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Abstract. In Online Sum-Radii Clustering, n demand points arrive online and
must be irrevocably assigned to a cluster upon arrival. The cost of each cluster
is the sum of a fixed opening cost and its radius, and the objective is to min-
imize the total cost of the clusters opened by the algorithm. We show that the
deterministic competitive ratio of Online Sum-Radii Clustering for general met-
ric spaces is Θ(logn), where the upper bound follows from a primal-dual online
algorithm, and the lower bound is valid for ternary Hierarchically Well-Separated
Trees (HSTs) and for the Euclidean plane. Combined with the results of (Csirik
et al., MFCS 2010), this result demonstrates that the deterministic competitive
ratio of Online Sum-Radii Clustering changes abruptly, from constant to loga-
rithmic, when we move from the line to the plane. We also show that Online
Sum-Radii Clustering in HSTs is closely related to the Parking Permit problem
introduced by (Meyerson, FOCS 2005). Exploiting the relation to Parking Permit,
we obtain a lower bound of Ω(log log n) on the randomized competitive ratio
of Online Sum-Radii Clustering in tree metrics. Moreover, we present a simple
randomized O(logn)-competitive algorithm, and a deterministic O(log logn)-
competitive algorithm for the fractional version of the problem.

1 Introduction

In clustering problems, we seek a partitioning of n demand points into k groups, or
clusters, so that a given objective function, that depends on the distance between points
in the same cluster, is minimized. Typical examples are the k-Center problem, where
we minimize the maximum cluster diameter, the Sum-k-Radii problem, where we min-
imize the sum of cluster radii, and the k-Median problem, where we minimize the to-
tal distance of points to the nearest cluster center. These are fundamental problems in
Computer Science, with many important applications, and have been extensively stud-
ied from an algorithmic viewpoint (see e.g., [18] and the references therein).

In this work, we study an online clustering problem closely related to Sum-k-Radii.
In the online setting, the demand points arrive one-by-one and must be irrevocably as-
signed to a cluster upon arrival. We require that once formed, clusters cannot be merged,

? This work was supported by the project AlgoNow, co-financed by the European Union (Euro-
pean Social Fund - ESF) and Greek national funds, through the Operational Program “Educa-
tion and Lifelong Learning”, under the research funding program Thales.



2 D. Fotakis and P. Koutris

split, or have their center or radius changed. The goal is to open a few clusters with a
small sum of radii. However, instead of requiring that at most k clusters open, which
would lead to an unbounded competitive ratio, we follow [6, 7] and consider a Facility-
Location-like relaxation of Sum-k-Radii, called Sum-Radii Clustering. In Sum-Radii
Clustering, the cost of each cluster is the sum of a fixed opening cost and its radius, and
we seek to minimize the total cost of the clusters opened by the algorithm.

In addition to clustering and data analysis, Sum-Radii Clustering has applications
to location problems of wireless base stations, such as sensors [7, 8] or antennas [3, 15].
In such problems, we place some wireless base stations and setup their communication
range so that some communication demands are satisfied and the total setup and opera-
tional cost is minimized. A standard assumption is that the setup cost is proportional to
the number of stations installed, and the operational cost for each station is proportional
to its range (or a low-degree polynomial of it).

Related Work. In the offline setting, Sum-k-Radii and the closely related problem
of Sum-k-Diameters3 have been thoroughly studied. Sum-k-Radii is NP-hard even
in metric spaces of constant doubling dimension [14]. Gibson et al. [13] proved that
Sum-k-Radii in Euclidean spaces of constant dimension is polynomially solvable, and
presented an O(nlog∆ logn)-time algorithm for Sum-k-Radii in general metric spaces,
where ∆ is the diameter [14]. As for approximation algorithms, Doddi et al. [9] proved
that it is NP-hard to approximate Sum-k-Diameters in general metric spaces within
a factor less than 2, and gave a bicriteria algorithm that achieves a logarithmic ap-
proximation using O(k) clusters. Subsequently, Charikar and Panigraphy [6] presented
a primal-dual (3.504 + ε)-approximation algorithm for Sum-k-Radii in general met-
ric spaces, which uses as a building block a primal-dual 3-approximation algorithm for
Sum-Radii Clustering. Biló et al. [3] considered a generalization of Sum-k-Radii, where
the cost is the sum of the α-th power of the clusters radii, for α ≥ 1, and presented a
polynomial-time approximation scheme for Euclidean spaces of constant dimension.

Charikar and Panigraphy [6] also considered the incremental version of Sum-k-
Radii, Similarly to the online setting, an incremental algorithm processes the demands
one-by-one and assigns them to a cluster upon arrival. However, an incremental algo-
rithm can also merge any of its clusters at any time. They presented anO(1)-competitive
incremental algorithm for Sum-k-Radii that uses O(k) clusters.

In the online setting, where cluster reconfiguration is not allowed, the Unit Cov-
ering and the Unit Clustering problems have received considerable attention. In both
problems, the demand points arrive one-by-one and must be irrevocably assigned to
unit-radius balls upon arrival, so that the number of balls used is minimized. The differ-
ence is that in Unit Covering, the center of each ball is fixed when the ball is first used,
while in Unit Clustering, there is no fixed center and a ball may shift and cover more
demands. Charikar et al. [5] proved an upper bound of O(2dd log d) and a lower bound
of Ω(log d/ log log log d) on the deterministic competitive ratio of Unit Covering in d
dimensions. The results of [5] imply a competitive ratio of 2 and 4 for Unit Covering
on the line and the plane, respectively. The Unit Clustering problem was introduced by
Chan and Zarrabi-Zadeh [4]. The deterministic competitive ratio of Unit Clustering on

3 These problems are closely related in the sense that a c-competitive algorithm for Sum-k-Radii
implies a 2c-competitive algorithm for Sum-k-Diameters, and vice versa.



Online Sum-Radii Clustering 3

the line is at most 5/3 [10] and no less than 8/5 [11]. Unit Clustering has also been
studied in d-dimensions with respect to the L∞ norm, where the competitive ratio is at
most 5

62
d, for any d, and no less than 13/6, for d ≥ 2 [10].

Departing from this line of work, Csirik at el. [7] studied online clustering to mini-
mize the sum of the setup costs and the diameters of the clusters (CSDF). Motivated by
the difference between Unit Covering and Unit Clustering, they considered three mod-
els, the strict, the intermediate, and the flexible one, depending on whether the center
and the radius of a new cluster are fixed at its opening time. Csirik at el. only stud-
ied CSDF on the line and proved that its deterministic competitive ratio is 1 +

√
2 for

the strict and the intermediate model and (1 +
√
5)/2 for the flexible model. Recently,

Divéki and Imreh [8] studied online clustering in two dimensions to minimize the sum
of the setup costs and the area of the clusters. They proved that the competitive ratio of
this problem lies in (2.22, 9] for the strict model and in (1.56, 7] for the flexible model.

Contribution. Following [7], it is natural and interesting to study the online clustering
problem of CSDF in metric spaces more general than the line. In this work, we con-
sider the closely related problem of Online Sum-Radii Clustering (OnlSumRad), and
give upper and lower bounds on its deterministic and randomized competitive ratio for
general metric spaces and for the Euclidean plane. We restrict our attention to the strict
model of [7], where the center and the radius of each new cluster are fixed at opening
time. To justify our choice, we show that a c-competitive algorithm for the strict model
implies an O(c)-competitive algorithm for the intermediate and the flexible model.

We show that the deterministic competitive ratio of OnlSumRad for general metric
spaces is Θ(log n), where the upper bound follows from a primal-dual algorithm, and
the lower bound is valid for ternary Hierarchically Well-Separated Trees (HSTs) and
for the Euclidean plane. This result is particularly interesting because it demonstrates
that the deterministic competitive ratio of OnlSumRad (and of CSDF) changes abruptly,
from constant to logarithmic, when we move from the line to the plane. Interestingly,
this does not happen when the cost of each cluster is proportional to its area [8].

Another interesting finding is that OnlSumRad in metric spaces induced by HTSs is
closely related to the Parking Permit problem introduced by Meyerson [17]. In Parking
Permit, we cover a set of driving days by choosing among K permit types, each with
a given cost and duration. The permit costs are concave, in the sense that the cost per
day decreases with the duration. The algorithm is informed of the driving days in an
online fashion, and irrevocably decides on the permits to purchase, so that all driving
days are covered by a permit and the total cost is minimized. Meyerson [17] proved that
the competitive ratio of Parking Permit is Θ(K) for deterministic and Θ(logK) for
randomized algorithms. We prove that OnlSumRad in HSTs is a generalization of Park-
ing Permit. Combined with the randomized lower bound of [17], this implies a lower
bound of Ω(log log n) on the randomized competitive ratio of OnlSumRad. Moreover,
we show that, under some assumptions, a c-competitive algorithm for Parking Permit
withK types implies a c-competitive algorithm for OnlSumRad in HSTs withK levels.

We conclude with a simple and memoryless randomized O(log n)-competitive al-
gorithm, and a deterministic O(log log n)-competitive algorithm for the fractional ver-
sion of OnlSumRad. Both algorithms work for general metric spaces. The fractional
algorithm is based on the primal-dual approach of [2, 1], and generalizes the fractional
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algorithm of [17] for Parking Permit. We leave as an open problem the existence of
a randomized rounding procedure that converts the fractional solution to an (integral)
clustering of cost within a constant factor of the original cost. This would imply a ran-
domized O(log log n)-competitive algorithm for OnlSumRad in general metrics.
Other Related Work. OnlSumRad is a special case of Online Set Cover [2] with sets of
different weight. In [2], it is presented a nearly optimal deterministic O(logm logN)-
competitive algorithm, whereN is the number of elements andm is the number of sets.
Moreover, if all sets have the same weight and each element belongs to at most d sets,
the competitive ratio can be improved to O(log d logN). If we cast OnlSumRad as a
special case of Online Set Cover, N is the number of points in the metric space, which
can be much larger than the number of demands n, m = Ω(n), and d = O(log n).
Hence, a direct application of the algorithm of [2] to OnlSumRad does not lead to an
optimal deterministic competitive ratio. This holds even if one could possibly extend
the improved ratio of O(log d logN) to the weighted set structure of OnlSumRad.

At the conceptual level, OnlSumRad is related to the problem of Online Facility
Location [16, 12]. However, the two problems exhibit a different behavior w.r.t. their
competitive ratio, since the competitive ratio of Online Facility Location isΘ( logn

log logn ),
even on the line, for both deterministic and randomized algorithms [12].

2 Notation, Problem Definition, and Preliminaries

We consider a metric space (M,d), where M is the set of points and d :M ×M 7→ N
is the distance function, which is non-negative, symmetric and satisfies the triangle
inequality. For a set of points M ′ ⊆ M , we let diam(M ′) ≡ maxu,v∈M ′{d(u, v)}
be the diameter and rad(M ′) ≡ minu∈M ′ maxv∈M ′{d(u, v)} be the radius of M ′.
In a tree metric, the points correspond to the nodes of an edge-weighted tree and the
distances are given by the tree’s shortest path metric. For some α > 1, a Hierarchically
α-Well-Separated Tree (α-HST) is a complete rooted tree with lengths on its edges such
that: (i) the distance of each leaf to its parent is 1, and (ii) on every path from a leaf to
the root, the edge length increases by a factor of α on every level. Thus, the distance of
any node vk at level k to its children is αk−1 and the distance of vk to the nearest leaf
is (αk − 1)/(α− 1). We usually identify a tree with the metric space induced by it.

A cluster C(p, r) ≡ {v : d(p, v) ≤ r} is determined by its center p and its radius r,
and consists of all points within a distance at most r to p. The cost of a cluster C(p, r)
is the sum of its opening cost f and its radius r.
Sum-Radii Clustering. In the offline version of Sum-Radii Clustering, we are given a
metric space (M,d), a cluster opening cost f , and a set D = {u1, . . . , un} of demand
points in M . The goal is to find a collection of clusters C(p1, r1), . . . , C(pk, rk) that
cover all demand points in D and minimize the total cost, which is

∑k
i=1(f + ri).

Online Sum-Radii Clustering. In the online setting, the demand points arrive one-by-
one, in an online fashion, and must be irrevocably assigned to an open cluster upon
arrival. Formally, the input to Online Sum-Radii Clustering (OnlSumRad) consists of
the cluster opening cost f and a sequence u1, . . . , un of (not necessarily distinct) de-
mand points in an underlying metric space (M,d). The goal is to maintain a set of
clusters of minimum total cost that cover all demand points revealed so far.
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In this work, we focus on the so-called Fixed-Cluster version of OnlSumRad, where
the center and the radius of each new cluster are irrevocably fixed when the cluster
opens. Thus, the online algorithm maintains a collection of clusters, which is initially
empty. Upon arrival of a new demand uj , if uj is not covered by an open cluster, the al-
gorithm opens a new clusterC(p, r) that includes uj , and assigns uj to it. The algorithm
incurs an irrevocable cost of f + r for the new cluster C(p, r).

Competitive Ratio. We evaluate the performance of online algorithms using competi-
tive analysis. A (randomized) algorithm is c-competitive if for any sequence of demand
points, its (expected) cost is at most c times the cost of the optimal solution for the
corresponding offline Sum-Radii instance. The (expected) cost of the algorithm is com-
pared against the cost of an optimal offline algorithm that is aware of the entire demand
sequence in advance and has no computational restrictions whatsoever.

Simplified Optimal. The following proposition simplifies the structure of the optimal
solution in the competitive analysis.

Proposition 1. Let S be a feasible solution of an instance I of OnlSumRad. Then, there
is a feasible solution S′ of I with a cost of at most twice the cost of S, where each cluster
has a radius of 2kf , for some integer k ≥ 0.

Other Versions of OnlSumRad. For completeness, we discuss two seemingly less
restricted versions of OnlSumRad, corresponding to the intermediate and the flexible
model in [7]. In both versions, the demands are irrevocably assigned to a cluster upon
arrival. In the Fixed-Radius version, only the radius of a new cluster is fixed when the
cluster opens. The algorithms incurs an irrevocable cost of f +r for each new cluster C
of radius r. Then, new demands can be assigned to C, provided that rad(C) ≤ r. In the
Flexible-Cluster version, a clusterC is a set of demands with neither a fixed center nor a
fixed radius. The algorithm’s cost for each cluster C is f +rad(C), where rad(C) may
increase as new demands are added to C. The Fixed-Cluster version is a restriction of
the Fixed-Radius version, which, in turn, is a restriction of the Flexible-Cluster version.
The following proposition shows that from the viewpoint of competitive analysis, the
three versions are essentially equivalent.

Proposition 2. If there exists a c-competitive algorithm for the Fixed-Radius (resp. the
Flexible-Cluster) version, then there exists a 2c-competitive (resp. 10c-competitive) al-
gorithm for the Fixed-Cluster version.

Parking Permit. In Parking Permit (ParkPermit), we are given a schedule of days,
some of which are marked as driving days, and K types of permits, where a permit of
each type k, k = 1, . . . ,K, has cost ck and duration dk. The goal is to purchase a set
of permits of minimum total cost that cover all driving days. In the online setting, the
driving days are presented one-by-one, and the algorithm irrevocably decides on the
permits to purchase based on the driving days revealed so far.

Meyerson [17] observed that by losing a constant factor in the competitive ratio,
we can focus on the interval version of ParkPermit, where each permit is available
over specific time intervals (e.g. a weakly permit is valid from Monday to Sunday).
Moreover, every day is covered by a single permit of each type k, and each permit
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Fig. 1. An example of the reduction of Theorem 1. On the left, there is an instance of the interval
version of ParkPermit. A feasible solution consists of the permits in grey. On the right, we depict
the instance of OnlSumRad constructed in the proof of Theorem 1.

of type k ≥ 2 has dk/dk−1 permits of type k − 1 embedded in it (see also Fig. 1).
An interesting feature of the deterministic algorithm in [17] is that it is time-sequence-
independent, in the sense that it applies, with the same competitive ratio of O(K), even
if the order in which the driving days are revealed may not be their time order (e.g. the
adversary may mark Aug. 6 as a driving day, before marking May 25 as a driving day).

3 Online Sum-Radii Clustering and Parking Permit

In this section, we show that OnlSumRad in tree metrics and the interval version of
ParkPermit are essentially equivalent problems. Our results either are directly based
on this correspondence or exploit this correspondence so that they draw ideas from
ParkPermit. We start with the following theorem, which shows that OnlSumRad in tree
metrics is a generalization of the interval version of ParkPermit.

Theorem 1. A c-competitive algorithm for Online Sum-Radii Clustering in HSTs with
K+1 levels implies a c-competitive algorithm for the interval version of Parking Permit
with K permit types.

Proof. Given an instance I of the interval version of ParkPermit with K permit types,
we construct an instance I ′ of OnlSumRad in an HST with K + 1 levels such that any
feasible solution of I is mapped, in an online fashion, to a feasible solution of I ′ of
equal cost, and vice versa. Let I be an instance of the interval version of ParkPermit
with K types of costs c1, . . . , cK and durations d1, . . . , dK . Wlog., we assume that
c1 = 1 and that all days are covered by the permit of type K. Given the costs and the
durations of the permits, we construct a tree T with appropriate edge lengths, which
gives the metric space for I ′. The construction exploits the tree-like structure of the
interval version (see also Fig. 1). Specifically, the tree T has K + 1 levels, where the
leaves correspond to the days of I’s schedule, and each node at level k, 1 ≤ k ≤ K,
corresponds to a permit of type k.

Formally, the tree T has a leaf, at level 0, for each day in the schedule of I. For each
interval D1 of d1 days covered by a permit of type 1, there is a level-1 node v1 in T
whose children are the d1 leaves corresponding to the days in D1. The distance of each
level-1 node to its children is c1−1 = 0. Hence, opening a cluster C(v1, c1−1) covers
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all leaves corresponding to the days in D1. Similarly, for each interval Dk of dk days
covered by a permit of type k, 2 ≤ k ≤ K, there is a node vk at level k in T whose
children are the dk/dk−1 nodes at level k−1 corresponding to the permits of type k−1
embedded within the particular permit of type k. The distance of each level-k node to
its children is ck − ck−1. Therefore, opening a cluster C(vk, ck − 1) covers all leaves
corresponding to the days in Dk. The cluster opening cost is f = 1. For each driving
day t in I, there is, in I ′, a demand located at the leaf of T corresponding to t.

Based on the correspondence between a type-k permit and a cluster C(vk, ck − 1)
rooted at a level-k node vk, we can show that any solution of I is mapped, in an online
fashion, to a solution of I ′ of equal cost, and vice versa. ut

In the proof of Theorem 1, if the ParkPermit instance has d1 = 1 and ck = 2k,
for each type k, the tree T is essentially a 2-HST with K levels where all nodes at the
same level k have dk/dk−1 children. Thus, combined with Theorem 1, the following
lemma shows that OnlSumRad in such tree metrics is similar to the interval version of
ParkPermit. The proof of Lemma 1 applies the reverse reduction of Theorem 1.

Lemma 1. A c-competitive time-sequence-independent algorithm for the interval ver-
sion of ParkPermit withK permits implies a c-competitive algorithm for OnlSumRad in
HSTs withK levels, where all nodes at the same level have the same number of children
and all demands are located at the leaves.

4 Lower Bounds on the Competitive Ratio

By Theorem 1, OnlSumRad in trees with K+1 levels is a generalization of ParkPermit
with K permit types. Therefore, the results of [17] imply a lower bound of Ω(K) (resp.
Ω(logK)) on the deterministic (resp. randomized) competitive ratio of OnlSumRad in
trees with K levels. However, a lower bound on the competitive ratio of OnlSumRad
would rather be expressed in terms of the number of demands n, because there is no
simple and natural way of defining the number of “levels” of a general metric space,
and because for online clustering problems, the competitive ratio, if not constant, is
typically stated as a function of n.

Going through the proofs of Theorem 1 and of [17, Theorems 3.2 and 4.6], we
can translate the lower bounds on the competitive ratio of ParkPermit, expressed as
a function of K, into equivalent lower lower bounds for OnlSumRad, expressed as a
function of n. In fact, the proofs of [17, Theorems 3.2 and 4.6] require that the ratio
dk/dk−1 of the number of days covered by permits of type k and k− 1 is 2K. Thus, in
the proof of Theorem 1, the tree T has (2K)K leaves, and the number of demands n is
at most (2K)K . Combining this with the lower bound of Ω(logK) on the randomized
competitive ratio of ParkPermit [17, Theorem 4.6], we obtain the following corollary:

Corollary 1. The competitive ratio of any randomized algorithm for Online Sum-Radii
Clustering in tree metrics is Ω(log log n), where n is the number of demands.

A Stronger Lower Bound on the Deterministic Competitive Ratio. This approach
gives a lower bound of Ω( logn

log logn ) on the deterministic competitive ratio of Online
Sum-Radii Clustering. Using a ternary HST, we next obtain a stronger lower bound.
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Theorem 2. The competitive ratio of any deterministic online algorithm for Online
Sum-Radii Clustering in tree metrics is Ω(log n), where n is the number of demands.

Proof. For simplicity, let us assume that n is an integral power of 3. For some constant
α ∈ [2, 3), we consider an α-HST T of heightK = log3 nwhose non-leaf nodes have 3
children each. The cluster opening cost is f = 1. Let A be any deterministic algorithm.
We consider a sequence of demands located at the leaves of T . More precisely, starting
from the leftmost leaf and advancing towards the rightmost leaf, the next demand in the
sequence is located at the next leaf not covered by an open cluster of A. Since T has n
leaves, A may cover all leaves of T before the arrival of n demands. Then, the demand
sequence is completed in an arbitrary way that does not increase the optimal cost. We
let COPT be the optimal cost, and let CA be the cost of A on this demand sequence.

We let ck = 1 +
∑k−1
`=0 α

` denote the cost of a cluster centered at a level-k node
vk with radius equal to the distance of vk to the nearest leaf. We observe that for any
k ≥ 1 and any α ≥ 2, ck ≤ αck−1. We classify the clusters opened by A according to
their cost. Specifically, we let Lk, 0 ≤ k ≤ K, be the set of A’s clusters with cost in
[ck, ck+1), and let `k = |Lk| be the number of such clusters. The key property is that
a cluster in Lk can cover the demands of a subtree rooted at level at most k, but not
higher. Therefore, we can assume that all A’s clusters in Lk are centered at a level-k
node and have cost equal to ck, and obtain a lower bound of CA ≥

∑K
k=0 `kck on the

algorithm’s cost.
To derive an upper bound on the optimal cost in terms of CA, we distinguish be-

tween good and bad active subtrees, depending on the size of the largest radius cluster
with which A covers the demand points in them. Formally, a subtree Tk rooted at level
k is active if there is a demand point located at some leaf of it. For an active subtree Tk,
we let Cmax

Tk
denote the largest radius cluster opened by A when a new demand point in

Tk arrives. Let j, 0 ≤ j ≤ K, be such that Cmax
Tk
∈ Lj . Namely, Cmax

Tk
is centered at a

level-j node vj and covers the entire subtree rooted at vj . If j ≥ k, i.e. if Cmax
Tk

covers
Tk entirely, we say that Tk is a good (active) subtree (for the algorithm A). If j < k,
i.e. if Cmax

Tk
does not cover Tk entirely, we say that Tk is a bad (active) subtree (for A).

For each k = 0, . . . ,K, we let gk (resp. bk) denote the number of good (resp. bad)
active subtrees rooted at level k. To bound gk from above, we observe that the last
demand point of each good active subtree rooted at level k is covered by a new cluster
of A rooted at a level j ≥ k. Therefore, the number of good active subtrees rooted at
level k is at most the number of clusters in

⋃K
j=k Lj . Formally, for each level k ≥ 0,

gk ≤
∑K
j=k `j . To bound bk from above, we first observe that each active leaf / demand

point is a good active level-0 subtree, and thus b0 = 0. For each level k ≥ 1, we observe
that if Tk is a bad subtree, then by the definition of the demand sequence, the 3 subtrees
rooted at the children of Tk’s root are all active. Moreover, each of these subtrees is
either a bad subtree rooted at level k − 1, in which case it is counted in bk−1, or a good
subtree covered by a cluster in Lk−1, in which case it is counted in `k−1. Therefore, for
each level k ≥ 1, 3bk ≤ bk−1 + `k−1.

Using these bounds on gk and bk, we can bound from above the optimal cost in terms
of CA. To this end, the crucial observation is that we can obtain a feasible solution by
opening a cluster of cost ck centered at the root of every active subtree rooted at level
k. Since the number of active subtrees rooted at level k is bk + gk, we obtain that for
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every k ≥ 0, COPT ≤ ck(bk + gk). Using the upper bound on gk and summing up for
k = 0, . . . ,K, we have that (K + 1)COPT ≤

∑K
k=0 ckbk +

∑K
k=0 ck

∑K
j=k `j .

Using that ck ≤ αk and that ck ≤ αck−1, which hold for all α ≥ 2, we bound the
second term by:

K∑
k=0

ck

K∑
j=k

`j =

K∑
k=0

`k

k∑
j=0

cj ≤
K∑
k=0

`k

k∑
j=0

αj ≤
K∑
k=0

`kck+1 ≤ α
K∑
k=0

`kck ≤ αCA

To bound the first term, we use that for every level k ≥ 1, 3bk ≤ bk−1 + `k−1 and ck ≤
αck−1. Therefore, (3/α)bkck ≤ (bk−1 + `k−1)ck−1. Summing up for k = 1, . . . ,K,
we have that:

3

α

K∑
k=1

bkck ≤
K∑
k=1

bk−1ck−1 +

K∑
k=1

`k−1ck−1

Using that b0 = 0 and that α < 3, we obtain that:

3

α

K∑
k=0

bkck ≤
K−1∑
k=0

bkck +

K−1∑
k=0

`kck ≤
K∑
k=0

bkck + CA ⇒
K∑
k=0

bkck ≤
α

3− α CA

Putting everything together, we conclude that for any α ∈ [2, 3), (K + 1)COPT ≤
(α+ α

3−α )CA. Since K = log3 n, this implies the theorem. ut
A Lower Bound for Deterministic OnlSumRad on the Plane. Motivated by the fact
that the deterministic competitive ratio of OnlSumRad on the line is constant [7], we
study OnlSumRad in the Euclidean plane. The following theorem uses a constant-
distortion planar embedding of a ternary α-HST, and establishes a lower bound of
Ω(log n) on the deterministic competitive ratio of OnlSumRad on the Euclidean plane.

Theorem 3. The competitive ratio of any deterministic algorithm for Online Sum-Radii
Clustering on the Euclidean plane is Ω(log n), where n is the number of demands.

Proof sketch. Using a planar embedding of a ternary α-HST T with distortion Dα ≤√
2α/(α−2), we can show that a c-competitive algorithm for OnlSumRad on the plane

implies a 2cDα-competitive algorithm for HSTs. ut

5 An Optimal Primal-Dual Online Algorithm

Next, we present a deterministic primal-dual algorithm for OnlSumRad in a general
metric space (M,d). In the following, we assume that the optimal solution only consists
of clusters with radius 2kf , where k is a non-negative integer (see also Proposition 1).
For simplicity, we let rk = 2kf , if k ≥ 0, and rk = 0, if k = −1. Let N = N ∪ {−1}.
Then, the following are a Linear Programming relaxation of OnlSumRad and its dual:

min
∑

(z,k)∈M×N

xzk(f + rk)

s.t
∑

(z,k):d(uj ,z)≤rk

xzk ≥ 1 ∀uj

xzk ≥ 0 ∀ (z, k)

max

n∑
j=1

aj

s.t
∑

j:d(uj ,z)≤rk

aj ≤ f + rk ∀ (z, k)

aj ≥ 0 ∀uj
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In the primal program, there is a variable xzk for each point z and each k ∈ N that
indicates the extent to which cluster C(z, rk) is open. The constraints require that each
demand uj is fractionally covered. If we require that xzk ∈ {0, 1} for all z, k, we obtain
an Integer Programming formulation of OnlSumRad. In the dual, there is a variable aj
for each demand uj , and the constraints require that no potential cluster is “overpaid”.

The primal-dual algorithm, or PD-SumRad in short, maintains a collection of clus-
ters that cover all the demands processed so far. When a new demand uj , j = 1, . . . , n,
arrives, if uj is covered by an already open cluster C, PD-SumRad assigns uj to C
and sets uj’s dual variable aj to 0. Otherwise, PD-SumRad sets aj to f . This makes
the dual constraint corresponding to (uj ,−1) and possibly some other dual constraints
tight. PD-SumRad finds the maximum k ∈ N such that for some point z ∈M , the dual
constraint corresponding to (z, k) becomes tight due to aj . Then, PD-SumRad opens a
new cluster C(z, 3rk) and assigns uj to it. The main result of this section is that:

Theorem 4. The competitive ratio of PD-SumRad is Θ(log n).

The lower bound on the competitive ratio of PD-SumRad follows from Theorem 2.
To establish the upper bound, we first observe that the dual solution maintained by
PD-SumRad is feasible. Thus the optimal cost for any demand sequence is at least the
value of the dual solution maintained by PD-SumRad. Combining this observation with
the following lemma, which shows that the total cost of PD-SumRad is at mostO(log n)
times the value of its dual solution, we obtain the claimed competitive ratio.

Lemma 2. The cost of PD-SumRad is at most 3(2 + log2 n)
∑n
j=1 aj .

Proof. We call a cluster C(z, rk) tight if the dual constraint corresponding to (z, k) is
satisfied with equality. We observe that for any integer k > log2 n and for all points z,
C(z, k) cannot become tight, because the lefthand-side of any dual constraint is at most
nf . Therefore, we can restrict our attention to at most 2 + log2 n values of k.

Next, we show that for every k = −1, 0, . . . , blog2 nc, each demand uj with aj > 0
contributes to the opening cost of at most one cluster with radius 3rk. Namely, there is
at most one cluster C(z, 3rk) for which uj belongs to the tight cluster C(z, rk). For
sake of contradiction, let us assume that for some value of k, PD-SumRad opens two
clusters C1 = C(z1, 3rk) and C2 = C(z2, 3rk) for which there is some uj with aj > 0
that belongs to bothC(z1, rk) andC(z2, rk). Since PD-SumRad opens at most one new
cluster when a new demand is processed, one of the clusters C1, C2 opens before the
other. So, let us assume that C1 opens before C2. This means that PD-SumRad opened
C1 in response to a demand uj′ , with j′ ≤ j, that was uncovered at its arrival time and
made C(z1, rk) tight. Then, any subsequent demand u ∈ C(z2, rk) is covered by C1,
because:

d(u, z1) ≤ d(u, uj) + d(uj , z1) ≤ 2rk + rk = 3rk

The second inequality above holds because both u and uj belong to C(z2, rk) and uj
also belongs to C(z1, rk). Therefore, after C1 opens, there are no uncovered demands
in C(z2, rk) that can force PD-SumRad to open C2, a contradiction.

To conclude the proof of the lemma, we observe that when PD-SumRad opens a
new cluster C(z, 3rk), the cluster C(z, rk) is tight. Hence, the total cost of C(z, 3rk)
is at most 3

∑
uj∈C(z,rk)

aj . Therefore, the total cost of PD-SumRad is at most:
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∑
(z,k):C(z,3rk) op.

∑
uj∈C(z,rk)

3aj = 3

n∑
j=1

aj |{(z, k) : C(z, 3rk) opens ∧ uj ∈ C(z, rk)}|

≤ 3(2 + log2 n)

n∑
j=1

aj

The inequality holds because for each k = −1, 0, . . . , blog2 nc and each uj with aj >
0, there is at most one pair (z, k) such that C(z, 3rk) opens and uj ∈ C(z, rk). ut

6 Randomized and Fractional Online Algorithms

Throughout this section, we assume that the optimal solution only consists of clusters
of radius 2kf . For simplicity, we assume that n is an integral power of 2 and known in
advance. Using standard techniques, we can remove these assumptions, by only losing
a constant factor in the competitive ratio.
Randomized Algorithm. We first present Simple-SumRad, that is a simple random-
ized algorithm of logarithmic competitiveness. Simple-SumRad is memoryless, in the
sense that it keeps in memory only its solution, namely the centers and the radii of its
clusters. When a new demand uj arrives, if uj is covered by an already open cluster
C, Simple-SumRad assigns uj to C. Otherwise, for each k = 0, . . . , log2 n, the algo-
rithm opens a new clusterC(uj , 2kf) with probability 2−k, and assigns uj to the cluster
C(uj , f), which opens with probability 1. We can show that:

Lemma 3. Simple-SumRad achieves a competitive ratio of at most 2(4 + log2 n).

Fractional Algorithm. We conclude with a deterministic O(log log n)-competitive al-
gorithm for the fractional version of OnlSumRad in general metric spaces. The frac-
tional algorithm is based on the primal-dual approach of [2, 1], and is a generalization
of the online algorithm for the fractional version of ParkPermit in [17, Section 4.1].

A fractional algorithm maintains, in an online fashion, a feasible solution to the
Linear Programming relaxation of OnlSumRad. In the notation of Section 5, for each
point-type pair (z, k), the algorithm maintains a fraction xzk, which denotes the extent
to which the cluster C(z, rk) opens, and can only increase as new demands arrive. For
each demand uj , the fractions of the clusters covering uj must sum up to at least 1, i.e.∑

(z,k):uj∈C(z,rk)
xzk ≥ 1. The total cost of the algorithm is

∑
(z,k) xzk(f + rk).

The Algorithm. The fractional algorithm, or Frac-SumRad in short, considers K + 1
different types of clusters, where K = log2 n. For each k = 1, . . . ,K + 1, we let
ck = f + rk denote the cost of a cluster C(p, rk) of type k. The algorithm consid-
ers only the demand locations as potential cluster centers. For convenience, for each
demand uj and for each k, we let xjk be the extent to which the cluster C(uj , rk)
is open, with the understanding that xjk = 0 before uj arrives. Similarly, we let
Fjk =

∑
(i,k):uj∈C(ui,rk)

xik be the extent to which demand uj is covered by clus-
ters of type k, and let Fj =

∑
k Fjk be the extent to which uj is covered.

When a new demand uj , j = 1, . . . , n, arrives, if Fj ≥ 1, uj is already covered.
Otherwise, while Fj < 1, Frac-SumRad performs the following operation:
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1. For every k = 1, . . .K + 1, xjk ← xjk +
1

ck(K+1)

2. For every k = 1, . . . ,K+1 and every demand ui ∈ C(uj , rk), xik ← xik(1+
1
ck
)

Frac-SumRad maintains a (fractional) feasible solution in an online fashion. The
proof of the following theorem extends the competitive analysis in [17, Section 4.1].

Theorem 5. The competitive ratio of Frac-SumRad is O(log log n).
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