Optimizing Large-Scale Semi-Naive Datalog
Evaluation in Hadoop

Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu
{mar, pkoutris, billhowe, suciu}@cs.washington.edu

University of Washington

Abstract. We explore the design and implementation of a scalable Dat-
alog system using Hadoop as the underlying runtime system. Observing
that several successful projects provide a relational algebra-based pro-
gramming interface to Hadoop, we argue that a natural extension is to
add recursion to support scalable social network analysis, internet traffic
analysis, and general graph query. We implement semi-naive evaluation
in Hadoop, then apply a series of optimizations spanning fundamental
changes to the Hadoop infrastructure to basic configuration guidelines
that collectively offer a 10x improvement in our experiments. This work
lays the foundation for a more comprehensive cost-based algebraic opti-
mization framework for parallel recursive Datalog queries.

1 Introduction

The MapReduce programming model has had a transformative impact on data-
intensive computing, enabling a single programmer to harness hundreds or thou-
sands of computers for a single task, often after only a few hours of development.
When processing with thousands of computers, a different set of design consider-
ations can dominate: I/O scalability, fault tolerance, and programming flexibil-
ity. The MapReduce model itself, and especially the open source implementation
Hadoop [11], have become very successful by optimizing for these considerations.

A critical success factor for MapReduce has been its ability to turn a “mere
mortal” java programmer into a distributed systems programmer. It raised the
level of abstraction for parallel, highly scalable data-oriented programming. But
it did not raise the level of abstraction high enough, evidently, because some
of the earliest and most successful projects in the Hadoop ecosystem provided
declarative languages on top of Hadoop. For example, HIVE provided an SQL
interface, and Yahoo’s Pig provided a language that closely resembles the rela-
tional algebral.

MapReduce (as implemented in Hadoop) has proven successful as a com-
mon runtime for non-recursive relational algebra-based languages. Our thesis is

! Relational algebra is not traditionally considered declarative, but Pig programs,
while syntactically imperative, can be optimized by the system prior to execution
and generally provide a significantly higher level of abstraction than MapReduce, so
we consider the term applicable.

2 Authors Suppressed Due to Excessive Length

35000 no optimizations (e): (a) w/o file combiner
30000
: I ject opt.
25000 (oY (2 wio acter coche
—_ (d): (a) w/o diff cache
<2 20000
] (a) all optimizations
£ 15000
raw Hadoop overhead
10000
5000
0
0 50 100 iteration #150 200 250

Fig. 1. The cumulative effect of our optimizations on overall runtime. (a) All optimiza-
tions applied. (b) Relaxing the specialization of the cache for inner joins. (¢) Relaxing
the optimization to eliminate the project operator. (d) Relaxing the diff cache opti-
mization (extrapolated).

that Hadoop, suitably extended, can also be successful as a common runtime
for recursive languages as required for graph analytics [18, 7], Al and planning
applications [9], networking [14]. In previous work, our group extended Hadoop
with caching and scheduling features to avoid reprocessing loop-invariant data on
every iteration and to afford expression of multi-step loop bodies and various ter-
mination conditions. In this paper, we describe how this underlying framework,
appropriately extended and configured, can be used to implement a scalable
Datalog engine.

In this paper we present some engineering solutions for the semi-naive eval-
uation of a linear Datalog on Hadoop-based systems. The input to our system
is a Datalog query. The query is parsed, optimized, and compiled into a series
of MapReduce jobs, using an extended implemenation that directly supports
iteration [7]. Our semi-naive algorithm requires three relational operators: join,
duplicate elimination, and set difference, and each of them requires a separate
MR job. We consider a series of optimizations to improve on this basic strategy.

Figure 1 summarizes the cumulative effect of a series of optimizations de-
signed to improve on this basic strategy using a simple reachability query as a
test case. The dataset is a social network graph dataset with 1.4 billion unique
edges. The x-axis is the iteration number and the y-axis is the cumulative run-
time: the highest point reached by a line indicates the total runtime of the job.
Dashed lines indicate extrapolation from incomplete experiments. Figure 1(a)
gives the runtime when all optimizations are applied, which is 10X-13X faster
than Hadoop itself (labeled no optimizations in the figure), and only about 40%
higher than the raw Hadoop overhead required to run two no-op jobs with de-
generate Map and Reduce functions (labeled raw Hadoop overhead in the figure.)

The optimizations are as follows. First, for join, we notice that one of the
relations in the join is loop invariant: using a previously developed cache for
Hadoop [7], we store this invariant relation at the reducers, thus avoiding the
expensive step of scanning and shuffling this relation at every datalog iteration.
The join cache is the most significant optimization; all experiments (a)-(e) in

Optimizing Large-Scale Semi-Naive Datalog Evaluation in Hadoop 3

Figure 1 use some form of join cache. Second, by specializing and indexing the
cache to implement inner joins, we can avoid many unnecessary reduce calls
required by the original MapReduce semantics (Figure 1(b) show the effect of
relaxing this optimization). Third, we notice that the duplicate elimination and
difference can be folded into a single MR job: the newly generated tuples are
shuffled to the reducers, and the same reduce job both eliminates duplicates, and
checks if these tuples have already been discovered at previous iterations (Fig-
ure 1(c) shows the effect of relaxing this optimization). Fourth, with appropriate
extensions to support cache insertions during execution, we observe that the
cache framework can also be used to improve performance of the set difference
operator (Figure 1(d) shows the effect of relaxing this optimization). Finally, we
found it necessary to combine files after every job to minimize the number of
map tasks in the subsequent job (Figure 1(e) shows the effect of relaxing this
optimization).

In Section 3, we describe the implementation of semi-naive evaluation and
the optimizations we have applied. In Section 5, we analyze these optimizations
to understand their relative importance.

2 Related Work

This work is based on the MapReduce framework, which was first introduced
in [8]. In this project we build our system using the popular open source imple-
mentation of MapReduce, Hadoop.

There has been an extensive line of research on providing a higher level inter-
face to the MapReduce programming model and its implementation in Hadoop,
including Dryad [12], DryadLINQ, Hyracks [6], Boom [3] and PigLatin [16]. Of
these, only Hyracks provides some support for iterative queries, and they do not
expose a Datalog programming interface and do not explore logical optimizations
for iterative programs.

Parallel evaluation of logic systems including Datalog has been studied exten-
sively. Balduccini et al. explore vertical (data) and horizontal (rules) parallelism,
but evaluate their techniques only on small, artificial datasets [4]. Perri et al.
consider parallelism at three levels: components (strata), rules, and within a sin-
gle rule and show how to exploit these opportunities using modern SMP and
multicore machines [17]. We target several orders of magnitude larger datasets
(billions of nodes rather than tens of thousands) and have a very general model
of parallelism that subsumes all three levels explore by Perri.

Damaésio and Ferreira consider algorithms for improving transitive closure on
large data, seeking to reduce the number of operations and iterations required.
They apply these techniques to semantic web datasets and evaluate them on
a single-site PostgreSQL system. The datasets contain up to millions of nodes,
still three orders of magnitude smaller than our target applications.

In addition to our work on HaLoop [7], there have been several other systems
providing iterative capabilities over a parallel data flow system. Pregel [15], a
system developed for graph processing using the BSP model, also supports re-

4 Authors Suppressed Due to Excessive Length

cursive operations. The Twister system [10] retains a MapReduce programming
model, but uses a pub-sub system as the runtime to make better use of main
memory and improve performance. The Spark system [19] also makes better use
of main memory, but introduces a relational algebra-like programming model
along with basic loop constructs to control iteration. The Piccolo project sup-
ports a message-passing programming model with global synchronization bar-
riers. The programmer can provide locality hints to ensure multiple tables are
co-partitioned. The Daytona project [5] at Microsoft Research provides iterative
capabilities over a MapReduce system implemented on the Azure cloud comput-
ing platform. These projects all assume an imperative programming model. We
explore a declarative programming model to reduce effort and expose automatic
optimization opportunities. The BOOM project [3] is a distributed datalog sys-
tem that provides extensions for temporal logic and distributed protocols. All
of these systems are potential runtimes for Datalog. Some, but not all, of our
optimizations will be applicable in these contexts as well.

A recent line of research examines recursive computations on MapReduce
theoretically. In this work [2], the authors discuss issues, problems and solutions
about an implementation of Datalog on the MapReduce framework. On a con-
tinuation of this work, the authors find a class of Datalog queries where it is
possible to drastically reduce (to a logarithmic number) the number of recursion
steps without significantly increasing the communication/replication cost.

3 Optimizing Semi-Naive Evaluation in Hadoop

Our basic execution model for Datalog in Hadoop is semi-naive evaluation. For
illustration, consider a simple reachability query:

A(x,y) :- R(x,y), x=1234
Alx,y) :- A(x,2), R(z,y)

A (fully) naive execution plan MapReduce is intuitively very expensive. On
each iteration, the naive plan requires one MR job for the join to find the next
generation of results, a second job to project the result of the join and remove
duplicate answers, a third MR job to compute the union (with duplicate elimina-
tion) with results discovered in previous iterations, and a fourth MR job to test
for fixpoint. The inputs to each of these jobs are potentially large, distributed
datasets.

An improvement is semi-naive evaluation, captured as follows.

AAY = g,_1934(R),i =1
while AA"™! is not empty:
A= (AAU---u AL
AA" =7, (AA™ P, R) =AY, ie—i+1

Optimizing Large-Scale Semi-Naive Datalog Evaluation in Hadoop 5

Join Project Difference
A A

Fig. 2. Semi-naive evaluation implemented in Hadoop. (a) R is loop invariant, but
gets loaded and shuffled on each iteration. (b) The extra mapreduce step to implement
the project operator can be avoided by extending the join and difference operators
appropriately. (¢) A; grows slowly and monotonically, but is loaded and shuffled on
each iteration.

The final result is the concatenation of the results of all previous iterations AA®.
There is no need to remove duplicates.

In Hadoop, this execution plan involves only three MR, jobs: one for the join
>,—,, one to compute the projection 7, and remove duplicates, and one to
compute the difference of the new results and all previous results. Computing
the union of all previous results does not require an independent MR job, and
in fact requires no work at all. The reason is that the input to a MR job is a set
of files that are logically concatenated, which is just what we need.

Figure 2 illustrates the optimization opportunities for each operator. At (a),
the EDB R is scanned and shuffled on every iteration even though it never
changes. At (b), the overhead of an extra MapReduce step to implement the
project operator can be folding duplicate elimination into the difference operator.
At (c), the result relation A grows slowly and monotonically, but is scanned and
shuffled on every iteration. In the remainder of this section, we describe how to
optimize these operations.

3.1 Join

The join AA™™! >, R is implemented as a reduce-side join as is typical in
Hadoop. The map phase hashes the tuples of both relations by the join key (and
optionally applies a selection condition if the query calls for it). The reduce phase
then computes the join for each unique key (the cross product of o,_; AA~!
and o, R for each key k). The join uses Hadoop’s secondary sort capabilities to
ensure that only 0,—r AA~! incurs memory overhead; o,—; R can be pipelined.
Skew issues can be addressed by using an out-of-core algorithm such as hybrid
hash join or by other common techniques.

The critical bottleneck with the join operation is that the entire relation R
must be scanned and shuffled on each and every iteration. In previous work
on HaLoop [7], we added a Reducer Input Cache (RIC) to avoid scanning and
shuffling loop-invariant relations (problem (a)). Specifically, HaLoop will cache

6 Authors Suppressed Due to Excessive Length

the reducer inputs across all reduce nodes and create an index for the cached
data and stores it on local disk. Reducer inputs are cached during reduce function
invocation, so the tuples in the reducer input cache are sorted and grouped by
reducer input key. When a reducer processes a shuffled key and its values, it
searches the appropriate local reducer input cache to find corresponding keys
and values. An iterator that combines the shuffled data and the cached data is
then passed to the user-defined reduce function for processing. In the physical
layout of this cache, keys and values are separated into two files, and each key
has an associated pointer to its corresponding values. Since the cache is sorted
and accessed in sorted order, only one sequential scan must be made in the worst
case. Fault-tolerance was preserved by arranging for caches to be rebuilt when
failures occurred without having to rerun all previous iterations.

To be fully transparent with the original MapReduce semantics, all cached
keys, regardless of whether they appear in the mapper or not, should be passed
to the reducer for processing. However, the equijoin semantics used in Datalog
expose an optimization opportunity: Only those cached values that match a value
in the incoming mapper output need be extracted and passed to the reducer, for
significant savings (Figure 1(b)).

3.2 Difference

In Figure 2(b), the set difference operator compares the generated join output
to the loop’s accumulated result to ensure that only the newly discovered tuples
are output in the operation’s result. By default, the difference operation requires
the scanning and shuffling of all previous iterations’ results on every iteration.
As the number of iterations increases, both the number of (possibly small) files
accessed and the amount of data being reshuffled increases. Each file requires
a separate map task, so it is important to group the many small files before
computing the difference. The performance improvement of this configuration
detail is significant (Figure 2(d)).

Like the join operation, the difference operation in Figure 2(b) can benefit
from a cache. The previously discovered results need not be scanned and shuf-
fled on each iteration; instead, these values can be maintained in a cache and
updated on each iteration. We extended the original HaL.oop caching framework
to support insertions during iterative processing, generalizing it for use with the
difference operator.

The difference operator uses the cache as follows. Each tuple is stored in
the cache as a key-value pair (¢,4), where the key is the tuple ¢ discovered by
the previous join operator and the value is the iteration number ¢ for which
that tuple was discovered. On each iteration, the map phase of the difference
operator hashes the incoming tuples as keys with values indicating the current
iteration number. During the reduce phase, for each incoming tuple (from the
map phase), the cache is probed to find all instances of the tuples previously
discovered across all iterations. Both the incoming and cached data are passed
to the user-defined reduce function. Any tuples that were previously discovered
are suppressed in the output.

Optimizing Large-Scale Semi-Naive Datalog Evaluation in Hadoop 7

For example, consider a reachability query. If a node ¢t was discovered on
iteration 1, 4, 5, and 8, there would be four instances of ¢ in the cache when the
reduce phase of iteration 8 executes. The reducer then would receive a list of five
key-value pairs: the pair (¢,8) from the map phase, and the pairs (¢,1), (¢,4),
(¢,5), (t,8) from the cache. The reducer can then determine that the tuple had
been seen before, and therefore emit nothing. If the tuple had never before been
seen, then it would receive a singleton list (¢,8) and would recognize that this
tuple should be included in AA? and emit the tuple.

To avoid storing duplicate values in the cache, we leverage Haloop’s cache-
filtering functionality. When a reduce operation processes an individual value
associated with a key, Haloop invokes the user-defined isCache() routine to first
consult a hashtable of all tuples previously written to the cache during this it-
eration. We reduce the number of duplicates that must be considered by this
mechanism by using a combiner function on the map side. Combiners are a
common Hadoop idiom used to reduce the amount of communication between
mappers and reducers by pre-aggregating values. In this case, the combiner en-
sures that each mapper only produces each value once.

A limitation in the current Haloop cache implementation is that the cache is
rewritten completely on every iteration during which new tuples are discovered,
incurring significant 10 overhead in some cases. A redesigned cache that avoids
this step is straightforward, but remains future work.

3.3 Project

The project operator at Figure 2(b) is implemented as a separate MapReduce
job. The two tasks accomplished in this job — column elimination and duplicate
row elimination — can be delegated to the join operator and the difference
operator, respectively.

100,000,000
10,000,000
1,000,000
$ 100,000
Q.
10,000
1,000
100
10

=tuples produced by join

=—tuples not previously discovered

#oftu

1
0 20 40 60 80 100 120 140 160 180
iteration #

Fig. 3. The “endgame” of a recursive computation. The number of new tuples discov-
ered peaks early (y-axis, log scale). Beyond iteration 25, less than 1000 new nodes are
discovered on each iteration though execution continues for hundreds of iterations.

8 Authors Suppressed Due to Excessive Length

The difference operator naturally removes duplicates as a side effect of pro-
cessing. To remove columns, we have made a straightforward extension to the join
operator to provide a column-selecting join that is capable of removing columns.
Since it does not need to remove duplicates, this step can be performed entirely
in parallel and therefore incurs very little overhead.

By replacing sequences of Join—Project— Difference operations with sequences
of ColumnSelectingJoin— Difference, the system is able to eliminate a map-
reduce job per iteration for significant savings (Figure 1(c)).

4 Implementation

We have implemented a Datalog interpreter that converts schema and rules to a
sequence of MapReduce jobs. The Datalog query is converted into the relational
algebra, optimized (if desired), and then translated into a set of MapReduce jobs
that are configured through JobConf configuration parameters. A sample input
to the interpreter is seen below:

1) backend R[long, long, long] "btc".
2) res(x) :- R(1570650593L, b, x)

3) res(y) :- res(z), R(z,b,y)

4) ans res(y)

Line (1) specifies the schema for the R dataset, which consists of three
columns of type long, and backed by the Hadoop directory “btc.” Input di-
rectories can contain either delimited text files or SequenceFiles. Lines (2-3)
define rules available for evaluating the query answer, specified on line (4).

5 Analysis and Evaluation

We evaluate our datalog system on the 2010 Billion Triple Challenge (BTC)
dataset, a large graph dataset (625GB uncompressed) with 2B nodes and 3.2B
quads. Queries are executed on a local 21-node cluster, consisting of 1 master
node and 20 slave nodes. The cluster consists of Dual Quad Core 2.66GHz and
2.00GHz machines with 16GB RAM, all running 64bit RedHat Enterprise Linux.
Individual MapReduce jobs are given a maximum Java heap space of 1GB.

The source of the BTC data is a web crawl of semantic data, and the ma-
jority of the nodes are associated with social network information. The graph is
disconnected, but Joslyn et al [13] found that the largest component accounts
for 99.8% of the distinct vertices in the graph.

As a result of these properties, recursive queries over this graph are challeng-
ing to optimize. In particular, they exhibit the endgame problem articulated by
Ullman et al [2]. To illustrate the problem, consider Figure 3 which shows the
number of nodes encountered by iteration number for a simple reachability query
(i.e., find all nodes connected to a particular node.) The x-axis is the iteration
number and the y-axis is the number of new nodes discovered in log-scale. The

Optimizing Large-Scale Semi-Naive Datalog Evaluation in Hadoop 9

two datasets represent the size of the results of the join and difference operators.
The nodes encountered by the join operation are in red and the nodes that are
determined to not have not been previously discovered are in blue. The overall
shape of the curve is striking. In iteration 17, over 10 million new nodes are dis-
covered as the frontier passes through a well-connected region of the graph. By
iteration 21, however, the number of new nodes produced has dropped precipi-
tously. In ongoing work, we are exploring dynamic reoptimization techniques to
make both regimes efficient. In this paper, we focus on the core hadoop-related
system optimizations required to lay a foundation for that work.
In this evaluation, we consider the following questions:

— Join Cache: How much improvement can we expect from the reducer in-
put cache in the context of long-running recursive queries and semi-naive
evaluation?

— Diff Cache: How much improvement can we expect from an extended cache
subsystem suitable for use with the difference step of semi-naive evaluation?

— Equijoin semantics: If we optimize for equi-joins in the underlying subsys-
tem, how much improvement can we expect over the original MapReduce
semantics where every key from both relations must be processed?

To answer these questions, we consider a simple reachability query

A(y) :- R(startnode,y)
A(y) :- A(X),R(x,y)

where startnode is a literal value that refers to a single node id. This query re-
turns 29 million nodes in the result and runs for 254 iterations for the startnode
we have selected. The query is simple, but clearly demonstrates the challenges
of optimizing recursive queries in this context.

Unless otherwise noted in the text, the individual identifiers in the BT C2010
data set are hashed to long integer values and stored as SequenceFiles.

After 33 iterations, our cumulative running time for (2) Join — Proj — Diff is
less than 15% of the query time when no caches are used. Additionally, modifying
our operators to eliminate an unnecessary Hadoop job to implement the Project
operator reduces iteration time by more than 26 seconds per iteration. Over the
course of 254 iterations, this adds up to over 100 minutes of query time. After
33 iterations, the cumulative query time for (3) ColumnSelectingJoin — Diff is
less than 10% of the cacheless query’s execution time.

Figure 4 presents the per-operation contribution of the cumulative iteration
time for iterations 1-33. The three scenarios are (1) ColumnSelectingJoin — Diff
with no caches, (2) Join — Proj — Diff with both a join cache and a diff cache,
(3) ColumnSelectingJoin — Diff with both a join cache and a diff cache, and (4)
and estimate of the minimum job overhead for running two no-op Hadoop jobs
on every iteration. With no caches used, the time is dominated by the join oper-
ation. With optimizations applied, the time approaches the minimum overhead
of Hadoop (about 18 seconds per job for our cluster and current configuration).

10 Authors Suppressed Due to Excessive Length

=*=no cache ——cache

35000 1200

30000 | [B Diff 1000

25000 BProject = 800 SN N, J\/\ \/\/\
. BJoin o
£ 20000 £ 600 -
uE.) k=]
5 15000 400

10000 200

5000 0

0 |] Y— _ 0 10 20 30

no caches, caches, caches, 2 no-op iteration #
no project project no project jobs

Fig. 5. Time to execute the join only. The
Fig. 4. The total time spent in each op- use of a cache to avoid re-scanning and re-
eration across iterations 1-33 (excluding shuffling the loop-invariant data on each
0) for three evaluation strategies. Without iteration results in significant improvement
caching, the join operation dominates exe- (and also appears to decrease variability).
cution time. Gaps represent failed jobs.

Figure 5 shows the runtime of the join step only by iteration, both with
and without the cache enabled. On the first iteration, populating the cache in-
curs some overhead. (We plot successful jobs only for clarity; gaps in the data
represent inaccurate runtime measurements due to job failures.) On subsequent
iterations, the invariant graph relation need not be scanned and shuffled, result-
ing in considerable savings. For our test query, the time for the join per iteration
went from approximately 700 seconds to approximately 30 seconds, and the over-
all runtime of the query went from 50 hours to 5 hours (making these kind of
jobs feasible!)

In Figure 6, the cache subsystem has been extended to allow new nodes to
be added to it on each iteration. The y-axis shows the runtime of the difference
operator, and the x-axis is the iteration number. This capability was not available
in HaLoop and is used to improve semi-naive evaluation. Without the cache, each
iteration must scan more and more data, resulting in a (slow) increase in the per-
iteration runtime. With the cache, the increase in size has no discernible effect
on performance, and the performance of the operator improves by about 20%.
The outlier values were the result of failures. The fact that no failures occurred
when using the cache is not statistically significant.

The cache is specialized for the equijoin case, improving performance over the
original MapReduce semantics. Specifically, the original semantics dictates that
the reduce function must be called for every unique key, including all those keys
in the cache that do not have a corresponding joining tuple in AA; during semi-
naive evaluation. By exposing a datalog interface rather than raw MapReduce,
we free ourselves from these semantics and can only call the reduce function once
for each incoming key. In Figure 7, the effect of this specialization is measured
for the first few iterations.

Optimizing Large-Scale Semi-Naive Datalog Evaluation in Hadoop 11

—*=no diff cache ——with diff cache

100

80

0 10 20 30 40 50
iteration #

Fig. 6. Time per iteration for the differ-
ence operator only. The cache improves

=s—Equijoin semantics -~ MapReduce semantics

160 = x
120 | *x X x

I .

£ 80

0 20 40 60 80
iteration #

Fig. 7. The per-iteration impact of specializ-
ing the cache for equijoin, which is safe given

performance by about 20%. our target lanaguage of datalog.

6 Conclusions and Future Work

Informed by Hadoop’s success as a runtime for relational algebra-based lan-
guages, and bulding on our previous work on the HaLoop system for iterative
processing, we explore the suitability of Hadoop as a runtime for recursive Dat-
alog. We find that caching loop invariant data delivers an order of magnitude
speedup, while specialized implementations of the operators, careful configura-
tion of Hadoop for iterative queries, and extensions to the cache to support set
difference delivers another factor of 2 speedup.

We also find that the overhead of an individual Hadoop job is significant in
this context, as it amplified by the iterative processing (500+ Hadoop jobs are
executed to evaluate one query!) This overhead accounts for approximately half
of time of each iteration step after all optimizations are applied.

In future work on system optimizations, we are considering extensions to
Hadoop to optimize the caching mechanism and avoid unnecessary 10 by using
a full-featured disk-based indexing libraryon each node in a manner similar to
HadoopDB [1]. We are also exploring the literature for new ways to mitigate the
startup overheaad of each Hadoop job by sharing VMs across jobs.

Perhaps more importantly, we are aggressively exploring cost-based algebraic
dynamic re-optimization techniques for parallel recursive queries, motivated in
particular by the endgame problem (Figure 3). While this paper explored Hadoop
in particular, our ongoing work is designed to produce optimization strategies
that will transcend any particular distributed runtime. To demonstrate this, we
are planning experiments that use more recent parallel runtimes that directly
support recursion [10, 19].

References

1. A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin.
Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for ana-

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Authors Suppressed Due to Excessive Length

lytical workloads. Proc. VLDB Endow., 2(1):922-933, August 2009.

F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman. Map-reduce
extensions and recursive queries. In Proceedings of the 14th International Confer-
ence on Extending Database Technology, EDBT/ICDT ’11, pages 1-8, New York,
NY, USA, 2011. ACM.

. P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears.

Boom analytics: exploring data-centric, declarative programming for the cloud. In
C. Morin and G. Muller, editors, FuroSys, pages 223-236. ACM, 2010.

. M. Balduccini, E. Pontelli, O. Elkhatib, and H. Le. Issues in parallel execution of

non-monotonic reasoning systems. Parallel Comput., 31(6):608-647, June 2005.

. R. Barga, J. Ekanayake, J. Jackson, and W. Lu. Daytona: Iterative mapreduce on

windows azure. http://research.microsoft.com/en-us/projects/daytona/.

. V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A flexible

and extensible foundation for data-intensive computing. In S. Abiteboul, K. Béhm,
C. Koch, and K.-L. Tan, editors, ICDFE, pages 1151-1162. IEEE Computer Society,
2011.

. Y. Bu, B. Howe, M. Balazinska, and M. Ernst. Haloop: Efficient iterative data pro-

cessing on large clusters. In Proc. of International Conf. on Very Large Databases
(VLDB), 2010.

. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

In OSDI, pages 137-150, 2004.

. J. Eisner and N. W. Filardo. Dyna: Extending datalog for modern ai. In Datalog,

pages 181-220, 2010.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox.
Twister: a runtime for iterative mapreduce. In HPDC, pages 810-818, 2010.
Hadoop. http://hadoop.apache.org/.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In P. Ferreira, T. R. Gross, and
L. Veiga, editors, FuroSys, pages 59-72. ACM, 2007.

C. Joslyn, R. Adolf, S. al Saffar, J. Feo, E. Goodman, D. Haglin, G. Mackey,
and D. Mizell. High performance semantic factoring of giga-scale semantic graph
databases. Semantic Web Challenge Billion Triple Challenge 2010.

B. T. Loo, H. Gill, C. Liu, Y. Mao, W. R. Marczak, M. Sherr, A. Wang, and
W. Zhou. Recent advances in declarative networking. In PADL, pages 1-16, 2012.
G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing. In A. K.
Elmagarmid and D. Agrawal, editors, SIGMOD Conference, pages 135-146. ACM,
2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-
so-foreign language for data processing. In J. T.-L. Wang, editor, SIGMOD Con-
ference, pages 1099-1110. ACM, 2008.

S. Perri, F. Ricca, and M. Sirianni. A parallel asp instantiator based on dlv. In Pro-
ceedings of the 5th ACM SIGPLAN workshop on Declarative aspects of multicore
programming, DAMP 10, pages 73-82, New York, NY, USA, 2010. ACM.

M. Shaw, L. Detwiler, N. Noy, J. Brinkley, and S. D. vsparql: A view def-
inition language for the semantic web. Journal of Biomedical Informatics,
d0i:10.1016/75.7b1.2010.08.008.

M. Zaharia, N. M. M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. Technical Report UCB/EECS-2010-53,
EECS Department, University of California, Berkeley, May 2010.

