑅 : 𝑁⟧ such that for some 𝐾 ′ ∈ {𝐾,𝑀}, we have 𝑁 ⊆ [𝑅 :

𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 ∪ (𝐾 ′ ∩ 𝐿). We treat the case 𝐾 ′ = 𝐾 (the case

𝐾 ′ = 𝑀 is symmetrical). Since 𝑁 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 ∪ (𝐾 ∩ 𝐿),
we have, by intersecting with the set𝑀 and distributing intersection

over union:

𝑁 ∩𝑀 ⊆
(
𝑀 ∩ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞

)
∪ (𝐾 ∩ 𝐿 ∩𝑀) .

Since 𝑀 ∩ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 and 𝐾 ∩ 𝐿 ∩
𝑀 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , we have 𝑁 ∩ 𝑀 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 .
Thus, K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 ∩𝑀 → 𝑁 ∩𝑀 .

From condition (a) in Definition 7.1 of tri-tanglements, we have

K(𝑞⊖𝑅) |= 𝑀 ∩ 𝑁 → 𝑀 . Therefore,K(𝑞⊖𝑅) |= 𝐾 ∩ 𝐿 ∩𝑀 → 𝑀 ,

that is, 𝑀 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . But then condition (b) in Defini-

tion 7.1 is obviously violated, a contradiction. This concludes the

proof of Claim 7.1. ■

Here are some important observations that hold for every or-

dered edge (𝑎, 𝑏):
(a) Γ𝑎,(𝑎,𝑏) and Ω𝑏,(𝑎,𝑏) agree on 𝐿.

Rationale: Let 𝑥 ∈ 𝐿. The desired result is obvious if 𝑥 also

belongs to [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . Assume next that 𝑥 ∉ [𝑅 :

𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . Then, if 𝑥 ∈ 𝐾 ∩ 𝐿, we have Γ𝑎,(𝑎,𝑏)@𝑥 =

𝑎𝑥 = Ω𝑏,(𝑎,𝑏)@𝑥 ; and if 𝑥 ∈ 𝑀 ∩ 𝐿, we have Γ𝑎,(𝑎,𝑏)@𝑥 =

𝑏𝑥 = Ω𝑏,(𝑎,𝑏)@𝑥 . In all other cases, Γ𝑎,(𝑎,𝑏)@𝑥 = ⟨𝑎, 𝑏⟩𝑥 =

Ω𝑏,(𝑎,𝑏)@𝑥 .
(b) Γ𝑎,(𝑎,𝑏) and 𝜃𝑎 (𝑅) agree on 𝐾 .

Rationale: Let 𝑥 ∈ 𝐾 . The desired result is obvious if 𝑥 also

belongs to [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . Otherwise, Γ𝑎,(𝑎,𝑏)@𝑥 = 𝑎𝑥 =

𝜃𝑎 (𝑅)@𝑥 .
(c) Ω𝑏,(𝑎,𝑏) and 𝜃𝑏 (𝑅) agree on𝑀 .

Rationale: Symmetric to the previous item.

(d) {𝜃𝑎 (𝑅),Ω𝑏,(𝑎,𝑏) } is consistent.
Rationale: Consider any key ⟦𝑅 : 𝑁⟧. From Claim 7.1, it

follows that 𝑁 contains a variable 𝑥 such that 𝑥 ∉ 𝐾 ∩ 𝐿
and 𝑥 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . We have 𝜃𝑎 (𝑅)@𝑥 = 𝑎𝑥 and

Ω𝑏,(𝑎,𝑏)@𝑥 ∈ {𝑏𝑥 , ⟨𝑎, 𝑏⟩𝑥 }, and therefore 𝜃𝑎 (𝑅) and Ω𝑏,(𝑎,𝑏)
disagree on some variable of 𝑁 .

(e) {𝜃𝑏 (𝑅), Γ𝑎,(𝑎,𝑏) } is consistent.
Rationale: Symmetric to the previous item.

(f) {𝜃𝑎 (𝑅), 𝜃𝑏 (𝑅)} is consistent.
(g) 𝜃𝑎 (𝑅), 𝜃𝑏 (𝑅), Γ𝑎,(𝑎,𝑏) , and Ω𝑏,(𝑎,𝑏) are pairwise distinct.

Hence, the conflict graph of the set of 𝑅-facts resulting from edge

{𝑎, 𝑏} is as in Figure 1.

Note that if a vertex 𝑎 is adjacent with two distinct vertices, say 𝑏

and 𝑐 , then the edges {𝑎, 𝑏} and {𝑎, 𝑐} can result in conflicting edge-

facts as follows. The orderings (𝑏, 𝑎) and (𝑐, 𝑎) result in Ω𝑎,(𝑏,𝑎)
and Ω𝑎,(𝑐,𝑎) , two distinct facts that agree on 𝑀 . Symmetrically,

the orderings (𝑎, 𝑏) and (𝑎, 𝑐) result in Γ𝑎,(𝑎,𝑏) and Γ𝑎,(𝑎,𝑐) , two dis-

tinct facts that agree on 𝐾 . Note incidentally that for the orderings

(𝑐, 𝑎) and (𝑎, 𝑏), the sets {Γ𝑐,(𝑐,𝑎) , Γ𝑎,(𝑎,𝑏) } and {Ω𝑎,(𝑐,𝑎) ,Ω𝑏,(𝑎,𝑏) }
are both consistent.

We now show that (𝑉 , 𝐸, 𝑠, 𝑡) is a “no”-instance of UFA (i.e., 𝑠

and 𝑡 are not connected) if and only if db has a falsifying repair.

The construction of a falsifying repair proceeds as follows, with-

out loss of generality. Repeatedly pick a vertex 𝑎 that is a leaf of

the UFA instance under consideration; we can assume a unique

vertex 𝑏 that is adjacent to 𝑎. When picking vertices, we avoid

picking 𝑠 , 𝑡 , or any vertex adjacent to 𝑠 or 𝑡 , whenever possible.

The corresponding 𝑅-fact 𝜃𝑎 (𝑅) will be a leaf of the conflict graph,
conflicting with (and only with) Γ𝑎,(𝑎,𝑏) or Ω𝑎,(𝑏,𝑎) (depending on

whether {𝑎, 𝑏} was ordered as (𝑎, 𝑏) or as (𝑏, 𝑎); only one of these

facts is in db). Since a falsifying repair cannot contain 𝜃𝑎 (𝑅), it must

contain Γ𝑎,(𝑎,𝑏) or Ω𝑎,(𝑏,𝑎) (depending on whichever is in db). If a
falsifying repair contains Γ𝑎,(𝑎,𝑏) , it cannot contain Ω𝑏,(𝑎,𝑏) ; and
if it contains Ω𝑎,(𝑏,𝑎) , it cannot contain Γ𝑏,(𝑏,𝑎) . By construction,

since 𝑎 is a leaf, Γ𝑎,(𝑎,𝑏) conflicts with no facts except for 𝜃𝑎 (𝑅)
and Ω𝑏,(𝑎,𝑏) ; and Ω𝑎,(𝑏,𝑎) conflicts with no facts except for 𝜃𝑎 (𝑅)
and Γ𝑏,(𝑏,𝑎) . We now remove the vertex 𝑎 and the edge {𝑎, 𝑏} from
the UFA instance, and remove the corresponding vertex-fact and



edge-facts from db. Clearly, the removal of 𝑎 and {𝑎, 𝑏} does not
change the connectedness (or non-connectedness) of 𝑠 and 𝑡 ; and

the removal of the corresponding vertex-fact and edge-facts does

not change the existence (or non-existence) of a falsifying repair.

Assume that 𝑠 and 𝑡 are connected in the UFA instance. For

the connected component that does not contain 𝑠, 𝑡 , the repeated

removal ends with some edge {𝑎, 𝑏}. It can be seen that every repair

must contain a fact of the form 𝜃𝑐 (𝑅). A repair containing 𝜃𝑐 (𝑅)
satisfies 𝜃𝑐 (𝑞), and therefore satisfies 𝑞.

Assume that 𝑠 and 𝑡 are not connected in the UFA instance.

The repeated removal ends with edges {𝑐, 𝑠} and {𝑑, 𝑡}, ordered
as (𝑐, 𝑠) and (𝑑, 𝑡). By picking Γ𝑐,(𝑐,𝑠) , Γ𝑑,(𝑑,𝑠) , Γ𝑠,(𝑠,⊥) , Γ𝑡,(𝑡,⊥) , we
claim that we obtain a falsifying repair. To prove the latter claim,

it suffices to show that for every valuation 𝜇 (𝑞) over vars(𝑞) such
that 𝜇 (𝑞) ⊆ db, we have that 𝜇 (𝑞) contains no edge-facts (i.e., no

facts of the form Γ𝑎,(𝑎,𝑏) or Ω𝑏,(𝑎,𝑏) ). Informally, edge-facts cannot

make the query true.

Claim 7.2. There exist join variables 𝑦, 𝑧 ∈ vars(𝑅) such that

𝑦 ∈ (𝐾 ∩ 𝐿) \𝑀 , 𝑧 ∈ (𝑀 ∩ 𝐿) \ 𝐾 , and 𝑅 : 𝐾 ∩ 𝐿 ∩𝑀 | 𝑦
𝑞
↭ 𝑧.

Proof of Claim 7.2. By condition (a) in Definition 7.1 of tri-

tanglements, we have K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 → 𝐾 and K(𝑞 ⊖ 𝑅) |=
𝐾 ∩𝑀 → 𝑀 . It follows that K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 → 𝑀 ∩ 𝐿. Since
𝑀 ∩ 𝐿 ⊈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 by condition (b) in Definition 7.1, we

can assume a variable 𝑧 ∈ 𝑀 ∩ 𝐿 such that 𝑧 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 .
Since [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 includes𝐾∩𝐿∩𝑀 , we have 𝑧 ∉ 𝐾∩𝐿∩𝑀 ,

and therefore 𝑧 ∉ 𝐾 . Since K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 → 𝑧, there exists a

sequence of keys of 𝑞

⟦𝑇1 : 𝑀1⟧, ⟦𝑇2 : 𝑀2⟧, . . . , ⟦𝑇𝑛 : 𝑀𝑛⟧ (5)

with 𝑛 ≥ 1 such that 𝑧 ∈ vars(𝑇𝑛) \𝑀𝑛 and for every 𝑖 ∈ {1, . . . , 𝑛},
• 𝑇𝑖 ≠ 𝑅; and
• 𝑀𝑖 ⊆ (𝐾 ∩ 𝐿) ∪

(⋃𝑖−1

𝑗=1
vars(𝑇𝑗 )

)
.

Let𝑀0
:= 𝐾 ∩ 𝐿. Therefore,𝑀0 ⊈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . We claim:

for every 𝑖 ≥ 1, if 𝑀𝑖 ⊈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , then
there exists 𝑗 < 𝑖 and variables 𝑥𝑖 ∈ 𝑀𝑖 , 𝑥 𝑗 ∈ 𝑀𝑗

such that 𝑅 : 𝐾 ∩ 𝐿 ∩𝑀 | 𝑥 𝑗
𝑞
↭ 𝑥𝑖 .

(6)

To prove the latter claim, assume 𝑀𝑖 ⊈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 with

𝑖 ≥ 1. There exists 𝑥𝑖 ∈ 𝑀𝑖 such that 𝑥𝑖 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 .
If 𝑥𝑖 ∈ 𝑀0, we have 𝑅 : 𝐾 ∩ 𝐿 ∩𝑀 | 𝑥𝑖

𝑞
↭ 𝑥𝑖 , the desired result.

Assume next 𝑥𝑖 ∉ 𝑀0. By the construction of (5), there exists 𝑗 < 𝑖

such that 𝑥𝑖 ∈ vars(𝑇𝑗 ). Since 𝑥𝑖 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , we have
𝑀𝑗 ⊈ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . Therefore, there is some 𝑥 𝑗 ∈ 𝑀𝑗 such

that 𝑥 𝑗 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 . The atom 𝑇𝑗 shows 𝑅 : 𝐾 ∩ 𝐿 ∩𝑀 |
𝑥 𝑗

𝑞
↭ 𝑥𝑖 . The following transitivity property is straightforward,

for every 𝑉 ⊆ vars(𝑅):

if 𝑅 : 𝑉 | 𝑥
𝑞
↭ 𝑦 and 𝑅 : 𝑉 | 𝑦

𝑞
↭ 𝑧, then

𝑅 : 𝑉 | 𝑥
𝑞
↭ 𝑧.

(7)

Since 𝑧 ∈ vars(𝑇𝑛) and 𝑧 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , there exists

𝑥𝑛 ∈ 𝑀𝑛 such that 𝑥𝑛 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , and therefore 𝑅 :

𝐾 ∩ 𝐿 ∩𝑀 | 𝑥𝑛
𝑞
↭ 𝑧. By (6) and (7), there exists 𝑦 ∈ 𝐾 ∩ 𝐿 such

that 𝑅 : 𝐾 ∩ 𝐿 ∩𝑀 | 𝑦
𝑞
↭ 𝑧. From 𝑦 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , it

follows 𝑦 ∉ 𝐾 ∩ 𝐿 ∩𝑀 , and therefore 𝑦 ∉ 𝑀 .

The proof of Claim 7.2 is concluded by noting that 𝑦 and 𝑧 are

join variables because they occur in 𝑅 and in the sequence (5). ■

Let 𝜇 (𝑞) be a valuation over vars(𝑞) such that 𝜇 (𝑞) ⊆ db. We

need to show that 𝜇 (𝑅) ∈ {𝜃𝑎 (𝑅) | 𝑎 ∈ 𝑉 }. By Claim 7.2, there

exist join variables 𝑦, 𝑧 ∈ vars(𝑅) such that 𝑦 ∈ (𝐾 ∩ 𝐿) \𝑀 , 𝑧 ∈
(𝑀 ∩ 𝐿) \ 𝐾 , and 𝑅 : 𝐾 ∩ 𝐿 ∩𝑀 | 𝑦

𝑞
↭ 𝑧. Therefore, there exists a

sequence of variables 𝑦0, 𝑦1, . . . , 𝑦𝑛 ∉ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 such that

𝑦0 = 𝑦, 𝑦𝑛 = 𝑧, and every two adjacent variables in the sequence

occur together in some atom of 𝑞 \ {𝑅}.
We can assume an atom 𝑆 such that 𝑆 ≠ 𝑅 and 𝑦0, 𝑦1 ∈ vars(𝑆).

We can also assume a vertex 𝑎 ∈ 𝑉 such that 𝜇 (𝑆) = 𝜃𝑎 (𝑆).
Consequently, 𝜇 (𝑦0) = 𝑎𝑦0

and 𝜇 (𝑦1) = 𝑎𝑦1
. By induction on

increasing 𝑖 , it can be easily seen that for every 𝑖 ∈ {1, . . . , 𝑛},
𝜇 (𝑦𝑖 ) = 𝑎𝑦𝑖 , and therefore 𝜇 (𝑦𝑛) = 𝑎𝑦𝑛 . Thus, 𝜇 (𝑅)@𝑦 = 𝜇 (𝑦) = 𝑎𝑦
and 𝜇 (𝑅)@𝑧 = 𝜇 (𝑧) = 𝑎𝑧 . It must be the case that 𝜇 (𝑅) = 𝜃𝑎 (𝑅).
Indeed, there is no vertex-fact 𝐹 such that both 𝐹@𝑦 = 𝑎𝑦 and

𝐹@𝑧 = 𝑎𝑧 , because for every edge (𝑐, 𝑑), with 𝑐 ≠ 𝑑 , we have
• Γ𝑐,(𝑐,𝑑)@𝑦 = 𝑐𝑦 and Γ𝑐,(𝑐,𝑑)@𝑧 = 𝑑𝑧 ; and
• Ω𝑑,(𝑐,𝑑)@𝑦 = 𝑐𝑦 and Ω𝑑,(𝑐,𝑑)@𝑧 = 𝑑𝑧 . □

8 FINALE
In the preceding sections, we established necessary conditions for

a query 𝑞 to have a consistent first-order rewriting: acyclicity of

the attack graph, and the absence of bi- and tri-tanglements. In this

section, we show that these necessary conditions are also sufficient

for the existence of a consistent first-order rewriting. An important

step in the construction of such a rewriting is the determination

of what we call reifiable variables; informally, these are variables

that can be existentially quantified outside the scope of any uni-

versal quantifier, like the variable 𝑦 in the first-order rewriting (4)

of Section 1. This section contains three subsections. In the first

subsection, it is shown that if a query has no bi- or tri-tanglement,

then every unattacked variable is reifiable. After that, we elaborate

on the treatment of free variables, which will emerge during the

construction of a first-order rewriting. In the last subsection, we

provide the proof of the main Theorem 1.1.

8.1 Reification
Definition 8.1. (reifiable variables) Let 𝑞 be a Boolean conjunc-

tive query, and let 𝑢 ∈ vars(𝑞). If 𝑐 is a constant, then 𝑞 [𝑢 ↦→𝑐 ]
denotes the query obtained from 𝑞 by replacing every occurrence

of 𝑢 by 𝑐 . We say that 𝑢 is reifiable if for every database instance

db that is a “yes”-instance of CERTAINTY(𝑞), there exists a con-
stant 𝑐 (which depends on db) such that db is a “yes”-instance of

CERTAINTY(𝑞 [𝑢 ↦→𝑐 ] ). For every database instance db, we define:

Reify(𝑞,𝑢, db) := {𝑐 | 𝑐 is a constant and db |= 𝑞 [𝑢 ↦→𝑐 ] }.
Although Reify is defined relative to any database instance, it will

only be used for database instances that are repairs. A fact 𝐴 ∈ db
is said to be relevant for 𝑞 in db if there exists a valuation 𝜃 over

vars(𝑞) such that 𝐴 ∈ 𝜃 (𝑞) ⊆ db.

Lemma 8.2. Let 𝑞 ∈ sjfBCQ be a query in which no atom contains
constants or repeated variables. Assume that 𝑞 has no bi-tanglement
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Figure 2: Helpingmnemonic for the proof of Lemma 8.2.We
have 𝐴, 𝐵 ∈ r1, 𝐴′ ∈ r2, and 𝐵′ ∈ db \ r1. It is possible that
𝐵′ ∉ r2.

and no tri-tanglement. Let 𝑢 ∈ vars(𝑞) be an unattacked variable,

that is, ⟦𝑆 : 𝐿⟧
𝑞

̸⇝ 𝑢 for every key ⟦𝑆 : 𝐿⟧ of 𝑞. Let r1 and r2 be
repairs of a same database instance db. There exists a repair s of db
such that Reify(𝑞,𝑢, s) ⊆ Reify(𝑞,𝑢, r1) ∩ Reify(𝑞,𝑢, r2).

Proof. In the first part of the proof, we show the following:

for every𝐴 ∈ r1 \r2 such that𝐴 is relevant for 𝑞 in

r1, it is possible to construct a repair r′
1
of db such

that 𝐴 ∉ r′
1
and Reify(𝑞,𝑢, r′

1
) ⊆ Reify(𝑞,𝑢, r1).

(8)

Assume a fact 𝐴 ∈ r1 \ r2 such that 𝐴 is relevant for 𝑞 in r1. Let

𝑅 be the relation name of 𝐴. We can assume a valuation 𝛼 over

vars(𝑞) such that 𝐴 ∈ 𝛼 (𝑞) ⊆ r1.

Since 𝐴 ∉ r2, we can assume an 𝑅-fact 𝐴′ ∈ r2 \ r1 and a key 𝐾

of 𝑅 such that 𝐴 and 𝐴′
agree on 𝐾 , with 𝐴 ≠ 𝐴′

. Let r′
1
be a repair

of db constructed from r1 by means of the following three steps,

starting with r′
1
= r1:

(1) Shrinking step: delete from r′
1
all 𝑅-facts 𝐵 for which {𝐵,𝐴′}

is inconsistent (in particular, 𝐴 will be deleted);

(2) First growing step: insert the 𝑅-fact 𝐴′
into r′

1
; and

(3) Second growing step: insert 𝑅-facts from db into r′
1
as long

as consistency is preserved. This step is non-deterministic

and guarantees that eventually r′
1
is an inclusion-maximal

consistent subset of db.
Obviously, all facts in r′

1
\ r1 are 𝑅-facts. Let 𝑓 : r′

1
\ r1 →

P(r1 \ r′
1
) be the total function such that for every fact 𝐶 ′

in the

domain of 𝑓 , we have 𝑓 (𝐶 ′) := {𝐶 ∈ r1 | {𝐶 ′,𝐶} is inconsistent}.
For every 𝐶 ′

in the domain of 𝑓 , the set 𝑓 (𝐶 ′) is a nonempty set of

𝑅-facts. Indeed, if there is some 𝐶 ′ ∈ r′
1
\ r1 such that 𝑓 (𝐶 ′) = ∅,

then r1 ∪ {𝐶 ′} would be consistent, contradicting that r1 is an

inclusion-maximal consistent subset of db. Note also that for every

𝐶 ′ ∈ r′
1
\ r1, we have 𝑓 (𝐶 ′) ⊆ 𝑓 (𝐴′) = r1 \ r′

1
.

Claim 8.1. For every fact 𝐵′ ∈ r′
1
\ r1, if 𝐵′ is relevant for 𝑞 in r′

1
,

then some fact of 𝑓 (𝐵′) is relevant for 𝑞 in r1.

Proof of Claim 8.1. Let 𝐵′ ∈ r′
1
\ r1 such that 𝐵′ is relevant

for 𝑞 in r′
1
. We can assume a valuation 𝛽 ′ over vars(𝑞) such that

𝐵′ ∈ 𝛽 ′(𝑞) ⊆ r′
1
.

For the sake of contradiction, assume that no fact of 𝑓 (𝐵′) is
relevant for𝑞 in r1. Since𝐴 is relevant for𝑞 in r1, we have𝐴 ∉ 𝑓 (𝐵′).

Since𝐴 ∈ 𝑓 (𝐴′), we have𝐴′ ≠ 𝐵′. Since 𝑓 (𝐵′) ≠ ∅, we can assume

the existence of a fact 𝐵 ∈ 𝑓 (𝐵′). From 𝐴 ∉ 𝑓 (𝐵′), it follows 𝐴 ≠ 𝐵.

Since 𝐵 ∈ 𝑓 (𝐵′) ⊆ 𝑓 (𝐴′), we can assume a key 𝐿 of 𝑅 on which 𝐵

and 𝐴′
agree. We can also assume a key 𝑀 of 𝑅 on which 𝐵 and

𝐵′ agree. The situation is depicted in Figure 2. We have 𝐾 ≠ 𝐿, or

else {𝐴, 𝐵} is an inconsistent subset of r1, contradicting that r1 is

a repair. We also have 𝐿 ≠ 𝑀 , or else {𝐴′, 𝐵′} is an inconsistent

subset of r′
1
, contradicting that r′

1
is a repair. Indeed, the Second

growing step never inserts a fact that agrees with 𝐴′
on some key.

Since 𝐵 is not relevant for 𝑞 in r1, but 𝐵
′
is relevant for 𝑞 in r′

1
,

it must be the case that there exists a join variable 𝑣 ∈ vars(𝑅) \𝑀
such that 𝐵@𝑣 ≠ 𝐵′@𝑣 . Since 𝑞 has no bi-tanglement, if follows

that:

for every key ⟦𝑅 : 𝑁⟧, we have K(𝑞 ⊖ 𝑅) |= 𝑀 ∩ 𝑁 → 𝑀 . (9)

We now show that 𝐾 ≠ 𝑀 . Assume for the sake of contradiction

that 𝐾 = 𝑀 . Since the valuations 𝛼 and 𝛽 ′ obviously agree on

𝐾 ∩ 𝐿 ∩ 𝑀 , they agree on 𝐾 ∩ 𝐿 . Since K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 → 𝐾

by (9) with 𝑁 = 𝐿, 𝛼 and 𝛽 ′ must agree on 𝐾 . Therefore, 𝐴 and 𝐵′

agree on 𝐾 . Then 𝐴′
and 𝐵′ also agree on 𝐾 , a contradiction. We

conclude by contradiction 𝐾 ≠ 𝑀 . Therefore, ⟦𝑅 : 𝐾⟧, ⟦𝑅 : 𝐿⟧, and
⟦𝑅 : 𝑀⟧ are three distinct keys.

Next, we show that 𝐴′
is not relevant for 𝑞 in r′

1
. For the sake

of contradiction, assume that 𝐴′
is relevant for 𝑞 in r′

1
. Then there

exists a valuation 𝛼 ′ over vars(𝑞) such that 𝐴′ ∈ 𝛼 ′(𝑞) ⊆ r′
1
. Since

K(𝑞⊖𝑅) |= 𝑀 ∩ 𝐿 → 𝑀 by (9), and 𝛼 ′, 𝛽 ′ agree on𝑀∩𝐿, it follows
that 𝐴′

and 𝐵′ agree on𝑀 , contradicting that {𝐴′, 𝐵′} is consistent.
Since 𝐴 is relevant for 𝑞 in r1, but 𝐴

′
is not relevant for 𝑞 in r′

1
,

it must be the case that there exists a join variable 𝑣 ∈ vars(𝑅) \ 𝐾
such that 𝐴@𝑣 ≠ 𝐴′

@𝑣 . Since 𝑞 has no bi-tanglement, if follows

that:

for every key ⟦𝑅 : 𝑁⟧, we have K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝑁 → 𝐾 . (10)

It can be easily seen that all facts among 𝐴,𝐴′, 𝐵, 𝐵′ agree on
𝐾 ∩ 𝐿 ∩𝑀 . It follows that 𝛼 and 𝛽 ′ agree on 𝐾 ∩ 𝐿 ∩𝑀 . Since r1

and r′
1
contain the same set of 𝑆-facts for every 𝑆 ≠ 𝑅, it follows

that 𝛼 and 𝛽 ′ agree on [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 .
We next show that K(𝑞 ⊖ 𝑅) ̸|= 𝐾 ∩ 𝐿 ∩𝑀 → 𝐾 . For the sake

of contradiction, assume K(𝑞 ⊖ 𝑅) |= 𝐾 ∩ 𝐿 ∩𝑀 → 𝐾 . Then it

follows that 𝛼 and 𝛽 ′ agree on 𝐾 . Consequently, for every 𝑥 ∈ 𝐾 ,
we have 𝐴@𝑥 = 𝐵′@𝑥 . Since (i) 𝐴 and 𝐵′ agree on 𝐾 , and (ii) 𝐴 and

𝐴′
agree on 𝐾 , it follows that 𝐴′

and 𝐵′ agree on 𝐾 . Then {𝐴′, 𝐵′}
is inconsistent, a contradiction. Using symmetrical reasoning, we

can show that K(𝑞 ⊖ 𝑅) ̸|= 𝐾 ∩ 𝐿 ∩𝑀 → 𝑀 .

It is now easy to see that none of𝐾∩𝐿,𝐾∩𝑀 , or 𝐿∩𝑀 is included

in [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 , which together with (9) and (10) implies

that 𝑞 has a tri-tanglement, which contradicts the hypothesis of the

lemma. This concludes the proof of Claim 8.1. ■

To finish the proof of (8), we show:

Reify(𝑞,𝑢, r′
1
) ⊆ Reify(𝑞,𝑢, r1). (11)

Recall that r′
1
\ r1 is a set of 𝑅-facts. Let 𝐵

′ ∈ r′
1
\ r1, and let 𝜇 ′ be

a valuation over vars(𝑞) such that 𝐵′ ∈ 𝜇 ′(𝑞) ⊆ r′
1
. Let 𝑐 := 𝜇 ′(𝑢).

Therefore, 𝑐 ∈ Reify(𝑞,𝑢, r′
1
). It suffices to show 𝑐 ∈ Reify(𝑞,𝑢, r1).

The reason why this suffices is that for every 𝑅-fact𝐶 ∈ r′
1
∩ r1, for

every valuation 𝛾 over vars(𝑞), if𝐶 ∈ 𝛾 (𝑞) ⊆ r′
1
then𝐶 ∈ 𝛾 (𝑞) ⊆ r1.



By Claim 8.1, there is some fact 𝐵 ∈ 𝑓 (𝐵′) that is relevant for 𝑞
in r1. We can assume a key𝑀 of 𝑅 such that 𝐵′ and 𝐵 agree on𝑀 .

Notice that if 𝐵′ = 𝐴′
, then 𝐵 can be taken to be 𝐴, and 𝑀 can be

taken to be 𝐾 . We can assume a valuation 𝜇 over vars(𝑞) such that

𝐵 ∈ 𝜇 (𝑞) ⊆ r1. Clearly, 𝜇 and 𝜇
′
agree on𝑀 .

Let 𝜅 be the valuation such that for every variable 𝑣 ∈ vars(𝑞),

𝜅 (𝑣) =

𝜇 (𝑣) if ⟦𝑅 : 𝑀⟧

𝑞
⇝ 𝑣

𝜇 ′(𝑣) if ⟦𝑅 : 𝑀⟧
𝑞

̸⇝ 𝑣

Clearly, 𝜅 (𝑢) = 𝑐 . To conclude the proof of (8), it suffices now to

show 𝜅 (𝑞) ⊆ r1, which is done in the next two paragraphs.

Let 𝑆 be an atom of 𝑞 such that 𝑆 ≠ 𝑅. Assume there are two

variables 𝑣𝑎, 𝑣𝑢 ∈ vars(𝑆) such that ⟦𝑅 : 𝑀⟧
𝑞
⇝ 𝑣𝑎 and ⟦𝑅 : 𝑀⟧

𝑞

̸⇝
𝑣𝑢 (informally, the subscripts 𝑎 and 𝑢 stand for “attacked” and

“unattacked” respectively). Then it must be the case thatK(𝑞⊖𝑅) |=
𝑀 → 𝑣𝑢 . Since 𝜇 and 𝜇

′
agree on𝑀 , we have 𝜇 (𝑣𝑢 ) = 𝜇 ′(𝑣𝑢 ), and

therefore 𝜅 (𝑆) = 𝜇 (𝑆) ∈ r1. Furthermore, it is clear that if all vari-

ables of 𝑆 are attacked, then 𝜅 (𝑆) = 𝜇 (𝑆) ∈ r1 ∩ r′
1
. Symmetrically,

if no variable of 𝑆 is attacked, then 𝜅 (𝑆) = 𝜇 ′(𝑆) ∈ r1 ∩ r′
1
.

Finally, consider the atom 𝑅 itself. We need to show 𝜅 (𝑅) = 𝜇 (𝑅).

Assume that 𝑣𝑢 ∈ vars(𝑅) such that ⟦𝑅 : 𝑀⟧
𝑞

̸⇝ 𝑣𝑢 . Here also, it

must be the case that K(𝑞 ⊖ 𝑅) |= 𝑀 → 𝑣𝑢 . Since 𝜇 and 𝜇
′
agree

on 𝑀 , we have 𝜇 (𝑣𝑢 ) = 𝜇 ′(𝑣𝑢 ), and therefore 𝜅 (𝑣𝑢 ) = 𝜇 (𝑣𝑢 ). This
concludes the proof of (8).

To conclude the proof of Lemma 8.2, we show that there ex-

ists a repair s of db such that Reify(𝑞,𝑢, s) ⊆ Reify(𝑞,𝑢, r1) ∩
Reify(𝑞,𝑢, r2). For this purpose, construct a maximal sequence of

pairs of repairs of db:

(r(0)
1
, r(0)

2
); (r(1)

1
, r(1)

2
); . . . ; (r(𝑛)

1
, r(𝑛)

2
), (12)

where (r(0)
1
, r(0)

2
) = (r1, r2) and for every 𝑖 ≥ 1, (r(𝑖+1)

1
, r(𝑖+1)

2
) is

constructed as follows (define 1̄ := 2 and 2̄ := 1):

(1) select ℓ ∈ {1, 2} and a fact 𝐴 ∈ r(𝑖)
ℓ

\ r(𝑖)
ℓ̄

such that 𝐴 is

relevant for 𝑞 in r(𝑖)
ℓ

. Let 𝑅 be the relation name of 𝐴;

(2) select 𝐴′ ∈ r(𝑖)
ℓ̄

such that {𝐴,𝐴′} is inconsistent. Such 𝐴′

must exist, or else r(𝑖)
ℓ̄

∪ {𝐴} would be consistent, contra-

dicting that r(𝑖)
ℓ̄

is an inclusion-maximal consistent subset

of db;
(3) let r(𝑖+1)

ℓ
be the repair obtained by executing the Shrinking

and growing steps specified at the beginning of the current

proof. In particular, in moving from 𝑖 to 𝑖 + 1, the fact 𝐴 of

r(𝑖)
ℓ

is replaced with 𝐴′
(among other replacements). We let

r(𝑖+1)
ℓ̄

= r(𝑖)
ℓ̄

, i.e., the other repair does not change.

We argue that for 𝑖 ≥ 0, we have r(𝑖)
1

∩ r(𝑖)
2
⊊ r(𝑖+1)

1
∩ r(𝑖+1)

2
. This

holds true because (i) in moving from 𝑖 to 𝑖 + 1, the fact 𝐴′
is added

to the intersection, and (ii) once a fact belongs to the intersection

of a pair of repairs in (12), it will not be deleted later on. Therefore,

the sequence (12) is finite.

By repeated application of (11), Reify(𝑞,𝑢, r(𝑛)
1

) ⊆ Reify(𝑞,𝑢, r1)
and Reify(𝑞,𝑢, r(𝑛)

2
) ⊆ Reify(𝑞,𝑢, r2). We also have that for ev-

ery ℓ ∈ {1, 2}, if 𝐶 is a fact of r(𝑛)
ℓ

that is relevant for 𝑞, then

𝐶 ∈ r(𝑛)
ℓ̄

. It follows that the set of facts of r(𝑛)
1

that are rele-

vant for 𝑞 is equal to the set of facts of r(𝑛)
2

that are relevant

for 𝑞. Consequently, Reify(𝑞,𝑢, r(𝑛)
1

) = Reify(𝑞,𝑢, r(𝑛)
2

). It follows
that both Reify(𝑞,𝑢, r(𝑛)

1
) ⊆ Reify(𝑞,𝑢, r1) ∩ Reify(𝑞,𝑢, r2) and

Reify(𝑞,𝑢, r(𝑛)
2

) ⊆ Reify(𝑞,𝑢, r1) ∩ Reify(𝑞,𝑢, r2). Therefore, both
r(𝑛)
1

and r(𝑛)
2

are repairs with the desired property. This concludes

the proof of Lemma 8.2. □

Corollary 8.3 (reification). Let 𝑞 ∈ sjfBCQ be a query in
which no atom contains constants or repeated variables. Assume that
𝑞 has no bi-tanglement and no tri-tanglement. If 𝑢 is a variable of
vars(𝑞) that is not attacked by any key of 𝑞, then 𝑢 is reifiable.

Proof. Let 𝑢 be a variable of vars(𝑞) that is not attacked by

any key of 𝑞. Let db be a database instance that is a “yes”-instance

of CERTAINTY(𝑞). From Lemma 8.2, it follows that there exists a

repair s of db such that ∅ ≠ Reify(𝑞,𝑢, s) = ⋂{Reify(𝑞,𝑢, r) | r ∈
rset(db)}. Clearly, for every 𝑐 ∈ Reify(𝑞,𝑢, s), for every repair r of
db, we have r |= 𝑞 [𝑢 ↦→𝑐 ] . □

Example 8.4 shows the existence of unattacked variables that

are not reifiable. Corollary 8.3 does not apply to the query of the

example, because it has a tri-tanglement.

Example 8.4. Take again the query 𝑞3 of Example 7.2, which

has a tri-tanglement. It can be verified that no variable is attacked,

and we claim that no variable is reifiable. Indeed, every repair of

the following database instance satisfies 𝑞3, by either satisfying

𝑞3 [𝑥𝑦𝑧 ↦→𝑎𝑎𝑎] or 𝑞3 [𝑥𝑦𝑧 ↦→𝑏𝑏𝑏 ] (but not both).

R(a, a, a)

R(a, a, b)

R(b, a, b)

R(b, b, b)

𝑅 𝑥 𝑦 𝑧

𝑎 𝑎 𝑎

𝑎 𝑎 𝑏

𝑏 𝑎 𝑏

𝑏 𝑏 𝑏

𝑆c 𝑥 𝑦 𝑧

𝑎 𝑎 𝑎

𝑏 𝑏 𝑏

Conflict graph

8.2 Treatment of Free Variables
Let 𝑞 be a self-join-free conjunctive query in which no atom con-

tains constants or repeated variables. Assume now that some vari-

able 𝑥 of 𝑞 is free, which is denoted by writing 𝑞(𝑥). Our theory so

far has been developed for Boolean queries. Nevertheless, we will

show how it can be adapted to handle free variables.

We say that a constant 𝑏 is a consistent answer to 𝑞(𝑥) on a data-

base instance db if every repair of db satisfies 𝑞(𝑏) (using the stan-

dard notion of satisfaction). Let 𝑞 [𝑥 ↦→𝑏 ] be the query obtained from
𝑞 by replacing every occurrence of 𝑥 with 𝑏. Clearly, every repair of

db satisfies 𝑞(𝑏) if and only every repair of db satisfies 𝑞 [𝑥 ↦→𝑏 ] . This
is an application of [20, Lemma 2.3] when constants are interpreted

by themselves. Obviously, 𝑞 [𝑥 ↦→𝑏 ] is a Boolean query, and the con-

sistent answers to 𝑞(𝑥) on db are the constants 𝑏 of adom(db) for
which 𝑞 [𝑥 ↦→𝑏 ] holds true in every repair.

A technical difficulty is that 𝑞 [𝑥 ↦→𝑏 ] contains the constant 𝑏,

while most of our results are stated for constant-free queries. We

can however apply Lemma 4.2: if 𝑣 is a fresh variable not oc-

curring elsewhere, then the problems CERTAINTY(𝑞 [𝑥 ↦→𝑏 ] ) and



CERTAINTY(𝑞 [𝑥 ↦→𝑣 ] ∪ {𝐶c
𝑏
(𝑣)}) are equivalent under first-order

reductions, where𝐶𝑏 is a fresh relation name of mode cwith key de-
pendency ⟦𝐶𝑏 : ∅⟧, in which the subscript 𝑏 indicates the constant

for which the new atom was introduced. Note here that we treat

𝑞 [𝑥 ↦→𝑣 ] ∪ {𝐶c
𝑏
(𝑣)} as a Boolean query, and therefore 𝑣 is not free

in this query. We could have reused 𝑥 instead of 𝑣 , but this would

lead to some name clashes in the treatment later on. In short, for

every database instance db, we have that 𝑞 [𝑥 ↦→𝑏 ] is true in every

repair of db if and only if 𝑞 [𝑥 ↦→𝑣 ] ∪ {𝐶c
𝑏
(𝑣)} is true in every repair

of db ∪ {𝐶c
𝑏
(𝑏)}.

Now let 𝜑 be a consistent first-order rewriting of the Boolean

query 𝑞 [𝑥 ↦→𝑣 ] ∪ {𝐶c
𝑏
(𝑣)}. It is possible that 𝜑 , which is obviously

Boolean, contains some atom 𝐶c
𝑏
(𝑦). In any repair of db ∪ {𝐶c

𝑏
(𝑏)},

this atom is true if and only if 𝑦 = 𝑏. A consistent first-order rewrit-

ing of CERTAINTY(𝑞 [𝑥 ↦→𝑏 ] ) is therefore obtained by replacing any
atom 𝐶c

𝑏
(𝑦) in 𝜑 with the equality 𝑦 = 𝑏.

Finally, since query evaluation is closed under renaming of con-

stants, if 𝑎 is another constant, then a consistent first-order rewrit-

ing of𝑞 [𝑥 ↦→𝑣 ]∪{𝐶c
𝑎 (𝑣)} can be obtained from a consistent first-order

rewriting of 𝑞 [𝑥 ↦→𝑣 ] ∪ {𝐶c
𝑏
(𝑣)} by renaming 𝑏 into 𝑎. This means

that we could treat the free variable 𝑥 as a generic constant (in-

stead of using 𝑏), and consider the Boolean query 𝑞 [𝑥 ↦→𝑣 ] ∪{𝐶c
𝑥 (𝑣)}

(instead of 𝑞 [𝑥 ↦→𝑣 ] ∪ {𝐶c
𝑏
(𝑣)}).

Example 8.5. Let 𝑞(𝑥) = ∃𝑢𝑅(𝑢, 𝑥), where 𝑥 is a free variable.

We have that 𝑏 is a consistent answer to 𝑞(𝑥) on some database

instance db if ∃𝑢𝑅(𝑢,𝑏) is true in every repair. Elimination of 𝑏

yields the query ∃𝑢∃𝑣
(
𝑅(𝑢, 𝑣) ∧𝐶c

𝑏
(𝑣)

)
, which has the following

consistent first-order rewriting:

∃𝑢
( (
∃𝑣𝑅(𝑢, 𝑣)

)
∧ ∀𝑣

(
𝑅(𝑢, 𝑣) → 𝐶c

𝑏
(𝑣)

))
.

We obtain a consistent first-order rewriting of ∃𝑢𝑅(𝑢,𝑏) by replac-

ing 𝐶c
𝑏
(𝑣) with 𝑣 = 𝑏:

∃𝑢
( (
∃𝑣𝑅(𝑢, 𝑣)

)
∧ ∀𝑣

(
𝑅(𝑢, 𝑣) → 𝑣 = 𝑏

) )
.

The detour via 𝑏 can be avoided by eliminating from 𝑞(𝑥) the
free variable 𝑥 as if it were a constant, resulting in the query

∃𝑢∃𝑣
(
𝑅(𝑢, 𝑣) ∧𝐶c

𝑥 (𝑣)
)
, which has the following consistent first-

order rewriting:

∃𝑢
( (
∃𝑣𝑅(𝑢, 𝑣)

)
∧ ∀𝑣

(
𝑅(𝑢, 𝑣) → 𝐶c

𝑥 (𝑣)
) )
.

We obtain a consistent first-order rewriting of ∃𝑢𝑅(𝑢, 𝑥) by replac-

ing 𝐶c
𝑥 (𝑣) with 𝑣 = 𝑥 :

∃𝑢
( (
∃𝑣𝑅(𝑢, 𝑣)

)
∧ ∀𝑣

(
𝑅(𝑢, 𝑣) → 𝑣 = 𝑥

) )
.

The following helping lemma shows that Corollary 8.3, which

was stated for one unattacked variable 𝑢, extends to any set of

unattacked variables.

Lemma 8.6. Let 𝑞 ∈ sjfBCQ be a query in which no atom contains
constants or repeated variables. Assume that 𝑞 has no bi-tanglement
and no tri-tanglement. Let 𝑥 ∈ vars(𝑞) such that 𝑥 is not attacked by
any key of 𝑞. Let 𝑞′ := 𝑞 ∪ {𝐶c (𝑥)}, where 𝐶 is a fresh relation name
of mode c with key ⟦𝐶c

: ∅⟧. Then,
(1) 𝑞′ has no bi-tanglement and no tri-tanglement; and
(2) if there is a key ⟦𝑅 : 𝐾⟧ of 𝑞′ and a variable 𝑣 ∈ vars(𝑞′) such

that ⟦𝑅 : 𝐾⟧
𝑞′
⇝ 𝑣 , then 𝑅 ≠ 𝐶 and ⟦𝑅 : 𝐾⟧

𝑞
⇝ 𝑣 .

Proof. Note that 𝑥 is a join variable in 𝑞′. The proof of the

second item is straightforward. For the first item, it suffices to show

the following:

(a) if 𝑞′ has a bi-tanglement, then 𝑞 has a bi-tanglement; and

(b) if 𝑞′ has a tri-tanglement and 𝑞 has no bi-tanglement, then 𝑞

has a tri-tanglement.

(a) Assume 𝑞′ has a bi-tanglement. Then 𝑞′ contains an atom 𝑅

of mode iwith two distinct keys ⟦𝑅 : 𝐾⟧, ⟦𝑅 : 𝐿⟧ such that𝐾 ⊈ [𝑅 :

𝐾 ∩ 𝐿]⊖,𝑞′ and there is 𝑦 ∈ vars(𝑅) \𝐾 such that 𝑦 is a join variable

in 𝑞′. Obviously, 𝑅 ≠ 𝐶 . It is easily verified that [𝑅 : 𝐾 ∩ 𝐿]⊖,𝑞 ⊆
[𝑅 : 𝐾 ∩ 𝐿]⊖,𝑞′ , and therefore 𝐾 ⊈ [𝑅 : 𝐾 ∩ 𝐿]⊖,𝑞 . If 𝑦 is a join

variable in 𝑞, then 𝑞 obviously has a bi-tanglement. Assume, for the

sake of contradiction, that 𝑦 is not a join variable in 𝑞. Then, it is

necessarily the case that 𝑦 = 𝑥 and 𝑥 occurs only once in 𝑞. Since

𝑦 ∈ vars(𝑅) \ 𝐾 and ⟦𝑅 : 𝐾⟧
𝑞

̸⇝ 𝑦 by the lemma’s hypothesis, it

follows K(𝑞 \ {𝑅}) |= 𝐾 → 𝑦, which implies that 𝑦 must be a join

variable in 𝑞, a contradiction.

(b) Assume 𝑞′ has a tri-tanglement and 𝑞 has no bi-tanglement.

By (a), 𝑞′ has no bi-tanglement. Then 𝑞′ contains an atom 𝑅 of

mode i with three distinct keys ⟦𝑅 : 𝐾⟧, ⟦𝑅 : 𝐿⟧, ⟦𝑅 : 𝑀⟧ such that

(A) for every key ⟦𝑅 : 𝑁⟧, we have 𝐾 ⊆ [𝑅 : 𝐾 ∩ 𝑁 ]⊖,𝑞′ and
𝑀 ⊆ [𝑅 : 𝑀 ∩ 𝑁 ]⊖,𝑞′ ; and

(B) [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞′ includes no set among 𝐾 ∩ 𝐿, 𝐾 ∩ 𝑀 ,

𝐿 ∩𝑀 .

Since [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 ⊆ [𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞′ , it follows that
[𝑅 : 𝐾 ∩ 𝐿 ∩𝑀]⊖,𝑞 includes no set among 𝐾 ∩ 𝐿, 𝐾 ∩ 𝑀 , 𝐿 ∩ 𝑀 .

It remains to be shown that for every key ⟦𝑅 : 𝑁⟧, we have 𝐾 ⊆
[𝑅 : 𝐾 ∩ 𝑁 ]⊖,𝑞 and 𝑀 ⊆ [𝑅 : 𝑀 ∩ 𝑁 ]⊖,𝑞 . To this end, assume

a key ⟦𝑅 : 𝑁⟧. We will show 𝐾 ⊆ [𝑅 : 𝐾 ∩ 𝑁 ]⊖,𝑞 (the proof of

𝑀 ⊆ [𝑅 : 𝑀 ∩ 𝑁 ]⊖,𝑞 is symmetrical). Assume for the sake of

contradiction that 𝐾 ⊈ [𝑅 : 𝐾 ∩ 𝑁 ]⊖,𝑞 . Then there is 𝑤 ∈ 𝐾

such that 𝑤 ∉ [𝑅 : 𝐾 ∩ 𝑁 ]⊖,𝑞 , and therefore 𝑤 ∈ 𝐾 \ 𝑁 . Since

K(𝑞′ \ {𝑅}) |= 𝐾 ∩ 𝑁 → 𝑤 by item (A), it follows K(𝑞 \ {𝑅}) |=
(𝐾 ∩ 𝑁 ) ∪ {𝑥} → 𝑤 . Consequently, if𝑤 ≠ 𝑥 , then𝑤 is necessarily

a join variable in 𝑞, and therefore𝑤 is also a join variable in 𝑞′. If
𝑤 = 𝑥 , then𝑤 is obviously a join variable in 𝑞′. Therefore, for the
query 𝑞′, we have that𝑤 is a join variable in vars(𝑅) \ 𝑁 . Since 𝑞′

has no bi-tanglement, 𝑁 ⊆ [𝑅 : 𝑁 ∩ 𝐾]⊖,𝑞′ . Since 𝑁 and 𝐾 are not

comparable by set inclusion, we can assume a variable 𝑣 ∈ 𝑁 \ 𝐾 .
Since K(𝑞′ \ {𝑅}) |= 𝑁 ∩ 𝐾 → 𝑣 , it follows that 𝑣 is a join variable

in 𝑞′. If 𝑣 ≠ 𝑥 , then 𝑣 is obviously also a join variable in 𝑞. If 𝑣 = 𝑥 ,

then since 𝑣 ∈ 𝑁 \ 𝐾 and ⟦𝑅 : 𝐾⟧
𝑞

̸⇝ 𝑣 by the lemma’s hypothesis,

it must be the case that K(𝑞 \ {𝑅}) |= 𝐾 → 𝑣 , and therefore 𝑣 is a

join variable in 𝑞. So we conclude that 𝑣 is a join variable in 𝑞 such

that 𝑣 ∈ vars(𝑅) \𝐾 . From our hypothesis that 𝐾 ⊈ [𝑅 : 𝐾 ∩ 𝑁 ]⊖,𝑞 ,
it follows that 𝑞 has a bi-tanglement, a contradiction. □

8.3 Proof of the Main Theorem
We can now give the proof of the main Theorem 1.1

Proof of Theorem 1.1. By Corollary 4.3, we can compute a

query 𝑝 such that

• no atom of 𝑝 contains constants or repeated variables; and



• CERTAINTY(𝑞) and CERTAINTY(𝑝) are equivalent under

first-order reductions.

The following statements hold true:

• if the attack graph of 𝑝 is cyclic, then CERTAINTY(𝑞) is
L-hard (and therefore not in FO) by Lemma 5.5;

• if 𝑝 has a bi-tanglement, then CERTAINTY(𝑝) is coBPM-

hard (and therefore not in FO) by Lemma 6.4; and

• if 𝑝 has a tri-tanglement, thenCERTAINTY(𝑝) is L-hard (and
therefore not in FO) by Lemma 7.4.

From here on, assume that the attack graph of 𝑝 is acyclic, that 𝑝

has no bi-tanglement, and that 𝑝 has no tri-tanglement. We show

that under these assumptions, CERTAINTY(𝑝) is in FO.
The proof is by induction on the number of atoms of 𝑝 that are

of mode i. The desired result is trivial if this number is zero, i.e., if

all atoms of 𝑝 are of mode c. Assume next that at least one atom of

𝑝 is of mode i. Note that atoms of mode c have zero outdegree in

the attack graph of 𝑝 .

Since the attack graph of 𝑝 is acyclic, there is an atom 𝑅i of 𝑝

such that 𝑅 has mode i and has zero indegree in the attack graph

of 𝑞. Let𝑈 be the set of unattacked variables in vars(𝑅). Note here
that even though 𝑅 has zero indegree in the attack graph of 𝑝 , it is

still possible that some key of 𝑅 attacks some variable of vars(𝑅).
Let 𝐽 be the set of join variables of vars(𝑅). By Lemma 6.5, either

every key of 𝑅 is included in 𝑈 , or 𝐽 is included in every key of

𝑅 (or both). Consider these two cases, where we assume that the

𝑅-atom is 𝑅(𝑥1, . . . , 𝑥𝑛).

Case that every key of 𝑅 is included in 𝑈 . Let the keys of 𝑅 be

⟦𝑅 : 𝐾1⟧, . . . , ⟦𝑅 : 𝐾𝑘⟧, and let 𝑈 = {𝑥1, . . . , 𝑥𝑚}, which includes

every key of 𝑅. By Corollary 8.3 and Lemma 8.6, the following are

equivalent for every database instance db:
(1) 𝑝 is true in every repair of db;
(2) there exist constants 𝑐1, . . . , 𝑐𝑚 (which depend on db) such

that 𝑞 [𝑥1,...,𝑥𝑚 ↦→𝑐1,...,𝑐𝑚 ] is true in every repair of db.
In the following consistent first-order rewriting, the negated

existential subformula expresses that there must be no fact that

both agrees with 𝑅(𝑥1, . . . , 𝑥𝑛) on some key, and disagrees with

𝑅(𝑥1, . . . , 𝑥𝑛) on some of the unattacked variables:

∃𝑥1 · · · ∃𝑥𝑚©­­­­­­­­­­«

(∃𝑥𝑚+1 · · · ∃𝑥𝑛𝑅(𝑥1, . . . , 𝑥𝑛))

∧ ¬∃𝑢1 · · · ∃𝑢𝑛
©­­«

𝑅(𝑢1, . . . , 𝑢𝑛)
∧
(∨

1≤ℓ≤𝑚 𝑥ℓ ≠ 𝑢ℓ
)
∧

∧
(∨

1≤ 𝑗≤𝑘
(∧

{𝑖 |𝑥𝑖 ∈𝐾𝑗 } 𝑥𝑖 = 𝑢𝑖
)) ª®®¬

∧ ∀𝑥𝑚+1 · · · ∀𝑥𝑛 (𝑅(𝑥1, . . . , 𝑥𝑛) → 𝜑 (𝑥1, . . . , 𝑥𝑛))

ª®®®®®®®®®®¬
,

(13)

where 𝜑 is a consistent first-order rewriting of 𝑝 \ {𝑅} in which the

variables 𝑥1, . . . , 𝑥𝑛 are free.

Case that 𝐽 is included in every key of 𝑅. Let 𝐽 = {𝑥1, . . . , 𝑥𝑚}.
Clearly, no variable in 𝐽 is attacked. By Corollary 8.3 and Lemma 8.6,

the following are equivalent for every database instance db:
(1) 𝑝 is true in every repair of db;
(2) there exist constants 𝑐1, . . . , 𝑐𝑚 (which depend on db) such

that 𝑞 [𝑥1,...,𝑥𝑘 ↦→𝑐1,...,𝑐𝑚 ] is true in every repair of db.

The consistent first-order rewriting is:

∃𝑥1 · · · ∃𝑥𝑛 (𝑅(𝑥1, . . . , 𝑥𝑛) ∧ 𝜑 (𝑥1, . . . , 𝑥𝑛)) , (14)

where 𝜑 is a consistent first-order rewriting of 𝑝 \ {𝑅} in which the

variables 𝑥1, . . . , 𝑥𝑛 are free.

To conclude the proof, we note that by Lemma 8.6, the induc-

tion hypothesis holds for the query obtained from 𝑝 by treating

the variables of vars(𝑅) as free variables. Therefore, the formulas

𝜑 (𝑥1, . . . , 𝑥𝑛) in (13) and (14) exist. □

We point out that the length of the consistent first-order rewrit-

ing in the previous proof is at most quadratic in the length of

the input, when we consider that the input consists of a query

𝑞 ∈ sjfBCQ and a set of key dependencies. This length arises be-

cause formula (13) contains a disjunction ranging over all keys of

𝑅, in which every disjunct is a conjunction ranging over all key

positions. Note incidentally that every relation name 𝑅 can have a

number of keys that is exponential in the arity of 𝑅.

9 BEYOND FIRST-ORDER REWRITABILITY
In this section, we briefly look at queries that do not have a con-

sistent first-order rewriting. As we mentioned in the introduction,

for the case of primary keys, there exists a clean classification: if

CERTAINTY(𝑞) is not in FO, then it is either L-complete or coNP-
complete. However, for the case of multiple keys, it is unlikely that

we can achieve such a classification. As the next proposition shows,

there exists a query 𝑞 for which CERTAINTY(𝑞) is equivalent (un-
der logspace reductions) to the complement of BPM, a problem

whose complexity is still unsettled.

Proposition 9.1. Let 𝑞0 = {𝑅(𝑥,𝑦), 𝑆c (𝑦)}, where the keys are
⟦𝑅 : {𝑥}⟧, ⟦𝑅 : {𝑦}⟧, and ⟦𝑆c : ∅⟧. Then CERTAINTY(𝑞0) and the
complement of BPM are equivalent under logspace reductions.

Proof. For the one direction, note that 𝑞0 has a bi-tanglement.

Hence by Lemma 6.4, there exists a first-order reduction from the

complement of BPM to CERTAINTY(𝑞0).
We next show a reduction from the complement of the problem

CERTAINTY(𝑞0) to BPM. Let db be an instance ofCERTAINTY(𝑞0).
Since 𝑆c is a relation name of mode c and its key is the empty

set, db contains at most one 𝑆c-fact. If db contains no 𝑆c-fact

(which can be tested in FO), then it is obviously a “no”-instance of

CERTAINTY(𝑞0) and the desired result obtains. Assume next that

db contains 𝑆 (𝑏0). We now construct a bipartite graph (𝑃1, 𝑃2, 𝐸)
with |𝑃1 | = |𝑃2 | as follows. Let 𝐴 = {𝑎 | 𝑅(𝑎, 𝑏0) ∈ db} and

𝐵 = {𝑏 | ∃𝑎 ∈ 𝐴 : 𝑅(𝑎, 𝑏) ∈ db} \ {𝑏0}. It is easy to see that if

|𝐴| > |𝐵 | (which can be tested in L), then db is a “yes”-instance of

CERTAINTY(𝑞0) and the desired result obtains.

Assume |𝐴| ≤ |𝐵 | from here on, and let𝑘 = |𝐵 |−|𝐴|. Furthermore,

𝑃1
:= 𝐴 ∪ {𝑎1, . . . , 𝑎𝑘 } and 𝑃2

:= 𝐵

𝐸 := {(𝑎, 𝑏) | 𝑅(𝑎, 𝑏) ∈ db, 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} ∪ {𝑎1, . . . , 𝑎𝑘 } × 𝐵

where 𝑎1, . . . , 𝑎𝑘 are distinct fresh constants. We now claim that db
is a “no”-instance of CERTAINTY(𝑞0) if and only if (𝑃1, 𝑃2, 𝐸) has
a perfect matching.

Indeed, consider a perfect matching𝑀 . Let r = {𝑅(𝑎, 𝑏) | (𝑎, 𝑏) ∈
𝑀,𝑎 ∈ 𝐴}. It is easy to see that r is a consistent subset of db. Observe



that any repair r′ ⊇ r does not contain facts of the form 𝑅(𝑎, 𝑏0),
and hence falsifies 𝑞0.

For the opposite direction, let r be a repair of db that falsifies 𝑞0.

Since r contains no fact of the form 𝑅(𝑎, 𝑏0), for every 𝑎 ∈ 𝐴, there
exists 𝑏 ∈ 𝐵 such that 𝑅(𝑎, 𝑏) ∈ r. We can now construct a perfect

matching by taking these edges, and matching the remaining 𝑘

unmatched vertices in 𝐵 with {𝑎1, . . . , 𝑎𝑘 }. □

10 CONCLUSION
For consistent query answering with respect to key dependencies,

we solved the following problem: given a self-join-free Boolean

conjunctive query 𝑞, decide whether 𝑞 has a consistent first-order

rewriting, and construct such a rewriting if it exists.

We terminate this paper with discussing some open problems

in consistent query answering with respect to key dependencies.

We denote by BCQ the set of Boolean conjunctive queries, possibly

with self-joins. By UBCQ , we denote the set of queries of the form

𝑞1 ∨ · · · ∨ 𝑞𝑛 where each 𝑞𝑖 belongs to BCQ .

An open problem is to find an algorithm for the following prob-

lem: given 𝑞 ∈ BCQ , decide whether CERTAINTY(𝑞) is in FO, and
if it is, construct a consistent first-order rewriting of𝑞. Another open

problem is to prove that for every query 𝑞 ∈ BCQ , CERTAINTY(𝑞)
is either in PTIME or coNP-complete. Both problems are open even

in the case where no relation name has more than one key

These problems could also be studied for larger query classes,

starting withUBCQ . A caveat here is that a PTIME-coNP-complete

dichotomy in {CERTAINTY(𝑞) | 𝑞 ∈ UBCQ} is probably very hard
to prove, as it is known that such a dichotomy implies Bulatov’s

complexity dichotomy for conservative CSPs [11]. In the light of this

relationship, it may be rewarding to study whether dichotomies in

CSPs can be used to prove dichotomies in CQA. BeyondUBCQ , it is

shown in [14, Theorem 1] that the following problem is undecidable,

even for primary keys: given a first-order query 𝑞, does 𝑞 have a

consistent first-order rewriting?

It follows from our previous work that in the case where no

relation name has more than one key, the set {CERTAINTY(𝑞) |
𝑞 ∈ sjfBCQ} exhibits a dichotomy between L and coNP-complete.

From the current paper, it follows that if relation names can have

more than one key, the set {CERTAINTY(𝑞) | 𝑞 ∈ sjfBCQ} contains
problems that are neither in L nor coNP-complete (under standard

complexity assumptions). It is an open problem to obtain a more

fine-grained complexity classification of problems in this set, which,

as we have seen, contains problems equivalent to the complement

of BPM under logspace reductions. The complexity of BPM is a

notorious open problem as of today.

A final open problem is to move from key dependencies to more

general functional dependencies. It is currently not clear to us

whether and how the techniques in the current paper can be ex-

tended to account for functional dependencies.
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A PROOF OF LEMMA 3.1
Proof of Lemma 3.1. Let 𝑅c (𝑡1, . . . , 𝑡𝑛) be an atom of 𝑞 such

that 𝑅 is a relation name of mode c. For every KD ⟦𝑅 : 𝐾⟧ of 𝑅,

Let 𝑅𝐾,1 (𝑡1, . . . , 𝑡𝑛) and 𝑅𝐾,2 (𝑡1, . . . , 𝑡𝑛) be two atoms, where for

𝑖 ∈ {1, 2}, we have that 𝑅𝐾,𝑖 is a fresh relation name of mode i
whose set of KDs is the singleton {⟦𝑅𝐾,𝑖 : 𝐾⟧}. Let

𝑞′ = (𝑞 \ {𝑅c (𝑡1, . . . , 𝑡𝑛)})
∪ {𝑅𝐾,𝑖 (𝑡1, . . . , 𝑡𝑛) | 1 ≤ 𝑖 ≤ 2 and ⟦𝑅 : 𝐾⟧ is a KD of 𝑅}.

We show that CERTAINTY(𝑞) and CERTAINTY(𝑞′) are equivalent
under first-order reductions.

Reduction from CERTAINTY(𝑞) to CERTAINTY(𝑞′). Let db an

instance of CERTAINTY(𝑞). By definition, the set of 𝑅-facts of db is
consistent. Construct an instance db′ ofCERTAINTY(𝑞′) as follows:
for every 𝑅-fact 𝑅c ( ®𝑎) ∈ db and KD ⟦𝑅 : 𝐾⟧, db′ contains 𝑅𝐾,1 ( ®𝑎)
and 𝑅𝐾,2 ( ®𝑎). Clearly, for 𝑖 ∈ {1, 2}, the set of 𝑅𝐾,𝑖 -facts of db′ is
consistent. It is now easy to see that db is a “yes”-instance of 𝑞 if
and only of db′ is a “yes”-instance of CERTAINTY(𝑞′).

Reduction from CERTAINTY(𝑞′) to CERTAINTY(𝑞). Let db′ be
an instance of CERTAINTY(𝑞′). For every KD ⟦𝑅 : 𝐾⟧ of 𝑅, let 𝑄𝐾
be the following first-order query:

𝑄𝐾 (𝑥1, . . . , 𝑥𝑛) :=

𝑅𝐾,1 (𝑥1, . . . , 𝑥𝑛) ∧ 𝑅𝐾,2 (𝑥1, . . . , 𝑥𝑛)

∧ ∀𝑦1 · · · ∀𝑦𝑛
( (
𝑅𝐾,1 (𝑦1, . . . , 𝑦𝑛) ∧ (∧𝑖∈𝐾 𝑥𝑖 = 𝑦𝑖 )

)
→

(∧
1≤𝑖≤𝑛 𝑥𝑖 = 𝑦𝑖

) )
∧ ∀𝑦1 · · · ∀𝑦𝑛

( (
𝑅𝐾,2 (𝑦1, . . . , 𝑦𝑛) ∧ (∧𝑖∈𝐾 𝑥𝑖 = 𝑦𝑖 )

)
→

(∧
1≤𝑖≤𝑛 𝑥𝑖 = 𝑦𝑖

) ) .
Let 𝑄 be the following first-order query:

𝑄 (𝑥1, . . . , 𝑥𝑛) :=
∧

{𝑄𝐾 (𝑥1, . . . , 𝑥𝑛) | ⟦𝑅 : 𝐾⟧ is a KD of 𝑅} .

Let db = db′ ∪ {𝑅c (𝑎1, . . . , 𝑎𝑛) | db′ |= 𝑄 (𝑎1, . . . , 𝑎𝑛)}. By our

construction, the set of 𝑅-facts of db is consistent, and therefore db
is a legal instance of CERTAINTY(𝑞). Indeed, for assume that db
contains two 𝑅-facts 𝑅c ( ®𝑎) and 𝑅c ( ®𝑏) that agree on 𝐾 for some KD

⟦𝑅 : 𝐾⟧ of 𝑅. Let 𝑖 ∈ {1, 2}. Since db |= 𝑄 ( ®𝑎) and db |= 𝑄 ( ®𝑏), we
have that db′ |= 𝑄𝐾 ( ®𝑎) and db′ |= 𝑄𝐾 ( ®𝑏). Consequently, we have
𝑅𝐾,𝑖 ( ®𝑎), 𝑅𝐾,𝑖 ( ®𝑏) ∈ db′, and the universally quantified subformula

of 𝑄𝐾 that contains 𝑅𝐾,𝑖 (𝑦1, . . . , 𝑦𝑛) states that ®𝑎 = ®𝑏. We show

next that db is a “yes”-instance of CERTAINTY(𝑞) if and only if db′
is a “yes”-instance of CERTAINTY(𝑞′).

By our construction of 𝑄 , the following are equivalent for every

®𝑎 of length arity(𝑅):
(1) 𝑅c ( ®𝑎) ∈ db;
(2) for every 𝑖 ∈ {1, 2} and every KD ⟦𝑅 : 𝐾⟧ of 𝑅, we have that

𝑅𝐾,1 ( ®𝑎) and 𝑅𝐾,2 ( ®𝑎) belong to every repair of db′.

It is now obvious that if db is a “yes”-instance of CERTAINTY(𝑞),
then db′ is a “yes”-instance of CERTAINTY(𝑞′). For the opposite
direction, assume that db is a “no”-instance of CERTAINTY(𝑞). Let

r be a repair of db that falsifies 𝑞. Let r𝑅 be the set of all facts of r
that are not 𝑅-facts.

We need to show that r𝑅 can be extended into a repair of db′ that
falsifies 𝑞′. Assume that for some KD ⟦𝑅 : 𝐿⟧ of 𝑅 and 𝑖 ∈ {1, 2},
we have 𝑅𝐿,𝑖 ( ®𝑎) ∈ db′ but 𝑅c ( ®𝑎) ∉ db. Then, for some KD ⟦𝑅 : 𝐾⟧
of 𝑅, there exist ℓ,𝑚 ∈ {1, 2} with ℓ ≠ 𝑚 such that 𝑅𝐾,ℓ ( ®𝑎) ∈ db′

and one of the following cases holds:

(1) 𝑅𝐾,𝑚 ( ®𝑎) ∉ db′; or
(2) there exists

®𝑏 such that 𝑅𝐾,𝑚 ( ®𝑎) and 𝑅𝐾,𝑚 ( ®𝑏) are distinct

facts of db′ that agree on 𝐾 .
Then, we extend r𝑅 with 𝑅𝐾,ℓ ( ®𝑎), and in the second case, also with

𝑅𝐾,𝑚 ( ®𝑏). It is clear that in this way, r𝑅 can be extended into a repair

of db′ that falsifies 𝑞′. □

B PROOF OF LEMMA 4.1
Proof of Lemma 4.1. The reduction fromCERTAINTY(𝑞) to the

problem CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝) is straightforward. Let db be

an instance of CERTAINTY(𝑞). Let db′ = db ∪ {𝑆c (𝑎, 𝑎) | 𝑎 ∈
adom(db)}. Then, db is a “yes”-instance of CERTAINTY(𝑞) if and
only if db′ is a “yes”-instance of CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝). Infor-
mally, we use the 𝑆-facts to encode equality.

For the reduction from CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝) to the prob-

lem CERTAINTY(𝑞), we establish a first-order definable function

𝑓 that maps instances of the problem CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝)
to instances of CERTAINTY(𝑞), such that for every instance db of

CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝), the following are equivalent:
• db is a “yes”-instance of CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝); and
• 𝑓 (db) is a “yes”-instance of CERTAINTY(𝑞).

Let db be an instance of CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝). The variable
𝑣 occurs exactly twice in (𝑞 \ {𝐹 }) ∪ 𝑝: once in the atom 𝐹 ′ =

𝑅(𝑡 ′
1
, . . . , 𝑡 ′𝑛) with 𝑡 ′𝑖 = 𝑥 and 𝑡 ′

𝑗
= 𝑣 , and once in the atom 𝑆c (𝑥, 𝑣).

As argued in [17, page 9:7], we can assume that db is typed,
which in particular means that for all (not necessarily distinct) facts

𝑅(𝑎1, . . . , 𝑎𝑛), 𝑅(𝑏1, . . . , 𝑏𝑛), 𝑆c (𝑐, 𝑑) in db, we have 𝑑 ≠ 𝑎𝑖 ≠ 𝑏 𝑗
and 𝑐 ≠ 𝑎 𝑗 ≠ 𝑏𝑖 . Informally, columns that correspond to distinct

variables have no constants in common. Let 𝑓 map every 𝑅-fact

𝑅(𝑎1, . . . , 𝑎𝑛) in db to

𝑅(𝑎1, . . . , 𝑎 𝑗−1, 𝑡, 𝑎 𝑗+1, . . . , 𝑎𝑛),
where 𝑡 is as follows:

• if for some constant 𝑐 , the database instance db contains

𝑆c (𝑐, 𝑎 𝑗 ), then 𝑡 = 𝑐 . Since 𝑆 has mode c, this constant 𝑐 , if it
exists, is unique;

• otherwise 𝑡 = 𝑎 𝑗 .

The following claim has a straightforward proof.

Claim B.1. Let𝐴, 𝐵 be two 𝑅-facts in db. For every𝐾 ⊆ {1, . . . , 𝑛},
the following are equivalent:

(1) 𝐴 and 𝐵 agree on every position in 𝐾 ; and
(2) 𝑓 (𝐴) and 𝑓 (𝐵) agree on every position in 𝐾 .

From Claim B.1, it follows in particular that 𝑓 is injective, i.e., 𝑓

maps distinct 𝑅-facts to distinct 𝑅-facts. Furthermore, let 𝑓 be the

identity on facts whose relation name is not 𝑅. Finally, we define

𝑓 (db) := {𝑓 (𝐴) | 𝐴 ∈ db}. By Claim B.1,

rset(𝑓 (db)) = {𝑓 (r) | r ∈ rset(db)}. (15)

https://doi.org/10.1145/1807085.1807111
https://doi.org/10.1145/2188349.2188351
https://doi.org/10.1145/2188349.2188351
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Clearly, the function 𝑓 is first-order computable. The following

equivalence holds by construction, for every typed database in-

stance s that is a legal input to CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝):
𝑓 (s) contains 𝑅(𝑎1, . . . , 𝑎𝑛) with 𝑎𝑖 = 𝑎 𝑗

⇕
there exists 𝑐 such that s contains both
𝑅(𝑎1, . . . , 𝑎 𝑗−1, 𝑐, 𝑎 𝑗 , . . . , 𝑎𝑛) and 𝑆c (𝑎𝑖 , 𝑐).

(16)

It is now straightforward to show, using (15) and (16), that db is

a “yes”-instance of the problem CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝) if and
only if 𝑓 (db) is a “yes”-instance of CERTAINTY(𝑞). □

C PROOF OF LEMMA 4.2
Proof of Lemma 4.2. There is an obvious first-order reduction

from CERTAINTY(𝑞) to CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝): db is a “yes”-

instance of the problem CERTAINTY(𝑞) if and only if db∪{𝐶c (𝑡 𝑗 )}
is a “yes”-instance of the problem CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝). In
the remainder of the proof, we establish a first-order reduction from

CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝) to CERTAINTY(𝑞).
For every constant 𝑐 , let 𝑞𝑐 be the query obtained from 𝑞 by

replacing the atom 𝑅(𝑡1, . . . , 𝑡𝑛) with 𝑅(𝑡1, . . . , 𝑡𝑖−1, 𝑐, 𝑡𝑖+1, . . . , 𝑡𝑛).
In particular, 𝑞 = 𝑞𝑡𝑖 .

Let db be a legal instance (either a “yes”-instance or a “no”-

instance) of CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝). Obviously, db is a “yes”-

instance if and only if the following two conditions are satisfied:

(A) for some constant 𝑐 , we have that 𝐶c (𝑐) is a (necessarily

unique) 𝐶-fact of db; and
(B) db is a “yes”-instance of CERTAINTY(𝑞𝑐 ).

Our first-order reduction first checks whether db satisfies (A), i.e.,

whether db |= ∃𝑥 (𝐶c (𝑥)). If db ̸ |= ∃𝑥 (𝐶c (𝑥)), then db is a “no”-

instance. In the remainder, assume db |= ∃𝑥 (𝐶c (𝑥)). We can as-

sume a constant 𝑐 such that db contains 𝐶c (𝑐). The reduction con-

sists in a renaming ℎ of constants that occur at the 𝑗th position

of some 𝑅-fact. This renaming is needed because we have to re-

duce to CERTAINTY(𝑞𝑡𝑖 ), rather than to CERTAINTY(𝑞𝑐 ). We can

use the renaming ℎ = {(𝑡 𝑗 , 𝑐), (𝑐, 𝑡 𝑗 )} for this purpose: for every
fact 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ db such that 𝑎 𝑗 ∈ {𝑐, 𝑡 𝑗 }, replace the fact

𝑅(𝑎1, . . . , 𝑎𝑛) with the fact 𝑅(𝑎1, . . . , 𝑎 𝑗−1, ℎ(𝑎 𝑗 ), 𝑎 𝑗+1, . . . , 𝑎𝑛). Call
the result db′. Clearly, db′ can be computed from db in FO. It is
obvious that db is a “yes”-instance of CERTAINTY((𝑞 \ {𝐹 }) ∪ 𝑝)
if and only if db′ is a “yes”-instance of CERTAINTY(𝑞). □

D PROOF OF LEMMA 5.5
We first show that every cyclic attack graph contains a cycle of size

two.

Lemma D.1. Let 𝑞 ∈ sjfBCQ be a query in which no atom contains
constants or repeated variables. Let ⟦𝑅 : 𝐾⟧ and ⟦𝑆 : 𝐿⟧ be keys of

𝑞 such that 𝑅 ≠ 𝑆 . Let 𝑣 ∈ vars(𝑞). If ⟦𝑅 : 𝐾⟧
𝑞
⇝ ⟦𝑆 : 𝐿⟧ and

⟦𝑆 : 𝐿⟧
𝑞
⇝ 𝑣 , then either ⟦𝑅 : 𝐾⟧

𝑞
⇝ 𝑣 or ⟦𝑆 : 𝐿⟧

𝑞
⇝ ⟦𝑅 : 𝐾⟧ (or

both).

Proof. Assume ⟦𝑅 : 𝐾⟧
𝑞
⇝ ⟦𝑆 : 𝐿⟧

𝑞
⇝ 𝑣 . There is a sequence

𝑥1, 𝑥2, . . . , 𝑥ℓ−1, 𝑥ℓ , 𝑦1, 𝑦2, . . . , 𝑦𝑚

such that

• 𝑥1 ∈ vars(𝑅), 𝑥ℓ ∈ 𝐿, 𝑦1 ∈ vars(𝑆), 𝑦𝑚 = 𝑣 ;

• no 𝑥𝑖 belongs to [𝑅 : 𝐾]⊖,𝑞 ;
• no 𝑦𝑖 belongs to [𝑆 : 𝐿]⊖,𝑞 ; and
• every two adjacent variables occur together in some atom

of 𝑞. We have, in particular, {𝑥ℓ , 𝑦1} ⊆ vars(𝑆).
The desired result holds obviously true if no𝑦𝑖 belongs to [𝑅 : 𝐾]⊖,𝑞 .
In the remainder, we assume that some 𝑦𝑖 belongs to [𝑅 : 𝐾]⊖,𝑞 .
Let 𝑘 be the smallest index such that 𝑦𝑘 ∈ [𝑅 : 𝐾]⊖,𝑞 . The desired
result is obvious if 𝑦𝑘 ∈ 𝐾 (because ⟦𝑆 : 𝐿⟧

𝑞
⇝ 𝑦𝑘 ). Assume 𝑦𝑘 ∉ 𝐾

from here on. There exists a sequence of keys of 𝑞

⟦𝑇1 : 𝑀1⟧, ⟦𝑇2 : 𝑀2⟧, . . . , ⟦𝑇𝑛 : 𝑀𝑛⟧ (17)

such that 𝑦𝑘 ∈ vars(𝑇𝑛) \𝑀𝑛 and for every 𝑖 ∈ {1, . . . , 𝑛},
• 𝑇𝑖 ≠ 𝑅; and
• 𝑀𝑖 ⊆ 𝐾 ∪

(⋃𝑖−1

𝑗=1
vars(𝑇𝑗 )

)
.

For every variable 𝑢 ∈ ⋃𝑛
𝑖=1

vars(𝑇𝑖 ), we have 𝑢 ∈ [𝑅 : 𝐾]⊖,𝑞 and

therefore ⟦𝑅 : 𝐾⟧
𝑞

̸⇝ 𝑢. Since ⟦𝑅 : 𝐾⟧
𝑞
⇝ 𝑥ℓ with 𝑥ℓ ∈ vars(𝑆), it

follows that for every 𝑖 ∈ {1, . . . , 𝑛}, 𝑇𝑖 ≠ 𝑆 .
Define ⟦𝑇0 : 𝑀0⟧ := ⟦𝑅 : 𝐾⟧. We claim:

for every 𝑖 ≥ 1, if ⟦𝑆 : 𝐿⟧ attacks some variable

of 𝑀𝑖 , then there exists 𝑗 < 𝑖 such that ⟦𝑆 : 𝐿⟧
attacks some variable of𝑀𝑗 .

(18)

To prove this claim, assume that ⟦𝑆 : 𝐿⟧
𝑞
⇝ 𝑥 with 𝑥 ∈ 𝑀𝑖 and

𝑖 ≥ 1. The desired result is obvious if 𝑥 ∈ 𝑀0 = 𝐾 . We now treat

the case that 𝑥 ∉ 𝑀0. By the construction of (17), there exists 𝑗 < 𝑖

such that 𝑥 ∈ vars(𝑇𝑗 ) \𝑀𝑗 . By Lemma 5.4, ⟦𝑆 : 𝐿⟧ attacks some

variable in𝑀𝑗 .

From ⟦𝑆 : 𝐿⟧
𝑞
⇝ 𝑦𝑘 and Lemma 5.4, it follows that ⟦𝑆 : 𝐿⟧ at-

tacks some variable in𝑀𝑛 . The desired result follows by repeated

application of (18). □

Corollary D.2. Let 𝑞 ∈ sjfBCQ be a query in which no atom
contains constants or repeated variables. If the attack graph of 𝑞 has
a cycle, then it has a cycle of length two.

Proof. Assume that the attack graph of 𝑞 has a cycle. We can

assume that ⟦𝑅0 : 𝐾0⟧, . . . , ⟦𝑅ℓ−1 : 𝐾ℓ−1⟧ is a sequence of keys of

𝑞 such that for all 𝑖, 𝑗 ∈ {0, . . . , ℓ − 1},
• 𝑖 ≠ 𝑗 implies 𝑅𝑖 ≠ 𝑅 𝑗 , and

• ⟦𝑅𝑖 : 𝐾𝑖⟧
𝑞
⇝ ⟦𝑅𝑖+1 mod ℓ : 𝐾𝑖+1 mod ℓ⟧.

The proof runs by induction on ℓ , the length of the cycle. The

desired result is obvious if ℓ = 2.

Assume ℓ ≥ 3. We have ⟦𝑅0 : 𝐾0⟧
𝑞
⇝ ⟦𝑅1 : 𝐾1⟧

𝑞
⇝ ⟦𝑅2 : 𝐾2⟧.

The desired result obtains vacuously if ⟦𝑅1 : 𝐾1⟧
𝑞
⇝ ⟦𝑅0 : 𝐾0⟧.

Assume ⟦𝑅1 : 𝐾1⟧
𝑞

̸⇝ ⟦𝑅0 : 𝐾0⟧ from here on. Since ⟦𝑅1 : 𝐾1⟧
𝑞
⇝

⟦𝑅2 : 𝐾2⟧, there exists a variable 𝑣 ∈ 𝐾2 such that ⟦𝑅1 : 𝐾1⟧
𝑞
⇝ 𝑣 .

By Lemma D.1, we have ⟦𝑅0 : 𝐾0⟧
𝑞
⇝ 𝑣 , and therefore ⟦𝑅0 : 𝐾0⟧

𝑞
⇝

⟦𝑅2 : 𝐾2⟧. Then the attack graph has a cycle of length ℓ − 1, and

the desired result follows from the induction hypothesis. □

Proof of Lemma 5.5. Assume that the attack graph of 𝑞 has a

cycle. By Corollary D.2, the attack graph of 𝑞 has a cycle of length

two.We can assume that ⟦𝑅 : 𝐾⟧ and ⟦𝑆 : 𝐿⟧with 𝑅 ≠ 𝑆 are keys of



𝑞 that mutually attack one another. The proof is a first-order reduc-

tion from CERTAINTY(𝑞0) with 𝑞0 = {𝑅0 (𝑥,𝑦), 𝑆0 (𝑦, 𝑥)}, which is

an L-hard problem [17].

For every pair (𝑎, 𝑏) of constants, defineΘ𝑎
𝑏
as the valuation over

vars(𝑞) such that for every 𝑥 ∈ vars(𝑞),

Θ𝑎
𝑏
(𝑥) =


𝑎 if 𝑥 ∈ [𝑅 : 𝐾]⊖,𝑞 \ [𝑆 : 𝐿]⊖,𝑞
𝑏 if 𝑥 ∈ [𝑆 : 𝐿]⊖,𝑞 \ [𝑅 : 𝐾]⊖,𝑞
⊥ if 𝑥 ∈ [𝑅 : 𝐾]⊖,𝑞 ∩ [𝑆 : 𝐿]⊖,𝑞

⟨𝑎, 𝑏⟩ otherwise

Claim D.1. {Θ𝑎
𝑏
(𝑅),Θ𝑎′

𝑏′
(𝑅)} is inconsistent if and only if 𝑎 = 𝑎′

and 𝑏 ≠ 𝑏 ′.

Proof of Claim D.1. =⇒ By contraposition, it suffices to

show the following:

(A) if 𝑎 ≠ 𝑎′, then {Θ𝑎
𝑏
(𝑅),Θ𝑎′

𝑏′
(𝑅)} is consistent; and

(B) if 𝑏 = 𝑏 ′, then {Θ𝑎
𝑏
(𝑅),Θ𝑎′

𝑏′
(𝑅)} is consistent.

For (A), assume 𝑎 ≠ 𝑎′. We have that 𝐾 ≠ ∅, or else ⟦𝑅 : 𝐾⟧ would

have no incoming attack, a contradiction. Since 𝐾 ⊆ [𝑅 : 𝐾]⊖,𝑞 , it
is obvious that {Θ𝑎

𝑏
(𝑅),Θ𝑎′

𝑏′
(𝑅)} |= ⟦𝑅 : 𝐾⟧.

Let ⟦𝑅 : 𝑀⟧ be another key of 𝑞. By our definition of Θ𝑎
𝑏
, it

suffices to show 𝑀 ⊈ [𝑆 : 𝐿]⊖,𝑞 . Assume, toward a contradiction,

𝑀 ⊆ [𝑆 : 𝐿]⊖,𝑞 , that is, K(𝑞 ⊖ 𝑆) |= 𝐿 → 𝑀 . Since K(𝑞 ⊖ 𝑆) |=
𝑀 → 𝐾 is obvious, we have K(𝑞 ⊖ 𝑆) |= 𝐿 → 𝐾 . But then ⟦𝑆 : 𝐿⟧
cannot attack ⟦𝑅 : 𝐾⟧, a contradiction.

For (B), assume 𝑏 = 𝑏 ′. If 𝑎 ≠ 𝑎′, then the desired result follows

from (A). If 𝑎 = 𝑎′, then Θ𝑎
𝑏
(𝑅) = Θ𝑎

′

𝑏′
(𝑅), and the desired result

follows vacuously (because a database instance that is a singleton

satisfies every KD).

⇐= Assume 𝑎 = 𝑎′ and 𝑏 ≠ 𝑏 ′. From 𝐾 ⊆ [𝑅 : 𝐾]⊖,𝑞 , it
follows that Θ𝑎

𝑏
and Θ𝑎

′

𝑏′
agree on 𝐾 . Since ⟦𝑅 : 𝐾⟧ has an outgoing

attack, vars(𝑅) ⊈ [𝑅 : 𝐾]⊖,𝑞 , and the desired result obtains because
Θ𝑎
𝑏
and Θ𝑎

′

𝑏′
disagree on variables in vars(𝑅) \ [𝑅 : 𝐾]⊖,𝑞 . ■

Claim D.2. If Θ𝑎
𝑏
(𝑅) = Θ𝑎

′

𝑏′
(𝑅), then 𝑎 = 𝑎′ and 𝑏 = 𝑏 ′.

Proof of Claim D.2. Assume Θ𝑎
𝑏
(𝑅) = Θ𝑎

′

𝑏′
(𝑅). As argued in

the proof of Claim D.1, ∅ ≠ 𝐾 ⊆ [𝑅 : 𝐾]⊖,𝑞 . It obviously follows

𝑎 = 𝑎′.
Since {Θ𝑎

𝑏
(𝑅),Θ𝑎′

𝑏′
(𝑅)} is consistent, Claim D.1 implies 𝑎 ≠ 𝑎′ or

𝑏 = 𝑏 ′. Since 𝑎 = 𝑎′, if follows 𝑏 = 𝑏 ′. ■

Claim D.3. For every atom 𝑇 ∈ 𝑞 \ {𝑅, 𝑆}, for all constants
𝑎, 𝑎′, 𝑏, 𝑏 ′, {Θ𝑎

𝑏
(𝑇 ),Θ𝑎′

𝑏′
(𝑇 )} is consistent.

Proof of Claim D.3. Let ⟦𝑇 : 𝑀⟧ be a key of 𝑞. Assume that

Θ𝑎
𝑏
and Θ𝑎

′

𝑏′
agree on 𝑀 . We need to show Θ𝑎

𝑏
(𝑇 ) = Θ𝑎

′

𝑏′
(𝑇 ). We

have that both K(𝑞 ⊖ 𝑅) and K(𝑞 ⊖ 𝑆) contain𝑀 → vars(𝑇 ). The
desired result is obvious if 𝑎 = 𝑎′ and 𝑏 = 𝑏 ′. Three other cases can
occur:

• Case 𝑎 = 𝑎′ and 𝑏 ≠ 𝑏 ′. Then𝑀 ⊆ [𝑅 : 𝐾]⊖,𝑞 , hence K(𝑞 ⊖
𝑅) |= 𝐾 → 𝑀 . It follows K(𝑞 ⊖ 𝑅) |= 𝐾 → vars(𝑇 ), and
therefore vars(𝑇 ) ⊆ [𝑅 : 𝐾]⊖,𝑞 . The desired result follows

from the definition of Θ𝑎
𝑏
.

• Case 𝑎 ≠ 𝑎′ and 𝑏 = 𝑏 ′. This case is symmetrical to the

previous item.

• Case 𝑎 ≠ 𝑎′ and 𝑏 ≠ 𝑏 ′. Then 𝑀 ⊆ [𝑅 : 𝐾]⊖,𝑞 ∩ [𝑆 : 𝐿]⊖,𝑞 ,
henceK(𝑞⊖𝑅) |= 𝐾 → 𝑀 andK(𝑞⊖𝑆) |= 𝐿 → 𝑀 . It follows

K(𝑞⊖𝑅) |= 𝐾 → vars(𝑇 ) andK(𝑞⊖𝑆) |= 𝐿 → vars(𝑇 ), and
therefore vars(𝑇 ) ⊆ [𝑅 : 𝐾]⊖,𝑞 ∩ [𝑆 : 𝐿]⊖,𝑞 . The desired

result follows from the definition of Θ𝑎
𝑏
.

This concludes the proof of Claim D.3. ■

For every instance db of CERTAINTY(𝑞0), we define 𝑓 (db) as
the following database instance:

• for every 𝑅0 (𝑎, 𝑏) ∈ db such that 𝑆0 (𝑏, 𝑎) ∉ db, 𝑓 (db) in-
cludes Θ𝑎

𝑏
(𝑞 \ {𝑆});

• for every 𝑅0 (𝑎, 𝑏) ∈ db such that 𝑆0 (𝑏, 𝑎) ∈ db, 𝑓 (db) in-
cludes Θ𝑎

𝑏
(𝑞); and

• for every 𝑆0 (𝑏, 𝑎) ∈ db such that 𝑅0 (𝑎, 𝑏) ∉ db, 𝑓 (db) in-
cludes Θ𝑎

𝑏
(𝑞 \ {𝑅}).

Let 𝐹 (db) be the subset of 𝑓 (db) that contains all facts that are
neither 𝑅-facts nor 𝑆-facts. By Claims D.1, D.2, and D.3 (and their

symmetric versions),

rset(𝑓 (db)) = {𝑓 (r) ∪ 𝐹 (db) | r ∈ rset(db)}.
Let db be an instance of CERTAINTY(𝑞0). It suffices to show that

for every repair r of db,

r |= 𝑞0 if and only if 𝑓 (r) ∪ 𝐹 (db) |= 𝑞.

To show the latter equivalence, let r be an arbitrary repair of db.
=⇒ Assume r |= 𝑞0. There exist constants 𝑎, 𝑏 such that

𝑅0 (𝑎, 𝑏), 𝑆0 (𝑏, 𝑎) ∈ r. It follows that 𝑓 (r) includes Θ𝑎
𝑏
(𝑞), hence

𝑓 (r) ∪ 𝐹 (db) |= 𝑞.
⇐= Assume 𝑓 (r)∪𝐹 (db) |= 𝑞. There is a valuation 𝜇 such that

𝜇 (𝑞) ⊆ 𝑓 (r) ∪ 𝐹 (db). Then, there are 𝑅0 (𝑎, 𝑏), 𝑆0 (𝑏 ′, 𝑎′) ∈ r such
that 𝜇 (𝑅) = Θ𝑎

𝑏
(𝑅) and 𝜇 (𝑆) = Θ𝑎

′

𝑏′
(𝑆). It suffices to show 𝑎 = 𝑎′

and 𝑏 = 𝑏 ′. We show 𝑎 = 𝑎′; the proof of 𝑏 = 𝑏 ′ is symmetrical.

Since ⟦𝑅 : 𝐾⟧
𝑞
⇝ ⟦𝑆 : 𝐿⟧, there is a sequence

𝐹0, 𝑣1, 𝐹1, 𝑣2, 𝐹2 . . . , 𝐹𝑖 , 𝑣𝑖+1, 𝐹𝑖+1, . . . , 𝑣ℓ,𝐹ℓ

where {𝐹𝑖 }ℓ𝑖=0
⊆ 𝑞, 𝐹0 = 𝑅, 𝐹ℓ = 𝑆 , and for every 𝑖 ∈ {1, . . . , ℓ},

𝑣𝑖 ∈ vars(𝑞) \ [𝑅 : 𝐾]⊖,𝑞 such that 𝑣𝑖 occurs in both 𝐹𝑖−1 and

𝐹𝑖 . For every 𝑖 ∈ {0, . . . , ℓ}, there are constants 𝑎𝑖 , 𝑏𝑖 such that

𝜇 (𝐹𝑖 ) = Θ𝑎𝑖
𝑏𝑖
(𝐹𝑖 ). We show by induction on increasing 𝑖 that for

every 𝑖 ∈ {0, . . . , ℓ}, 𝑏𝑖 = 𝑏.
Basis 𝑖 = 0. Since Θ𝑎

𝑏
(𝑅) = 𝜇 (𝑅) = Θ𝑎0

𝑏0

(𝑅), it follows by Claim D.2

that 𝑏0 = 𝑏.

Step 𝑖 → 𝑖 + 1. The induction hypothesis is 𝑏𝑖 = 𝑏. We have that

𝜇, Θ𝑎𝑖
𝑏𝑖
, and Θ𝑎𝑖+1

𝑏𝑖+1

agree on 𝑣𝑖+1. Then, from Θ𝑎𝑖
𝑏𝑖
(𝑣𝑖+1) ∈

{𝑏, ⟨𝑎𝑖 , 𝑏⟩} and Θ𝑎𝑖+1

𝑏𝑖+1

(𝑣𝑖+1) ∈ {𝑏𝑖+1, ⟨𝑎𝑖+1, 𝑏𝑖+1⟩}, it follows
𝑏 = 𝑏𝑖+1.

Consequently, 𝑏ℓ = 𝑏. Since Θ𝑎
′

𝑏′
(𝑆) = 𝜇 (𝑆) = Θ𝑎ℓ

𝑏
(𝑆), it follows

from (the symmetrical of) Claim D.2 that 𝑏 = 𝑏 ′. This concludes
the proof of Lemma 5.5. □
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