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Abstract
Modern data management systems extensively use parallelism to speed up query processing over
massive volumes of data. This trend has inspired a rich line of research on how to formally reason
about the parallel complexity of join computation. In this paper, we go beyond joins and study
the parallel evaluation of recursive queries. We introduce a novel framework to reason about
multi-round evaluation of Datalog programs, which combines implicit predicate restriction with
distribution policies to allow expressing a combination of data-parallel and query-parallel eval-
uation strategies. Using our framework, we reason about key properties of distributed Datalog
evaluation, including parallel-correctness of the evaluation strategy, disjointness of the computa-
tion effort, and bounds on the number of communication rounds.
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1 Introduction

Modern data management systems—such as Spark [27, 33], Hadoop [16, 11], and oth-
ers [17]—have extensively used parallelism to speed up query processing over massive volumes
of data. Parallelism enables the distribution of computation into multiple machines, and
thus significantly reduces the completion time for several critical data processing tasks.
This trend has inspired a rich line of research on how to formally reason about the par-
allel complexity of join computation, one of the core tasks in massively parallel systems.
Several papers [7, 8, 20, 19] have studied the tradeoff between synchronization (number of
rounds) and communication cost, and have proposed and analyzed known and new parallel
algorithms [4, 9]. Among these, the Hypercube algorithm [14, 4] can compute any multiway
join query in one round by properly distributing the input data.

To reason about Hypercube-like algorithms, Ameloot et al. [6] recently introduced a
framework that captures one-round evaluation of joins under different data distributions.
Their framework implicitly describes a single-round parallel algorithm through a distribu-
tion policy, which specifies how the facts in the input relations are distributed among the
machines. While for non-recursive queries a distribution policy defines a scalable parallel
evaluation strategy, for Datalog programs this is typically not the case. For instance, a
simple transitive closure query already requires for entire components of the input database
that all facts must reside on the same server to ensure correctness of the computation.

To reason about Datalog evaluation in a distributed setting, we introduce a general the-
oretical framework that allows a combination of data and query parallelization strategies.

∗ PhD Fellow of the Research Foundation - Flanders (FWO)

© Bas Ketsman, Aws Albarghouthi, and Paraschos Koutris;
licensed under Creative Commons License CC-BY

21st International Conference on Database Theory (ICDT 2018).
Editors: Benny Kimelfeld and Yael Amsterdamer; Article No. 17; pp. 17:1–17:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Distribution Policies for Datalog

The central concept in this framework is the notion of an economic policy. Our key observa-
tion is that, in order to deal with intensional predicates, we need to specify not only where
a fact must be located to be consumed by a rule, but also where a fact must be produced by
evaluating a rule of the program. An economic policy in our framework is defined as a pair
of distribution policies: a consumption policy, which specifies the location of the facts that
are used in the body of rules, and a production policy, which specifies the location of facts
that appear in the head of a rule. The evaluation strategy that is implicitly defined by the
data distribution must communicate any produced facts to the machines where they will be
consumed, and thus can run over multiple rounds.

Our framework is inspired by a rich line of research on parallel evaluation strategies for
Datalog programs from the early 90’s [30, 14, 31, 34]. There, Datalog evaluation strategies
are based on the idea of partitioning the instantiations of the program rules among machines
by adding conditions to the bodies of the rules, called program restrictions. Some of the
strategies proposed require no communication of intermediate (intensional) facts and thus
can be completed in one round; other strategies require communication over multiple rounds.
We show that an economic policy can capture several algorithms used for parallel evaluation
of recursive and non-recursive queries, including the Hypercube algorithm [14, 4], and the
decomposable strategies based on program restrictions [30].

In this framework we study several properties of economic policies. We first explore the
property of parallel-correctness: when does an economic policy lead to a correct evaluation
strategy? As can be expected, it is undecidable to show parallel-correctness for a general
Datalog program, even for the simplest of economic policies. We therefore identify a sufficient
condition: every minimal valuation of a rule must be supported by the policy. A rule
valuation is supported if some machine consumes all the facts in the body, and produces the
fact in the head. For unions of conjunctive queries, this condition is also necessary, recovering
the result of Ameloot et al. [6]; however, we show that even for non-recursive programs with
intermediate relations, the condition is no longer required. To overcome the undecidability
of parallel-correctness, we identify a general family of economic policies, called Generalized
Hypercube Policies (GHPs), which are always parallel-correct, and further capture several
commonly used parallel evaluation strategies.

Second, we study the property of boundedness: can we decide whether a given economic
policy terminates in k rounds, independent of the input size? We show that there exists a
sharp increase in complexity as we move from k = 1 to k ≥ 2. For k = 1, we can succinctly
characterize the structure of a policy that always terminates in one step. Additionally,
given a GHP, we can do this in polynomial time in the description of the GHP. On the
other hand, for k ≥ 2 it is undecidable to determine whether it terminates in at most k
steps, even for a GHP. We then ask which Datalog programs admit economic policies that
are bounded by one round: we show that such programs are characterized by a syntactic
property called pivoting, which was also identified by Wolfson and Silberschatz [32] in the
context of decomposable programs.

2 Related Work

2.1 Parallel Complexity
The parallel complexity of Datalog was first investigated by Cosmadakis and Kanella-
kis [10, 18]. Later work used the complexity class NC to theoretically capture which Datalog
programs are efficiently parallelizable. Since Datalog evaluation is P -complete, it is unlikely
that every Datalog program belongs in NC, which implies that certain Datalog programs
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may not be significantly sped up through parallelism. Ullman and Van Gelder [28] showed
that if a Datalog program has the polynomial fringe property, which says that every fact in
the output has a proof tree of polynomial size, evaluation is in NC. Every linear Datalog
program has the polynomial fringe property and is thus in NC. Afrati and Papadimitriou [3]
showed that for simple chain queries (including non-linear queries) evaluation is either in
NC or P -complete. Recently, Afrati and Ullman [5] studied the tradeoff between commu-
nication and number of rounds. They describe a very restricted class of Datalog programs
where it is possible to reduce the number of recursion steps (to a number that is logarithmic
in the size of the input) without significantly increasing the communication cost.

2.2 Decomposability
The concept of predicate decomposability was first introduced by Wolfson and Silber-
schatz [32]. A predicate T is decomposable if there are r > 1 restricted copies P1, P2, . . . , Pr
of the Datalog program P (using arithmetic predicates) such that (i) the copies compute a
partition of T for every input, and (ii) there exists an input instance where each copy will
produce some input for T . The main result is that decomposability is equivalent to pivoting
for sirups where there are no constants, no repeating variables, and the sirup is linear or a
simple chain rule. Here, a sirup is a Datalog program with one idb predicate S and two
rules: (i) a base rule S(x)← B(x), and (ii) a recursive rule with head predicate S. A sirup
is linear if S appears exactly once in the body of the recursive rule.

Later works [30, 31] redefine the concept of decomposability semantically. A Datalog
program is decomposable if it is possible to partition the output domain (to at least two
blocks) such that for every instance I, every output fact has a proof tree where all the idb
facts belong in the same partition block. Wolfson and Ozen [31] show that deciding whether
a given Datalog program is decomposable is undecidable. Cohen and Wolfson [30] provide
necessary and sufficient syntactic conditions for decomposability for sirups where the arity
of the idb predicate is ≤ 2. They also define the notion of strongly decomposable sirups,
where the partition must guarantee that, for some input, at least two blocks will produce a
fact using the recursive rule of the sirup. Following the same line of work, Zhang et al. [34]
present a more general framework that constructs partitionings of the rule instantiations.

2.3 Other Parallel Schemes
In addition to decomposability, several frameworks for parallel recursive processing were
introduced in the early 90s [30, 14, 31]. Wolfson [30] generalizes decomposability to load
sharing schemes, by allowing the output of a predicate to have overlap in the copies of the
program P . Under a load sharing scheme, every linear program can be parallelized, even if it
is not pivoting. In [14, 13, 31], general schemes are introduced that parallelize the evaluation
by partitioning the set of rule instantiations, and allowing for communication among the
machines (decomposable and load sharing schemes need no communication). Dewan et
al. [12] proposes similar techniques with dynamic adjustments, to balance the load of a
computation. Our framework differs in that the set of rule instantiations is distributed
implicitly among the servers, according to the production and consumption policies, and
that the communication between servers is made explicit.

2.4 Systems
Recent work studies the implementation of Datalog (or fragments of Datalog) on modern
shared-nothing distributed systems. Seo et al. [24] present a distributed version of a Datalog
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variant for social network analysis called Socialite; however, their framework requires that
the user provides annotations to guide the distribution of data. Wang et al. [29] implement
a variant of Datalog on the Myria system [17], focusing mostly on asynchronous evaluation
and fault-tolerance. The BigDatalog system [26] describes an implementation of Datalog on
Apache Spark, but focuses mostly on linear Datalog programs that use aggregation. The
task of parallelizing Datalog has also been studied in the context of the popular MapReduce
framework [2, 5, 25]. Motik et al. [22] provide an implementation of parallel Datalog in
main-memory multicore systems.

3 Preliminaries

We assume an infinite domain dom. A database schema σ is a finite set of relation names
{Ri}ni=1 with associated arities ar(Ri). We shall write R(k) to denote a relation R with
arity k. A fact R(a1, . . . , ak) over U ⊆ dom is a tuple consisting of a relation name and a
sequence of values from U . We say that R(a1, . . . , ak) is over schema σ, if R(k) ∈ σ. For a
universe U ⊆ dom and schema σ, we denote by facts(σ, U) the complete set of facts over σ
and U . An instance I over σ and U is defined as a finite subset of facts(σ, U). We write I|σ
to denote the subset of I containing all facts in I that are over schema σ.

For i ∈ N, we abbreviate the set {1, . . . , i} by [i].

3.1 Datalog
We assume an infinite domain of variables var, disjoint from dom. An atom is a formula
R(t1, . . . , tk) consisting of a relation name and a tuple of terms; a term ti is either a variable
from var or a constant from dom.

A Datalog rule τ is of the form R(x)← S1(y1), . . . , Sn(yn), where R(x) is a single atom
called the head of τ , denoted headτ , and all Si(yi) are atoms called body atoms of τ , denoted
bodyτ . We say that Si(yi) is over schema σ, when Si ∈ σ and k = ar(Si). We say that τ is
over schema σ if all its atoms are. We assume that Datalog rules are always safe, i.e., that
all variables in the head occur in at least one body atom. By vars(τ) we denote the set of
variables in rule τ .

A Datalog program P is a finite set of Datalog rules. A program P is said to be over
schema σ if all its rules are. Particularly, by edb(P ) ⊆ σ we denote the relation names
occurring only in the body of rules, and by idb(P ) ⊆ σ all other relation names occurring
in P . We further distinguish the names in idb(P ) by calling some of them output relations,
denoted out(P ) ⊆ idb(P ); all other idb relations are auxiliary. We write σ(P ) to denote
edb(P ) ∪ idb(P ).

Consider the directed graph where each node is an idb predicate, and there is an edge
from S to S′ if S′ occurs in the head of some rule τ of P , and S in the body of τ . We say that
P is recursive if the graph is cyclic; otherwise, we say it is non-recursive. A non-recursive
Datalog program with only one rule is called a conjunctive query (CQ).

3.2 Evaluation Semantics
We define the evaluation semantics of Datalog programs as usual, through the immediate
consequence operator. Let P be a Datalog program and I an instance over edb(P ). A
valuation v for rule τ ∈ P is a constant-preserving mapping of the terms in τ to values in
dom. For a rule τ ∈ P and valuation v, we say that τ derives fact v(headτ ) over instance I
if v(bodyτ ) ⊆ I. We refer to v(τ) as the instantiation of rule τ with valuation v.
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We use TP to denote the immediate consequence operator for P , which applies all rules in
P exactly once over a given instance and adds all derived facts to that instance. Formally,
TP (I) = I ∪{v(headτ ) | τ ∈ P, valuation v s.t. v(bodyτ ) ⊆ I}. Then, P (I) is defined as
the fixpoint reached after iteratively applying the immediate consequence operator over I.
It is not difficult to see that TP is monotone, and thus always reaches a fixpoint after a
finite number of iterations. Moreover, the output of the query that P computes is defined
as P (I)|out(P ). We refer to Abiteboul et al. [1] for a detailed description.

We call a fact f P -derivable if f ∈ P (I) for some instance I, and P -consumable if during
the evaluation of P on some instance I a rule instantiation v(τ) fires that requires f . Both
notions naturally generalize to atoms and predicate symbols, e.g., predicate symbol R is
said to be P -consumable if some P -consumable fact f exists with symbol R. Atom A is
P -consumable if a rule instantiation as above exists, with A ∈ bodyτ .

3.3 Proof Theoretic Concepts
Let T = (V,E) be a tree. By fringeT we denote its leaves and by rootT its root vertex. All
other vertices are called internal vertices. For a vertex n ∈ V we denote by childrenT (n)
the set of child vertices of n in T . We now recall the classical notion of proof tree [1]. A
proof tree T for a fact f on instance I and Datalog program P is a tree T with vertices over
facts(σ(P ),dom), where fringeT ⊆ I, rootT = f , and for every internal vertex g, there is
a rule τ ∈ P and valuation v such that g = v(headτ ) and childrenT (g) = v(bodyτ ). In this
case, we shall say that T uses the instantiation of τ with valuation v. It is easy to see that
P (I) consists of exactly those facts f for which a proof tree for f on I and P exists. We
say that a rule instantiation v(τ) is useless if v(headτ ) ∈ v(bodyτ ); otherwise, we say that it
is useful. W.l.o.g. we will consider only proof trees where all rule instantiations are useful.

We say that a proof tree T ′ is entailed by proof tree T for P , denoted T ′ v T , if
fringeT ′ ⊆ fringeT and rootT ′ = rootT .

4 The Framework

Our framework considers a setting with p servers (or machines) that share no memory
and can communicate only via messages—this is commonly referred to as a shared-nothing
parallel architecture. The set of servers forms a network [p] that we assume is fully connected.
In order to define how computation is performed, we will use policies that specify how the
data (input and output facts) are distributed over the network. We borrow the definition of
a distribution policy from [6]:

I Definition 4.1 (Distribution Policy). A distribution policy P = (U, factsP ) over schema
σ and network [p] consists of a universe U ⊆ dom and a function factsP : [p] → 2facts(σ,U)

mapping servers to sets of facts over U and σ.

Distribution policies are instance independent, i.e., they are oblivious of the specific
database instance. Intuitively, a policy expresses on which servers a fact should reside if
the fact is in the network, but not whether the fact is in the network. Henceforth, we
slightly abuse notation and write P (f) to denote the set of servers responsible for f , i.e.,
P (f) = {i | f ∈ factsP (i)}.

In contrast to [6], where the focus is on single-round query evaluation and policies that
define only the initial data distribution over edb facts, we consider a multi-round setting
that allows the communication of intermediate facts.
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17:6 Distribution Policies for Datalog

I Definition 4.2 (Economic Policy). An economic policy E over schema σ and network [p]
is a pair (P ,C) of distribution policies over the same universe U , where:
P is defined over idb(P ) and is called the production policy; and
C is defined over edb(P ) ∪ idb(P ) and is called the consumption policy.

A production policy describes which machines have the responsibility of producing a
certain idb fact. A consumption policy describes which machines need an edb or idb fact
to satisfy the body of a rule instantiation. We sometimes make universe U explicit, by
writing (P ,C;U) rather than (P ,C).1 We say that a fact f is C-consumable if C(f) 6= ∅.

A family of economic policies F is a set of economic policies over a common universe
and schema. We say that a family F satisfies property P if all the policies in F satisfy P.

4.1 Datalog Evaluation Modulo Policies

Instead of letting a server compute the full program over its local instance, we restrict
the evaluation process based on a server’s economic policy. That is, for economic policy
E = (P ,C) and Datalog program P , the following sequential evaluation algorithm takes
place on server i:

First, every rule τ ∈ P is annotated with policy-predicates as follows. For the head
R(x), we add a predicate PolicyR(x) to the body of τ . Here, predicate PolicyR refers to
relation factsP (i)|{R}.
Second, for every atom S(y) in the body of τ , we add the predicate PolicyS(y), where
now PolicyS refers to the relation factsC(i)|{S}.

The added predicates may be infinitely large, but can be accessed through queries of the
form “t ∈ factsP (i)|{R}?” or “t ∈ factsC(i)|{S}?”.

Throughout the paper we assume the semi-naive evaluation strategy for Datalog pro-
grams. Semi-naive evaluation proceeds as usual over the annotated program: after each
application of the fixpoint operator, the newly derived facts are added to a delta relation,
and a rule instantiation is triggered only if at least one of its facts is in the delta relation
from the previous iteration. We denote by P�E(I, J) the fixpoint instance when we execute
P restricted to E on input I, with delta relations initialized with J .

4.2 Distributed Evaluation Strategy

We now present how an economic policy induces a parallel evaluation strategy. Our parallel
model is the BSP-based Massively Parallel Communication Model (MPC) [21]. In this
model, computation is performed over servers in a multi-round fashion. Each round has two
distinct phases: a local computation phase, and a synchronized communication phase.

Consider a Datalog program P , a network [p], and an economic policy E = (P ,C).
Moreover, let I be the input instance, which we initially assume to be partitioned arbitrarily
over the p servers. Denote by Ii the initial local instance of machine i. Let localki be the
instance on machine i right after the k-th communication phase.

We consider the following procedure: Initially, we set local0i ← Ii. Then, at the k-th
round (for k ≥ 1), we perform the following:

1 Notice that mentioning U is redundant, but allows a slightly simpler notation, since P and C need not
be specified explicitly to reference their universe U .
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1. Communication: Every machine sends its facts as defined by the consumption policy C.
That is, server i sends local fact f ∈ localk−1

i to server j if (and only if) f ∈ factsC(j).
Let recki be the facts received by machine i during the k-th communication phase.2

2. Computation: Every server computes the local fixpoint: if k = 1, then localki = P�E(recki ∪
localk−1

i , recki ∪ localk−1
i ), otherwise localki = P�E(recki ∪ localk−1

i , recki \ localk−1
i ).

Intuitively, the algorithm terminates when, after a round is finished, for every server all
locally derived facts that need to be sent to some other server according to the consumption
policy, were already sent to these servers in an earlier round.

Formally, for server i, we define set Fi = {f | C(f)\ i 6= ∅}. Intuitively, Fi represents all
facts consumed by servers other than i itself. We say that a server has reached a local fixpoint
state for E and P after round k ≥ 1, if localki ∩ Fi ⊆ localk−1

i . We say that the network
[p] has reached a global fixpoint state for E and P after round k, if all servers i ∈ [p] have
reached a local fixpoint state after round k. Notice that this condition is as desired, because
every round goes into the communication phase first, then into the local computation phase.

One could imagine a smarter communication procedure that incorporates Datalog se-
mantics as well. For example, a server does not need to send a local fact f ∈ factsC(j) to
server j if for every input I server j is guaranteed to already have f in its local instance.
However, it is in general undecidable to make such a decision (see Lemma 5.3).

For instance I, let [P,E](I) denote the union of all facts over out(P ) found at any server
after reaching the global fixpoint. Notice that the above evaluation strategy always reaches
a fixpoint, due to monotonicity of Datalog.

I Example 4.3. Consider the left-linear Datalog program that computes transitive closure:

T (x, y)← R(x, y). T (x, y)← T (x, z), R(z, y).

For any function h : dom → [p], we define the economic policy (P 1,C1), where
C1(R(a, b)) = [p], and C1(T (a, b)) = P 1(T (a, b)) = {h(a)} for all a, b ∈ dom. This policy
works as follows: it replicates the edb facts everywhere, and then produces/consumes each
fact T (a, b) at machine h(a). It is easy to see that the economic policy correctly computes
the transitive closure. In fact, the evaluation always terminates in a single round.

Consider a different policy (P 2,C2), which again takes any function h : dom → [p]
and has C2(R(a, b)) = {h(a)}, C2(T (a, b)) = {h(b)}, and P 2(T (a, b)) = [p]. This policy
does not replicate the edb facts, but it hash-partitions them according to the first attribute.
Whenever a machine discovers a new fact, the new fact has to be consumed to the location
determined by the hash of the second attribute. Observe that the production policy is [p]
because we do not know where each fact will be produced (in other words, each machine
will produce as many idb facts as possible from its local input without any restrictions).

We will see later in Section 6 that all the above economic policies belong in a specific
family of policies that we call Generalized Hypercube Policies (GHPs). We notice that our
framework supports evaluation strategies that are oblivious of the instance: each fact is
communicated, consumed, and produced independent of whether other facts are in the same
local instance or not. Lastly, we note that monotonicity of Datalog ensures monotonicity of
economic policies for Datalog Programs.

2 We remark that from a practical viewpoint it makes no sense to communicate the same facts more than
once. When j = i, no actual communication takes place.
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I Proposition 4.4. For every Datalog program P and economic policy E for P , f ∈
[P,E](I ′) implies f ∈ [P,E](I), for all I ′ ⊆ I. More specifically, if f is derived by E
for I ′ in round i on server s, then f is derived by E for I in round j ≤ i on server s.

5 Parallel-Correctness

An economic policy for a Datalog program does not necessarily lead to the desired output.
For example, if the production policy maps every fact onto the empty set of servers, then
the execution will generate only empty idb relations. Henceforth, we are only interested in
economic policies that generate the expected output.

I Definition 5.1 (Parallel-correctness). An economic policy E = (P ,C;U) is parallel-correct
for Datalog program P if [P,E](I) = P (I)|out(P ), for every instance I ⊆ facts(edb(P ), U).

Parallel-correctness is in general undecidable, even for simple classes of policies. For
instance, consider the class of policies, where P (f1) = P (f2) andC(f1) = C(f2), whenever
f1,f2 are facts with same relation symbol. We call this class of policies value-independent,
denoted Eindep, since the facts are mapped to machines only according to the relations they
belong to. Value-independent policies allow a succinct representation by simply enumerating
the idb predicates of P and the subsets of [p] where each relation is assigned.

We consider the following decision problem.

pc(L, E)
Input: Program P ∈ L, policy E ∈ E .
Question: Is E parallel-correct for P?

I Theorem 5.2. pc(Datalog, Eindep) is undecidable.

The proof is given in Appendix A.1. We next show an even stronger result:

I Lemma 5.3. Let P be an arbitrary Datalog program and E = (P ,C;U) an economic
policy over σ that is parallel-correct for P . Now let f ∈ facts(σ, U), and C ′ the consumption
policy where C ′(g) = C(g) for all g ∈ facts(σ, U) \ {f} and C ′(f) ( C(f). It is still
undecidable whether E′ is parallel-correct for P .

Despite the above results, we can present some syntactic conditions that are necessary
for parallel-correctness, and some that are sufficient.

I Definition 5.4 (Support). An instantiation of rule τ with valuation v is supported by
economic policy E = (P ,C) if there exists some machine s ∈ [p] with v(headτ ) ∈ factsP (s)
and v(bodyτ ) ⊆ factsC(s).

We consider various categories of economic policies based on which rule instantiations
are supported for a given Datalog program P :
N all
P : the set of all rule instantiations of P .
Nmin
P : the set of all minimal rule instantiations of P . An instantiation of rule τ with
valuation v is minimal if there is no rule τ ′ and valuation v′ with v′(headτ ′) = v(headτ )
and v′(bodyτ ′) ( v(bodyτ ).
N use
P : the set of all rule instantiations of P that are useful. Recall that an instantiation of
rule τ with valuation v is useful if v(headτ ) /∈ v(bodyτ ).
N ess
P : the set of all essential rule instantiations of P . An instantiation of rule τ with
valuation v is essential if for some P -derivable fact f and instance I, every proof tree T
for f on I and P has a vertex g with g = v(headτ ) and v(bodyτ ) ⊆ childrenT (g).
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If the program is non-recursive, then N use
P = N all

P , since there will be no rule that
contains the same relation in the head and the body. We also have:

I Proposition 5.5. For every Datalog program P , we have N ess
P ⊆ Nmin

P ∩N use
P .

The proof is in Appendix A.2. The following example demonstrates the different types
of rule instantiations.

I Example 5.6. Let P be the left-linear transitive closure program from Example 4.3;
consider a rule instantiation of the recursive rule: T (a, b) ← T (a, c), R(c, b), for some (not
necessarily different) constants a, b, c. We distinguish the following cases:

c = a: in this case, the instantiation is not minimal, since we can derive the same head fact
from the instantiation T (a, b)← R(a, b) of the first rule.

c = b: in this case, the instantiation is useless, since T (a, b) also belongs in the body. In
some sense, this derivation is unnecessary, as we have already “discovered” the head fact.

c 6= a, c 6= b: in this case, the instantiation is minimal and useful; it is also essential. To
show this, consider the instance I = {R(a, c), R(c, b)}, and the fact f = T (a, b). Because
c /∈ {a, b}, the only proof tree for f without “useless” rule instantiations is the one with
root f , children T (a, c), R(c, b), where T (a, c) has R(a, c) as child.

Depending on which types of rule instantiations are supported by an economic policy,
we can define different types of policies. An economic policy that supports all possible rule
instantiations, that is, N all

P , is said to be strongly supporting for Datalog program P .

I Proposition 5.7. Let P be a Datalog program and E an economic policy. If E supports all
minimal and useful rule instantiations in P , then it is parallel-correct. If E is parallel-correct
for P , then it supports all essential rule instantiations.

I Proposition 5.8. Let P be a Datalog program where each idb predicate occurs only in the
head of rules (i.e., P is a union of CQs). Then, N ess

P = Nmin
P ∩N use

P .

Proofs are given in Appendix A.3 and A.4.
Together with Proposition 5.7, the above proposition implies that a Datalog program

where the body of each rule contains only edb relations is parallel-correct if and only if
it supports every minimal rule instantiation, or equivalently if and only it supports every
essential rule instantiation. Notice that this class of Datalog programs corresponds to a pro-
gram that computes a set of UCQs, and thus the above result captures the characterization
of parallel-correctness for CQs and UCQs in [6, 15]. We should emphasize here that [6, 15]
consider only economic policies where P assigns every fact to every server, while a general
economic policy can assign facts to any subset of servers.

For general Datalog programs, N ess
P = Nmin

P ∩ N use
P is not true anymore, and thus

supporting essential instantiations is not a sufficient condition for parallel-correctness, even
if P is non-recursive. (Recall that non-recursiveness is a syntactic condition, and that all
such programs are straightforwardly rewritable to UCQs.)

I Example 5.9. Consider the following non-recursive Datalog program P :

V ()← R(x, y), S(z, w), S(w, z). U()← V (), R(x, y), S(z, w).

and take the rule instantiation with head U() and body {V (), R(a, b), S(c, d)}. Assume that
c 6= d. This rule instantiation is minimal, but we will show that it is not essential.
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U()

V ()

R(a′, b′) S(c′, d′) S(d′, c′)

R(a, b) S(c, d)

U()

V ()

R(a′, b′) S(c′, d′) S(d′, c′)

R(a, b) S(d′, c′)

Figure 1 The two proof trees for the fact f = U(a, b).

For the sake of contradiction, assume that it is essential. Then, for some instance I
there exists a proof tree T for U() on I and P such that there exists a vertex U() with
{V (), R(a, b), S(c, d)} ⊆ childrenT (U()). Since the proof tree contains the fact V (), it also
contains a rule instantiation that derives the fact V () with body {R(a′, b′), S(c′, d′), S(d′, c′)}
for some constants a′, b′, c′, d′. We can now construct two proof trees for U() on the same
instance, as seen in Figure 1. Because c 6= d, one of the facts S(c′, d′), S(d′, c′) must be
different from S(c, d) (In Figure 1 we assume this fact is S(d′, c′)). Thus, for one of the two
trees, the children of U() will not be a subset of {V (), R(a, b), S(c, d)}. This implies that
the rule instantiation we considered is indeed not essential.

I Example 5.10. This example shows that N ess
P = Nmin

P ∩ N use
P can hold for recursive

programs. Consider Example 5.6. Notice that every rule instantiation of the base rule,
T (x, y) ← R(x, y), is trivially minimal, useful and essential. As for the recursive rule, we
showed in Example 5.6 that an instantiation that is minimal and useful is also essential.
Observe that if this instantiation is only minimal but not useful, or only useful and not
minimal, it is not essential. Thus, both properties are necessary to guarantee essentiality.

We conclude this section by commenting on whether it is computationally feasible to test
the different properties of rule instantiations. It is easy to see that given an instantiation, it
is possible to check whether it is useful in polynomial time. The complexity for checking the
minimality of a rule instantiation is coNP-complete [6]. Unfortunately, testing essentiality
of a rule instantiation is undecidable.

I Proposition 5.11. Testing essentiality of rule instantiations is undecidable.

6 Generalized Hypercube Policies

In this section, we present a general class of economic policies, called Generalized Hypercube
Policies (GHP), which encompass a broad variety of evaluation strategies.

We first give an intuitive explanation. The formalism of GHPs relies on the Hyper-
cube partitioning for CQs [4], which has been shown to provide nice guarantees on the
communication-cost for CQ evaluation [7]. Let P = {τ} be a CQ with k distinct variables.
Hypercube conceptually orders the p servers as a hypercube P = [p1] × [p2] × · · · × [pk],
with

∏
i pi = p, where every dimension pi ≥ 0 corresponds to a variable xi from the query;

every server is assigned a unique coordinate in space P; and every variable xi is associated
to a hash function hxi : dom 7→ [pi]. Then, a fact R(a1, . . . , ar), matching with atom
R(y1, . . . , yr) ∈ bodyτ , is sent to all servers whose coordinate agrees, for all j ∈ [r], with
position hyj (aj) on the dimension of P where yj is associated with.

For GHPs we associate to every rule a hypercube over the full p-server network, and
intuitively define the consumption policy so that “a fact is consumed at server i if and
only if one of the considered Hypercube specifications would send it to server i”; for the
specification of the production policy, we rely on a similar mechanism.
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Datalog program P

τ1 : T (x, y)← R(x, y).

τ2 : T (x, y)← T (x, z), R(z, y).

τ3 : U(x, y, z)← T (x, y), S(y, z).

Hypercubes

P1
p1,1

p1,2

P2
p2,1

p2,2

χ(τ1)

χ(τ2)

χ(τ3)

Network [p]

1

2

...

p− 1

p

map1

map2

Figure 2 Example of a GHP policy for the Datalog program P with three rules.

GHP parameters

Let P be a Datalog program, and assume we have a network [p]. A GHP for P defines a
finite set of k-dimensional hypercubes P1, . . . ,P`, for some parameter k.3 The size of the
dimensions of the hypercubes are parametrized by a matrix P of dimensions `×k, such that∏k
i=1 pj,i = p, for each j ∈ [`]. Each hypercube is then defined as Pj = [pj,1]×[pj,2]×. . . [pj,k].

For each hypercube Pj , we also define a bijective mapping mapj that assigns to every point
in Pj a machine s ∈ [p]. The latter thus provides the mapping between conceptual machines
in the cube and real machines in the considered network.

A GHP policy next assigns each rule τ to exactly one of the hypercubes: let χ : P → [`]
be the function that encodes this assignment. Given this assignment, a GHP defines a
mapping ρτ : [k] → 2vars(τ) that maps each dimension of the hypercube Pχ(τ) to a subset
of the variables that appear in τ , such that the following condition holds:

If χ(τ) = χ(τ ′), then |ρτ (i)| = |ρτ ′(i)| for every dimension i. In other words, the
mappings of variables of different rules to the same hypercube must be consistent.

Finally, the GHP defines for each dimension i ∈ [k] and each hypercube Pj a hash
function hji that maps sets of size ≤ α (α is the size of the set ρτ (i) for any τ such that
χ(τ) = j) to a value in the i-th dimension. We require hash functions to be surjective.
Notice that our concept of hash-function is a generalization of the hash-functions used in,
e.g., the Hypercube algorithm, where α = 1. Further, we notice that, by definition, rules
that use the same hypercube, also use the same hash function for each dimension of that
hypercube.

GHP semantics

Let f be a fact and suppose that f = v(A), for some valuation v and atom A = R(y) that
appears in rule τ .4 We define the following set of machines:

Sτf ,A = {mapχ(τ)(q) | q ∈ Pχ(τ) such that ∀i with ∅ ( ρτ (i) ⊆ y : qi = h
χ(τ)
i (v(ρτ (i)))}.

Intuitively, Sτf ,A denotes the set of machines whose coordinate q is consistent with the hash
mappings specified for τ . Notice that if the atom R(y) has only a part of the variables that

3 We assume w.l.o.g. that each hypercube has the same number of dimensions, but we can also define it
such that different rules have a different number of dimensions.

4 Notice that either v does not exist, or is unique for the variables in atom A.
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correspond to some dimension i, then facts are broadcast over dimension i, as it happens if
none of these variables are in y.

The consumption policy C(f) is defined as the union over all sets Sτf ,A for rules τ and
atoms A ∈ bodyτ with instantiation f . The production policy P (f) is similarly defined as
the union over all sets Sτf ,A for rules τ and atom headτ with instantiation f .

I Example 6.1. Consider the Datalog program depicted in Figure 2. We choose two hy-
percubes P1,P2 (` = 2) with dimension k = 2. The first two rules τ1, τ2 are mapped to
the hypercube P1, and the third rule τ3 is mapped to P2. We choose the dimensions of the
hypercubes such that p1,1 · p1,2 = p, p2,1 = p, and p2,2 = 1. The two functions map1,map2

map the points of P1,P2 respectively to {1, . . . , p} in a one-to-one fashion. Finally, the
mapping of variables to dimensions is:

ρτ1(1) = {x}, ρτ1(2) = {y}, ρτ2(1) = {x}, ρτ2(2) = {z}, ρτ3(1) = {y}, ρτ3(2) = {}

Consider the first two rules (which form the left-linear TC example), and assume that
p1,1 = 1 and p1,2 = p. Then, the resulting GHP is equivalent to the hash partitioning
policy that we described in Example 4.3. Notice that since we use the same hypercube for
both rules, the edb relation R will be hash partitioned only once. If we now change the
dimensions to p1,1 = p, p1,2 = 1, we obtain the decomposable policy of Example 4.3 that
broadcasts the edb R to every machine and can terminate in a single round. Apart from
the above two GHPs, we can also define other GHPs by configuring different dimensions of
the hypercube P1. For example, we can choose p1,1 = p1,2 = √p.

We next show that GHPs are strongly supporting policies. A proof is in Appendix A.5.

I Proposition 6.2. Let P be a Datalog program. Every GHP E for P is strongly supporting
for P and, as a consequence, parallel-correct for P .

GHP Families

Since we do not want to consider an encoding mechanism for hash functions—which is
necessary to formally reason about properties for GHPs—we introduce the concept of GHP
families. Given a Datalog program P and network [p], a GHP family H is defined as the
set of GHPs over P and [p] that all have the same parametrization for P,mapj , χ, ρτ . In
other words, policies in H can differ only with respect to the choice of hash functions, and
for every choice of hash functions, the associated GHP is in the family. By Fghp we denote
the class of all GHP families.

7 Bounded & Disjoint Evaluation

In this section, we we ask two main questions: First, can we reason about the number of
rounds that an economic policy needs to compute a Datalog program? Second, can we
constrain the number of machines that derive a copy of the same fact? We start with a
formal definition of boundedness.

I Definition 7.1 (Boundedness). An economic policy E for Datalog program P is bounded if
some constant k exists such that, for every instance I, the network reaches a global fixpoint
for E and P , when round k is finished. We say E is `-bounded if k ≤ `.

One should not confuse the number of rounds in the parallel computation with the
number of iterations of semi-naive evaluation. Nevertheless, as the following proposition
shows, boundedness of the Datalog program implies boundedness of the evaluation.
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I Proposition 7.2. If P is a bounded Datalog program, then every parallel-correct economic
policy E for P is k-bounded, for some constant k that depends on P .

Surprisingly, there exist economic policies for bounded Datalog programs that are not
bounded. However, due to Proposition 7.2, such policies cannot be parallel-correct.

I Example 7.3. Consider the following bounded program.

T (x)← A(x). T (x)← B(x), T (y).

We construct a network with p > 1 machines. Consider a policy that consumes T (i) and B(i)
at machine (i mod p)+1, and produces T (i) at machine (i mod p). Every tuple in A is con-
sumed at machine 1. Now, consider the following input instance: {A(0), B(1), B(2), . . . , B(p−
1)}. It is easy to see that T (0) is produced at machine 1 at round 1, T (1) is produced at
machine 2 at round 2, and so on, until T (p− 1) is produced at round p at machine p.

In the remainder of this section, we focus on pure Datalog (denoted PureDatalog). We
call a Datalog program pure if its variables occur at most once in every atom and it has no
constants [23]. We consider the following decision problems.

k-boundedness(L, E)
Input: Program P ∈ L, policy E ∈ E .
Question: Is E k-bounded for P?

boundednessF (L,W)
Input: Program P ∈ L, family F ∈ W.
Question: Is there a k s.t. F is k-bounded for P?

k-boundednessF (L,W)
Input: Program P ∈ L, family F ∈ W.
Question: Is F k-bounded for P?

I Theorem 7.4. 1. boundednessF (PureDatalog,Fghp) is undecidable;
2. k-boundedness(PureDatalog, Eindep) and k-boundednessF (PureDatalog,Fghp) are un-

decidable for k ≥ 2; and
3. k-boundednessF (PureDatalog,Fghp) is in ptime if k = 1.

Result (3) follows from the syntactical characterization shown in the next subsection.
Towards this characterization, we first give a general characterization of 1-boundedness for
strongly supporting policies.

Let P be a Datalog program and E = (P ,C) an economic policy. We denote by P ∗ the
policy obtained by removing from every P (f) any server s for which no rule instantiation
v(τ) exists with v(headτ ) = f , v(bodyτ ) ⊆ factsC(s), and v(bodyτ ) being all P -derivable.
Intuitively, P ∗(f) removes those servers that are allowed to produce f , but cannot due to
limitations of the consumption policyC. Notice that ifE = (P ,C) is strongly supporting for
P , then so is E = (P ∗,C), since we have not removed the support of any rule instantiation.

I Proposition 7.5. Let P be a Datalog program and E = (P ,C) a strongly supporting
economic policy for P . E is 1-bounded if and only if for every P -derivable idb fact f : (1)
|C(f)| ≤ 1; and (2) |C(f)| = 1 implies C(f) = P ∗(f).

7.1 Weakly Pivoting GHPs
We present a necessary and sufficient syntactic condition for 1-boundedness of GHP families.
Here, for atom A and set of variables X ⊆ vars(A), we denote by posA(X) the positions in
A having variables from X.
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I Definition 7.6 (Pivoting Relation). A relation R is pivoting for GHP family H if for every
two atoms A1, A2 (in rules τ1, τ2 respectively) over R, and for all dimensions i of cube χ(τ1)
with pχ(τ1),i > 1: ∅ ( ρτ1(i) ⊆ vars(A1); χ(τ1) = χ(τ2); and posA1(ρτ1(i)) = posA2(ρτ2(i)).

Intuitively, if R is pivoting, then every rule that sends R tuples will send each R tuple
to exactly one machine, and the rules agree on this machine.

I Example 7.7. For example, take the program

τ1 : T (x, y)← R(x, y). τ2 : T (x, y)← T (x, z), R(z, y). τ3 : O(y)← T (x, y), S(x).

and the GHP over the single one-dimensional cube (cube 1). We define χ(τ1) = χ(τ2) =
χ(τ3) = 1 and ρτ1(1) = ρτ2(1) = ρτ3(1) = {x}. Let map1 be the identity mapping. Here, S
and T are pivoting relations; O and R are not pivoting.

I Definition 7.8 (Pivoting/Weakly pivoting). We say that a GHP family is pivoting (weakly
pivoting, resp.) for P if all (all P -consumable, resp.) idb relations are pivoting.

The program from Example 7.7 is weakly pivoting. We can test whether a GHP family
is weakly pivoting in polynomial time, since we need to go over all P -consumable idb rela-
tions, and then for each such relation R test all pairs of atoms over R. This observation,
along with the proposition below—that shows that weakly pivoting is a necessary and suf-
ficient condition for 1-boundedness—implies that deciding 1-boundedness for GHP families
is indeed in ptime.

I Proposition 7.9. Let P be a pure Datalog program, and H a GHP family. Then, H is
1-bounded for P if and only if it is weakly pivoting for P .

We remark that Proposition 7.9 cannot be easily generalized. For example, one can-
not replace GHP families by strongly supporting policies, since then facts that are not
P -consumable may still be C-consumable (i.e., C(f) 6= ∅). Reasoning about the latter
requires a concrete representation mechanism. Further, it is unclear what the complexity
becomes for testing 1-boundedness under general (not necessarily pure) Datalog, since then
it is required to reason about P -derivability of facts. An example is given in Appendix A.6.

7.2 Weakly Pivoting Datalog
We have so far looked at whether a given GHP family is 1-bounded. In this section, we ask:
which Datalog programs admit a 1-bounded policy?

If A = R(x) is an atom, we use A[i] to denote the variable/constant in atom A in
position i. We naturally extend A[·] to map tuples of positions (that take values from the
set {1, . . . , ar(R)}) onto tuples of variables/constants. For example, if A = R(x1, x2, x3) and
b = (1, 3), then A[b] = (A[1], A[3]) = (x1, x3).

I Definition 7.10 (Pivot Base). Let P be a Datalog program, and let σ ⊆ idb(P ). Let β
be a function that takes as input some R ∈ σ and outputs a non-empty tuple with values in
[ar(R)]. We say that β is a pivot base for σ if:

For every rule τ ∈ P and for every pair of atoms R(x), S(y) in {headτ} ∪ bodyτ , such
that R,S ∈ σ, we have R(x)[β(R)] = S(y)[β(S)].

A Datalog program P is pivoting (weakly pivoting, resp.) if it has a pivot base for all relations
in idb(P ) (for all relations in idb(P ) that occur in the body of some rule in P ).
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An example is given in Appendix A.7.
The concept pivoting Datalog was first introduced for single rule programs [30] and then

generalized to full Datalog [23] where it is called generalized pivoting. The latter definition is
based on a rather complex argument over fractional weight-mappings, but relates to pivoting
in that every generalized pivoting Datalog program is pivoting for all idb relations. For pure
Datalog these notions are equivalent. The proposition below shows that for pure Datalog,
a weakly pivoting program admits a weakly pivoting (and thus 1-bounded) GHP family.

I Proposition 7.11. Let P be a pure Datalog program and p ≥ 2. There is a 1-bounded
GHP family if and only if P is weakly pivoting.

7.3 Bounded and Disjoint Evaluation
Sometimes we want to guarantee that, at the end of computation, no two copies of the same
fact have been derived at different machines. We call this property disjointness.

I Definition 7.12 (Disjointness). Let P be a Datalog program, and R an idb predicate of
P . We call an economic policy E for P R-disjoint if for every instance, every fact of R is
produced in at most one server.

We study economic policies that are both 1-bounded and disjoint. For this, let P be a
Datalog program and E a strongly supporting economic policy for P over [p]. We call s ∈ [p]
a straggler if s ∈ C(f) or s ∈ P ∗(f) for all facts f of some idb relation where P is defined
over. Intuitively, a straggler is a server that consumes or produces an entire relation.

I Proposition 7.13. Let P ∈ PureDatalog and H a GHP family for P . Then, H is 1-
bounded, disjoint for P , and without stragglers for idb relations, if and only if, H is pivoting.

Next, we show which programs admit a 1-bounded, disjoint policy.

I Proposition 7.14. Let P ∈ PureDatalog. Then P is pivoting if, and only if, P admits a
1-bounded, strongly supporting, disjoint economic policy without stragglers for idb relations.

I Remark. The reader may wonder how the above concepts relate to the class of decom-
posable programs [32, 31]. A decomposable program is a (single rule) Datalog program that
admits an evaluation strategy (via predicate restrictions) that is parallel-correct, 1-bounded,
disjoint, and non-trivial. (Here non-triviality means that all servers do part of the work.)
We did not consider the non-triviality property, but instead require the absence of stragglers.
Nevertheless, for GHPs, non-triviality is implied—at least for pure Datalog—by the use of
surjective hash functions).

8 Conclusion

We introduce a theoretical framework to reason about multi-round Datalog evaluation in
a distributed setting. In this framework we study three properties: parallel-correctness,
boundedness, and disjointness. There are many interesting questions left open. For example,
it would be interesting to come up with restrictions on Datalog programs and economic
policies, for which the mentioned properties are not undecidable. Another interesting direc-
tion for future work would be to define a relevant fairness condition for economic policies,
e.g., an instance independent notion of load-balancing; and to study bounds on the amount
of communication needed to evaluate Datalog programs. Another direction is to consider
smarter algorithms for local Datalog evaluation than semi-naive, by, for example, allowing
to express unique-decomposition conditions (c.f., [5]) in the economic policy.
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A Appendix

A.1 Proof for Theorem 5.2
I Theorem 5.2. pc(Datalog, Eindep) is undecidable.

Proof. The proof is by reduction from the Datalog containment problem, which is well-
known to be undecidable [1]. Let P1 and P2 be two arbitrary Datalog programs given as
input for the containment problem. As usual, we assume that both are over the same output
predicate, say O.

We first denote by P ∗i an indexed version of program Pi; particularly we define P ∗i as
Pi in which all idb predicates are annotated with index i. We now construct a program P

by taking all rules from P ∗1 and P ∗2 , and adding the rules O(x) ← Oi(x), for i ∈ {1, 2}.
We note that edb(P ) = edb(P ∗1 ) ∪ edb(P ∗2 ) and out(P ) = {O}. As economic policy we take
E = (P ,C) over the 2-node network {1, 2}. The consumption policy maps all facts with
index i to server i. The production policy maps all facts with index i to server i, and all
O-facts to server 2. The edb facts are consumed on all servers.

Intuitively, programs P ∗1 and P ∗2 are computed locally on server 1 and server 2. It thus
follows from the construction that (†) P1(I)∪P2(I) ⊆ [P,E](I), for every instance I. Notice
that rule O(x) ← O1(x) is never used, since server 2 cannot consume facts over predicates
with index 1.

It remains to show that E is parallel-correct for P if and only if P1 ⊆ P2. Indeed, if
P1 ⊆ P2, then O(I) = P2(I) for every instance I, which implies that the policy will compute
the correct result for O. The other direction follows from monotonicity of P . From (†) it
follows that this condition is satisfied if and only if all facts over the O relation produced by
P (I) are also produced by [P,E](I), which is the case only if every fact O(a) ∈ P (I) implies
a fact O2(a) ∈ P (I). The latter is equivalent to saying O(a) ∈ P1(I) implies O(a) ∈ P2(I)
for every instance I, which means that P1 ⊆ P2. J

A.2 Proof for Proposition 5.5
We first show the following Lemma.

I Lemma 1.1. For every proof tree T of depth d, there exists a proof tree T ′ v T of depth
at most d that uses only minimal and useful rule instantiations.

Proof. The proof is by induction on the depth of T , which we denote d. We show that there
exists a proof tree T ′ v T with depth ≤ d that uses only minimal rule instantiations.

For the base case, let d = 1. Then, T corresponds to a single rule instantiation (τ, v) for
P where all the facts in v(bodyτ ) are edb facts. By definition, there is also a minimal rule
instantiation (τ ′, v′), with v′(headτ ′) = v(headτ ) and v′(headτ ′) ⊆ v(bodyτ ), which admits
the desired proof tree.

As induction hypothesis we take the statement of the lemma. Now for the induction
step, suppose T has depth d > 1. Then, the root of T , together with its children, defines a
rule instantiation (τ, v) for P . Now take an entailed minimal instantiation (τ ′, v) such that
v′(headτ ′) = v(headτ ) and v′(bodyτ ′) ⊆ v(bodyτ ). For every fact f ∈ v′(headτ ′), let Tf be
the subtree of T with root f (child of rootT ). By the induction hypothesis, there is a proof
tree T ′f v Tf with depth ≤ d− 1 that uses only minimal rule instantiations. The proof tree
that combines instantiation (τ ′, v′) with T ′f for all f ∈ v′(τ ′) is as desired. J

I Proposition 5.5. For every Datalog program P , we have N ess
P ⊆ Nmin

P ∩N use
P .
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Proof. The containment N ess
P ⊆ N use

P is straightforward, since a proof tree does not use
any useless rule instantiations. We next show that N ess

P ⊆ Nmin
P . Suppose that we have

an instantiation of rule τ with valuation v that is essential. Then, there exists some fact
f and instance I for which every proof tree T has a vertex g with g = v(headτ ) and
v(bodyτ ) ⊆ childrenT (g). By Lemma 1.1, we can pick this tree such that it uses only
minimal rule instantiations. This implies that the rule instantiation with head g and body
childrenT (g) is minimal. Hence, the instantiation with head v(headτ ) and body v(bodyτ ) is
also minimal. J

A.3 Proof for Proposition 5.7
We first show the following lemma.

I Lemma 1.2. Let P be a Datalog program and E an economic policy. If a proof tree T for
P is supported by E, then for every instance I, with fringeT ⊆ I, we have rootT ∈ [P,E].

Proof. The proof is by induction on the depth d of T . Particularly we show using a
simple inductive argument that rootT ∈ localki , for some server i and k ≤ d, which im-
plies rootT ∈ [P,E]. Recall that localki denotes the facts residing locally on server i after the
k-th computation round.

As base case let d = 1, meaning that T describes a single rule instantiation. After
the first communication round, all servers j have local0j ∪ rec1

j ⊆ I ∩ factsC(j). By the
assumption that E supports T , it follows that childrenT (rootT ) ⊆ factsC(i)∩ I ⊆ local1i and
rootT ∈ factsP (i), for some server i, thus after the first computation round, rootT ∈ local1i .

For d > 1 we observe that rootT and its children in T define a rule instantiation (τ, v), and,
by the assumptions of the lemma, this rule instantiation is supported byE. More specifically,
some server i exists where rootT ∈ factsP (i) and childrenT (rootT ) ⊆ factsC(i). Further, for
all facts f ∈ childrenT (rootT ), the respective subtree Tf of T with root f is supported by E
and with depth d− 1. By the induction hypothesis it follows that for all these facts f there
is a server j and k ≤ d− 1, where f ∈ localkj . Therefore childrenT (rootT ) ⊆ localk

∗

i ∪ reck∗i ,
where k∗ denotes the maximal k, and consequently, rootT ∈ localk

∗+1
i ⊆ localdi . J

We say that an economic policy E supports a proof tree T if all the rule instantiations
in T are supported.

I Lemma 1.3. Let P be a Datalog program. An economic policy E = (P ,C;U) is parallel-
correct for P if and only if for every proof tree for P with fringe over facts(σ(P ), U), an
entailed supported proof tree exists.

Proof. (If). Let I be an arbitrary instance, we show P (I) = [P,E](I). By monotonicity,
[P,E](I) ⊆ P (I), thus we focus on completeness. For this, let f ∈ P (I), which means that
a proof tree T exists with fringeT ⊆ I and rootT = f . Particularly, by the assumption of the
lemma we can choose T so that it is also supported by E. It now follows from Lemma 1.2
that f ∈ [P,E].
(Only if). We assume (P ,C) is parallel-correct for P . Let T be an arbitrary proof tree.
The proof is by construction following the derivation of rootT using E. First, from parallel-
correctness it follows that P (I) = [P,E](I), for any instance I. Here we take I = fringeT ,
implying rootT ∈ [P,E](I). The proof now continues by induction on the number of rounds
needed for E to derive rootT .

The induction hypothesis is that if k rounds are needed to derive rootT , then a supported
proof-tree of depth k entailed by T exists.
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As a base case suppose k = 1. That is, rootT ∈ local1i , meaning that rootT ∈ P�E(local0j ∪⋃
j rec1

j ) for some server j. Particularly, a valuation v and rule τ ∈ P existed with v(bodyτ ) ⊆
factsC(j) ∩ I and v(headτ ) = rootT , which means that the corresponding rule instantiation
is supported by E. Here, the proof tree admitted by (τ, v) is as desired.

For k > 1 the proof is analogous, but now we take as proof tree the tree obtained by
concatenating the rule instantiation with the proof trees for each child. Existence of the
latter follows from the induction hypothesis. As the number of rounds decreases by one in
each inductive step, and the fringes of the obtained trees cannot have other facts than does
in I, the constructed proof tree is as again as desired. J

I Proposition 5.7. Let P be a Datalog program and E an economic policy. If E supports all
minimal and useful rule instantiations in P , then it is parallel-correct. If E is parallel-correct
for P , then it supports all essential rule instantiations.

Proof. The first item follows from Lemma 1.3 and Lemma 1.1. For the second item, consider
a parallel-correct policy E and an essential instantiation of rule τ with valuation v. By the
definition of essential, for some fact f and instance I, every proof tree T for f on I and
P has a vertex g with g = v(headτ ) and v(bodyτ ) ⊆ childrenT (g). By Lemma 1.3, there
must exist such a tree T that is supported. This implies that there exists server s with
v(headτ ) = g ∈ factsP (s) and v(bodyτ ) ⊆ childrenT (g) ⊆ factsC(s). Hence, the essential
rule instantiation is indeed supported. J

A.4 Proof for Proposition 5.8
I Proposition 5.8. Let P be a Datalog program where each idb predicate occurs only in the
head of rules (i.e., P is a union of CQs). Then, N ess

P = Nmin
P ∩N use

P .

Proof. Because P is not recursive, N use
P = N all

P ; hence, because of Proposition 5.5 it suffices
to show that Nmin

P ⊆ N ess
P . Indeed, consider a minimal instantiation for rule τ with

valuation v, and consider the instance I = v(bodyτ ) and fact f = v(headτ ). Take any proof
tree T for f on I and P ; T must have depth one. Because of the minimality of the rule
instantiation, it must be that childrenT (f) = v(bodyτ ), which proves the essentiality. J

A.5 Proof for Proposition 6.2
I Proposition 6.2. Let P be a Datalog program. Every GHP E for P is strongly supporting
for P and, as a consequence, parallel-correct for P .

Proof. To show that E is supporting, consider some rule τ ∈ P , and its instantiation w.r.t.
some valuation v. Consider some atom A = R(y) in the body of τ ; then the consumption
policy says that its instantiation f = v(A) will be consumed in the set Sτf ,A, as defined in
Section 6. Similarly if A is the head, the fact f will be produced in Sτf ,A. Now we can write
the intersection

⋂
A∈τ S

τ
f ,A as:⋂

A∈τ
{mapχ(τ)(q) | ∀i : ∅ ( ρτ (i) ⊆ vars(A)⇒ qi = h

χ(τ)
i (v(ρτ (i)))}

⊇ {mapχ(τ)(q) | ∀i : qi = h
χ(τ)
i (v(ρτ (i)))} ) ∅

In other words, there will be at least one machine in
⋂
A∈τ S

τ
A, which means that every

instantiation of the rule τ will be strongly supported. J
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A.6 Example 1.4
I Example 1.4. For an example showing that not every 1-bounded GHP is weakly pivoting,
consider the following non-pure Datalog program P :

R(x, x)← S(x, x). T (x, y)← R(x, y). T (x, y)← T (z, x), R(z, y).

and GHP family H over a single one-dimensional cube 1. Let map1 be the identity mapping,
χ(τ) = 1 and ρτ (1) = {x} for all rules τ . Clearly, H is not weakly pivoting. Nevertheless,
it can be shown that H is 1-bounded, which follows from the observation that only single-
valued rule instantiations can satisfy under P .

A.7 Example 1.5
I Example 1.5. Consider the left-linear TC example, and let σ = {T}. Suppose we choose
β(T ) = (1). Then β is a pivot base for σ, since for the recursive rule and the only pair
of T -atoms T (x, y), T (x, z) we have T (x, y)[β(T )] = T (x, y)[1] = (x), and T (x, z)[β(T )] =
T (x, z)[1] = (x). Since T is the only idb relation, left-linear TC is pivoting.

Next, consider the left-linear TC with an extra rule:

T (x, y)← R(x, y). T (x, y)← T (x, z), R(z, y). U(y)← T (x, y).

Here, there are two idb relations, but only T occurs in the body of a rule. The pivot base
β from before is still a pivot base for {T}; hence the program is weakly pivoting. However,
there is no pivot base for to {T,U}, which means that the program is not pivoting.
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