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ABSTRACT

We study the problem of computing a conjunctive query q in
parallel, using p of servers, on a large database. We consider
algorithms with one round of communication, and study the
complexity of the communication. We are especially inter-
ested in the case where the data is skewed, which is a major
challenge for scalable parallel query processing. We establish
a tight connection between the fractional edge packing of the
query and the amount of communication in two cases. First,
in the case when the only statistics on the database are the
cardinalities of the input relations, and the data is skew-free,
we provide matching upper and lower bounds (up to a poly-
logarithmic factor of p) expressed in terms of fractional edge
packings of the query q. Second, in the case when the rela-
tions are skewed and the heavy hitters and their frequencies
are known, we provide upper and lower bounds expressed in
terms of packings of residual queries obtained by specializ-
ing the query to a heavy hitter. All our lower bounds are
expressed in the strongest form, as number of bits needed to
be communicated between processors with unlimited com-
putational power. Our results generalize prior results on
uniform databases (where each relation is a matching) [4],
and lower bounds for the MapReduce model [1].

Categories and Subject Descriptors

H.2.4 [Systems]: Parallel Databases
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1. INTRODUCTION
While in traditional query processing the main complexity

is dominated by the disk access time, in modern massively
distributed systems the dominant cost is that of the commu-
nication. A data analyst will use a cluster with sufficiently
many servers to ensure that the entire data fits in main
memory. Unlike MapReduce [6], which stores data on disk

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2375-8/14/06 ...$15.00.

http://dx.doi.org/10.1145/2594538.2594558 .

between the Map and the Reduce phase for recovery pur-
poses, newer systems like Spark [17] and its SQL-extension
Shark [14] perform the entire computation in main memory,
and use replay to recover. In these systems the new com-
plexity parameter is the communication cost, which depends
on both the amount of data sent and the number of rounds.

A key requirement in such systems is that the data be
uniformly partitioned on all servers, and this requirement
is challenging to enforce when the input data is skewed. A
value in the database is skewed, and is called a heavy hit-
ter, when it occurs with much higher frequency than some
predefined threshold. Since data reshuffling is typically done
using hash-partitioning, all records containing a heavy hitter
will be sent to the same server, causing it to be overloaded.
Skew for parallel joins has been studied intensively since the
early days of parallel databases, see [13]. The standard par-
allel join algorithm that handles skew is the skew join [11],
which consists of first detecting the heavy hitters (e.g. us-
ing sampling), then treating them differently from the others
values, e.g. by partitioning tuples with heavy hitters on the
other attributes; a detailed description is in [15]. None of
these algorithms has been proven to be optimal in any for-
mal sense, and to the best of our knowledge there are no
lower bounds for the communication required to compute a
join in the presence of skew.

Complex queries often involve multiple joins, and the tra-
ditional approach that computes one join at a time leads to
a number of communication rounds at least as large as the
depth of the query plan. It is possible, however, to compute
a multiway join in a single communication round, using a
technique that can be traced back to Ganguli, Silberschatz,
and Tsur [8, Sec.7], and was described by Afrati and Ull-
man [2] in the context of MapReduce algorithms. We will
refer to this technique as the HyperCube algorithm, fol-
lowing [4]. The p servers are organized into a hypercube
with k dimensions, where k is the number of variables in
the query. During a single reshuffling step, every tuple is
sent to all servers in a certain subcube of the hypercube
(with as many dimensions as the number of query variables
missing from the tuple). One challenge in this approach
is to determine the size of the hypercube in each of the k
dimensions. In [2] this is treated as a non-linear optimiza-
tion problem and solved using Lagrange multipliers. In [4]
it is shown that, in the case where all relations have the
same cardinality, the optimal dimensions can be expressed
in terms of the optimal fractional vertex cover of the query.
All hypercube-based techniques described in [2, 4], and else-
where (e.g. in [12] for computing triangles) assume that the



data has no skew. The behavior of the algorithm on skewed
data has not been studied before and no techniques for ad-
dressing skew have been proposed.
Our Contribution. In this paper we study the problem

of computing a full conjunctive query (multi-way join query)
when the input data may have arbitrary skew. We are given
p servers that have to compute a query on a database with
m tuples; we assume that m ≫ p. We prove upper and lower
bounds for the amount of communication needed to compute
the query in one round. We assume the following statistics
on the input database to be known: the cardinality of each
input relation, the identity of the heavy hitters, and their
(approximate) frequency in the data. We note that this is a
reasonable assumption in today’s distributed query engines.
In our settings there are at most O(p) heavy hitters because
we choose a threshold for the frequency of heavy hitters that
is ≥ m/p, and therefore the number of heavy hitters is tiny
compared to the size of the database. We assume that at the
beginning of the computation all servers know the identity
of all heavy hitters, and the (approximate) frequency of each
heavy hitter. Given these statistics, we present upper and
lower bounds for the amount of communication needed to
compute the query on the class of databases satisfying those
statistics. There is a small gap remaining between the upper
and lower bound; for the join query, however, we prove that
the bounds match. Our results are significant extensions of
our previous results [4], which hold only in the absence of
skew and for relations of the same cardinality.
Grohe and Marx [9] and Atserias et al. [3] give upper

bounds on the query size in terms of a fractional edge cover;
this is also a lower bound on the running time of any se-
quential algorithm that computes the query. Recently, Ngo
at al. [10] described a sequential algorithm that matches that
bound. Thus, the sequential complexity of a query is cap-
tured by the edge cover; our results show that the communi-
cation complexity for parallel evaluation is instead captured
by the edge packing.
Overview of the results. Our analysis of skew starts

with an analysis of skew-free databases, but with unequal
cardinalities. Consider a simple cartesian product, q(x, y) =
S1(x), S2(y), of two relations with cardinalities m1,m2. As-

sume 1/p ≤ m1/m2 ≤ p1. Let p1 =
√

m1p/m2, p2 =
√

m2p/m1 and assume that they are integer values. Or-
ganize the p servers into a p1 × p2 rectangle, and assign to
each server two coordinates (i, j) ∈ [p1] × [p2]. During the
communication phase, the algorithm uses two random hash
functions h1, h2 and sends every tuple S1(x) to all servers
with coordinates (h1(x), j), j ∈ [p2] (thus, every server re-

ceives with high probability O(m1/p1) = O(
√

m1m2/p) tu-
ples from S1), and sends every tuple S2(y) to all servers
with coordinates (i, h2(y)), i ∈ [p1]. The load per server is

L = O(
√

m1m2/p), and it is not hard to see that this is op-
timal2. This observation generalises to any u-way cartesian

1if m1 < m2/p then we can broadcast S1 to all servers and
compute the query with a load increase of at most m2/p per
server thus at most double that of any algorithm, because
m2/p is the load required to store S2.
2Let ai, bi be the number of S1-tuples and S2-tuples received
by server i ∈ [p]. On one hand

∑

i aibi = 〈ā, b̄〉 ≥ m1m2

because the servers must report all m1m2 tuples; on the

other hand 〈ā, b̄〉 ≤ ‖ā+ b̄‖
2

2/4 ≤ p‖ā+ b̄‖
2

∞/4 = pL2/4.

product: the minimum load per server needed to compute
S1 × . . .× Su is Ω((m1m2 · · ·mu/p)

1/u)
Consider now some arbitrary full conjunctive query q over

relations S1, . . . , Sℓ, and assume that the cardinality of Sj

is mj . Choose some subset Sj1 , Sj2 , . . . , Sju ; the subset is
called an edge packing, or an edge matching, if no two re-
lations share a common variable. Any one-round algorithm
that computes the query correctly must also compute the
cartesian product of the relations Sj1 , Sj2 , . . . , Sju . Indeed,
since no two relations share variables, any tuple in their
cartesian product could potentially be part of the query an-
swer; without knowing the content of the other relations,
the input servers that store (fragments of) Sj1 , Sj2 , . . . must
ensure that any combination reaches some output server.
Therefore, the load per server of any one-round algorithm
is at least Ω((mj1 · · ·mju/p)

1/u). Thus, every edge pack-
ing gives a lower bound for computing q. For example the
load per server needed to compute the query q(x, y, z, w) =

S1(x, y), S2(y, z), S3(z, w) is at least L ≥
√

m1m3/p, be-
cause of the packing {S1, S3}; it must also be L ≥ m2/p,
because of the packing {S2}. We prove in this paper that
this property extends to any fractional edge packing. Let Mj

denote the number of bits needed to represent the relation
Sj . We show:

Theorem 1.1. Let u = (u1, . . . , uℓ) be any fractional edge
packing for the query q, and u =

∑

j uj . Let K(u,M) =
∏

j M
uj

j and L(u,M, p) = (K(u,M)/p)1/u. If an algorithm
computes q in one step, then at least one server has a load
Ω(L(u,M, p)). Conversely, let Llower = maxu L(u,M, p) be
the maximum over all fractional edge packings. Then, there
exists a randomized algorithm for q (HyperCube or HC al-
gorithm) whose maximum load per server is O(Llower ln

k p)
with high probability on all databases without skew.

In the case when all relations have the same size M , then
the lower bound is Llower = maxu(M/p1/u) = M/p1/τ

∗

,
where τ∗ is the value of the maximal fractional edge packing,
and is equal to the fractional vertex covering number for q;
thus, we recover our prior result in [4], which was stated for
the special case when all relations are matchings and have
equal cardinalities.

Theorem 1.1 completes the analysis of the HC algorithm
on skew-free databases with arbitrary cardinalities. In ad-
dition, we prove a rather surprising result: the HC algo-
rithm is resilient to skew, in the sense that, even on skewed
databases, it can still offer a non-trivial upper bound for the
maximum load per server: namely L = O(M/p1/k), where
M is the size of the largest relation, and k the total number
of variables in the query. For example, using HC one can
compute the join of two relations and guarantee a maximum
load of O(M/p1/3), even without any knowledge about skew
or heavy hitters. In contrast, a standard hash-join algorithm
may incur a load of Ω(M) when the join attributes have a
single value.

Next, we consider the case when information about heavy
hitters is known. In addition to knowing the cardinalities
of the input relations, we assume that the identities of the
heavy hitters are known, and that the frequency in the data
of every heavy hitter is also known. For example, if the
relation Sj contains an attribute x, then we assume to know
the set of heavy hitters H, together with the frequencies
mj(h) = |σx=h(Sj)|, which, by definition, are ≥ mj/p.



For this setting, we generalize the results for skew-free
databases by proving both lower bound and upper bounds.
Our lower bound is an elegant generalization of that in
Theorem 1.1, and is expressed in terms of fractional edge
packings of residual queries: for each set of variables x, the
residual query qx is obtained from q by simply removing the
variables x. The upper bound is based on the idea of running
the main query on the subset of the database that consists
of light hitters, then handling each heavy hitter separately,
by computing a residual query. The algorithm is difficult,
because of two challenges. First, one needs to consider sets
of attributes of each relation Sj that may be heavy hitters
jointly, even if none of them is a heavy hitter by itself. Sec-
ond, an attribute value may become a heavy hitter in the
residual query even though it was light in the main query.
Our algorithm addresses these challenges by creating, for
each subset of attributes of each relation, O(log p) bins of
heavy hitters, where all heavy hitters in a bin have frequen-
cies that differ by at most a factor of two (because of this
it suffices for our algorithm to have access only to approx-
imate frequencies of heavy hitters). By considering sepa-
rately all combinations of bins, we can run residual queries
on databases where the frequencies are guaranteed to be uni-
form, thus avoiding the difficulties that arise from recursion.
Denote Mj(h) the number of bits needed to represent the
subset σx=h(Sj) of Sj . Our second main result is:

Theorem 1.2. Consider all database instances defined by
a set of statistics consisting of the cardinalities of the rela-
tions, the set of heavy hitters, and the frequency of each
heavy hitter. For a set of variables x and any packing u of
the residual query qx that saturates the variables in x, let

Lx(u,M, p) =
(
∑

h
K(u,M(h))/p

)1/u
: then any determin-

istic algorithm that computes q on these databases must have
a load ≥ Lx(u,M, p).
Moreover, there exists a randomized algorithm for com-

puting q with maximum load O(Lupper log
O(1) p) with high

probability, where Lupper = maxx,u Lx(u,M, p) and u now
ranges over all packings of the residual query qx.

The gap between the upper and lower bound comes from
the fact that in the upper bound the possible edge packings
for qx are not restricted to only those which saturate the
variables in x.
As a final contribution of our paper, we discuss the con-

nection between our results in the MPC model and the re-
sults of [1] on models for computation in MapReduce. We
show that our results provide new upper and lower bounds
for computing conjunctive queries in [1], and in a stronger
computational model.
The paper is organized as follows. We describe the com-

putational model and review the basic definitions from [4] in
section 2, then present in section 3 our results for the case
when the statistics known about the database are restricted
to cardinalities. The case of databases with known heavy
hitters is discussed in section 4. We present the connection
with [1] in section 5 and finally conclude in section 6. Sev-
eral proofs are relegated to the full version of the paper [5].

2. PRELIMINARIES

2.1 Massively Parallel Communication
We define here the MPC model. The computation is per-

formed by p servers connected by a complete network of

private3 channels. The input data is initially distributed
evenly among the p servers. The computation proceeds in
rounds, where each round consists of local computation at the
servers interleaved with global communication. The servers
have unlimited computational power, but may be limited in
the amount of bits they receive. In this paper, we discuss
query evaluation in this model, and consider a single round
of communication. The load of a server is the number of bits
received by the server during the communication; we write
L for the maximum load among all servers.

If the size of the input is M bits, an ideal algorithm would
split the data equally among the servers, and so we would
like to have L = M/p; in this case, the total amount of
data communicated is M and thus there is no replication.
Depending on the query, L is higher than the ideal M/p by
some factor called replication factor. In [4] we considered
the case when the input data is perfectly uniform and all
relations have the same size, and showed that the replication
factor for any conjunctive query is O(pε), where 0 < ε ≤
1 is a constant that depends only on the query. In this
work we consider arbitrary input data, and the replication
factor becomes a more complex formula that depends on the
database statistics.

Randomization. The MPC model allows randomization
during the computation. The random bits are available to
all servers at the beginning of computation, and are inde-
pendent of the input data.

Random Instances and Yao’s Lemma. Our lower
bounds are stated by showing that, if the database instance
is chosen at random from some known probability space,
then any algorithm with a load less than a certain bound
can report only o(1) fraction of the expected number of an-
swers to the query. Using Yao’s lemma [16] this implies that
for any randomized algorithm there exists an instance on
which the algorithm will fail with high probability; see [4]
for details.

Input Servers. In our upper bounds we assume that the
input relations Sj are initially partitioned uniformly on the
servers: all our algorithms treat tuples in Sj independently
of other tuples. For our lower bounds, we assume a more
powerful model, where at the beginning of the algorithm
each relation Sj is stored on a separate server, called an
input server, which can examine the entire relation in order
to determine what message to send. These assumptions are
the same as in [4].

Database Statistics. In this paper we assume that
all input servers know certain database statistics. Simple
database statistics consists of the cardinalities mj of all in-
put relations Sj ; we discuss this case in section 3. Complex
database statistics add information about heavy hitters; we
discuss these in the rest of the paper. The size of these
statistics is O(1) in the first case, and O(p) in the second.
Both upper and lower bounds assume that these statistics
are available to all input servers.

2.2 Conjunctive Queries
We study the problem of computing answers to conjunc-

tive queries over an input database in the MPC model. We
fix an input vocabulary S1, . . . , Sℓ, where each relation Sj

has arity aj ; let a =
∑ℓ

j=1 aj . The input data consists of
one relation instance for each symbol. We consider full con-

3“Private” means that when server i sends a message to
server j no other server sees its content.



junctive queries without self-joins4:

q(x1, . . . , xk) = S1(x̄1), . . . , Sℓ(x̄ℓ) (1)

The query is full, meaning that every variable in the body
appears in the head (for example q(x) = S(x, y) is not full),
and without self-joins, meaning that each relation name Sj

appears only once (for example q(x, y, z) = S(x, y), S(y, z)
has a self-join). The hypergraph of a query q is defined by
introducing one node for each variable in the body and one
hyperedge for each set of variables that occur in a single
atom. With some notational abuse we write i ∈ Sj to mean
that the variable xi occurs in the the variables vars(Sj) of
the atom Sj .
Fractional Edge Packing. A fractional edge packing

(also known as a fractional matching) of a query q is any
feasible solution u = (u1, . . . , uℓ) of the following linear con-
straints:

∀i ∈ [k] :
∑

j:i∈Sj

uj ≤ 1 (2)

∀j ∈ [ℓ] : uj ≥ 0

The edge packing associates a non-negative weight uj to
each atom Sj such that for every variable xi, the sum of the
weights for the atoms that contain xi do not exceed 1. If
all inequalities are satisfied as equalities by a solution to the
LP, we say that the solution is tight.
For a simple example, an edge packing of the query L3 =

S1(x1, x2), S2(x2, x3), S3(x3, x4) is any solution to u1 ≤ 1,
u1 + u2 ≤ 1, u2 + u3 ≤ 1 and u3 ≤ 1. In particular, the
solution (1, 0, 1) is a tight and feasible edge packing. A frac-
tional edge cover is a feasible solution u = (u1, . . . , uℓ) to
the system above where ≤ is replaced by ≥ in Eq.2. Every
tight fractional edge packing is a tight fractional edge cover,
and vice versa.

2.3 Friedgut’s Inequality
Friedgut [7] introduces the following class of inequalities.

Each inequality is described by a hypergraph, which in our
paper corresponds to a query, so we will describe the in-
equality using query terminology. Fix a query q as in (1),
and let n > 0. For every atom Sj(x̄j) of arity aj , we intro-
duce a set of naj variables wj(aj) ≥ 0, where aj ∈ [n]aj .
If a ∈ [n]k, we denote by aj the vector of size aj that re-
sults from projecting on the variables of the relation Sj . Let
u = (u1, . . . , uℓ) be a fractional edge cover for q. Then:

∑

a∈[n]k

ℓ
∏

j=1

wj(aj) ≤
ℓ
∏

j=1





∑

aj∈[n]
aj

wj(aj)
1/uj





uj

(3)

We illustrate Friedgut’s inequality on C3:

C3(x, y, z) = S1(x, y), S2(y, z), S3(z, x) (4)

C3 has cover (1/2, 1/2, 1/2). Thus, we obtain the following,
where a, b, c stand for w1, w2, w3 respectively:

∑

x,y,z∈[n]

axy · byz · czx ≤

√

∑

x,y∈[n]

a2
xy

∑

y,z∈[n]

b2yz
∑

z,x∈[n]

c2zx

Friedgut’s inequalities immediately imply a well known re-
sult developed in a series of papers [9, 3, 10] that give an

4For queries with self-joins, the upper bounds hold un-
changed, while the lower bounds hold up to constant factor.

upper bound on the size of a query answer as a function
on the cardinality of the relations. For example in the case
of C3, consider an instance S1, S2, S3, and set axy = 1 if
(x, y) ∈ S1, otherwise axy = 0 (and similarly for byz, czx).

We obtain then |C3| ≤
√

|S1| · |S2| · |S3|.

3. SIMPLE DATABASE STATISTICS
In this section we consider the case when the statistics

on database consist of the cardinalities m1, . . . ,mℓ of the
relations S1, . . . , Sℓ. All input servers know these statistics.
We denote m = (m1, . . . ,mℓ) the vector of cardinalities, and
M = (M1, . . . ,Mℓ) the vector of the sizes expressed in bits,
where Mj = ajmj log n, and n is the size of the domain of
each attribute.

3.1 The HyperCube Algorithm
We present here the HyperCube (HC) algorithm and its

analysis.
The HC algorithm, first described in [2], expresses the

number of servers p as p = p1 · p2 · · · pk, where each pi is
called the share for the variable xi. The algorithm uses k
independently chosen random hash functions hi : [n] → [pi],
one for each variable xi. During the communication step,
the algorithm sends every tuple Sj(aj) = Sj(ai1 , . . . , airj

)

to all servers y ∈ [p1]× · · · × [pk] such that him(aim) = yim

for any 1 ≤ m ≤ rj . In other words, for every tuple in
Sj , after applying the hash functions the algorithm knows
the coordinates for the dimensions i1, . . . , irj in the hyper-
cube, but does not know the other coordinates, and it simply
replicates the tuple along those other dimensions. The algo-
rithm finds all answers, because each potential output tuple
(a1, . . . , ak) is known by the server y = (h1(a1), . . . , hk(ak)).

Since the HC algorithm is parametrized by the choice of
shares, we next address two issues. First, we choose the
shares pi so as to minimize the expected load per server.
Second, we prove that, with high probability on the choices
of the random hash functions, the expected load is not ex-
ceeded by more than a factor for any server. We start with
the latter, which was not addressed in [2], and was addressed
only in a limited setting in [4]: our analysis reveals a previ-
ously unknown property of the HC algorithm.

Analysis of the Load Per Server. Our analysis is
based on the following lemma about hashing.

Lemma 3.1. Let R(A1, . . . , Ar) be a relation of arity r
with m tuples. Let p1, . . . , pr be integers and denote p =
∏

i pi where m ≥ p2. Suppose that we hash each tuple
(a1, . . . , ar) to the bucket (h1(a1), . . . , hr(ar)), where h1, . . . , hr

are independent and perfectly random hash functions. Then:

1. The expected load in every bucket is m/p.

2. If for every i ∈ [r] every value of the attribute Ai occurs
at most once, then the maximum load per bucket is
O(m/p) with high probability5.

3. If for every S ⊆ [r], every tuple of values of attributes
(Ai)i∈S occurs at most am/

∏

i∈S pi times, for a ≥

e3/ ln(p) then the maximum load is O(( 12a ln p
ln ln p+ln(3a)

)rm/p)

with high probability.

4. The maximum load per bucket is O(m/mini(pi)) with
high probability, independent of the instance.

5high probability means polynomially small in p



We prove this lemma in the full paper [5]. The proof of
the lemma is based on the balls-into-bins framework. The
bounds provided for the case where r ≥ 2 require novel
arguments, to the best of our knowledge.
We apply the lemma to analyze the behavior of the HC al-

gorithm under two conditions: over skew-free databases, and
over arbitrary databases. For a vector of shares (p1, . . . , pk),
we say that a relation Sj is skew-free w.r.t. the shares if for
every subset of variables x ⊆ vars(Sj), every value has fre-
quency at most mj/

∏

xi∈x
pi. Our prior analysis in [4] was

only for the special case when the frequency of each value
at each attribute is at most 1.

Corollary 3.2. Let p = (p1, . . . , pk) be the shares of the
HC algorithm.
(i) If Sj is skew-free w.r.t. p, then with high probability

the maximum load per server is

O

(

max
j

Mj
∏

i:i∈Sj
pi

lnk(p)

)

(ii) For any given database, with high probability the maxi-
mum load per server is

O

(

max
j

Mj

mini:i∈Sj (pi)

)

In [2], it is assumed that the database is skew-free and that
the load per server is the expected load; item (i) of our result
confirms that the load does not exceed the expected load
by more than a poly-log factor with high probability, and
defines precisely the skew threshold that gives the optimal
behavior. Item (ii) is novel, because it describes how the
HC algorithm behaves on skewed data: it shows that the
algorithm is resilient to skew, and gives an upper bound
even on skewed databases. We illustrate with an example.

Example 3.3. Let q(x, y, z) = S1(x, z), S2(y, z) be a sim-
ple join, where both relations have cardinality m. We show
two instances of the HC algorithm, the first optimized for
skewed databases, and the second optimized for skew-free
databases. The first share allocation is p1 = p2 = p3 = p1/3,
thus every processor is identified by (w1, w2, w3) ∈ [p1] ×
[p2] × [p3]. The algorithm sends every tuple S1(a, c) to all
processors (h1(a), w2, h3(c)) for w2 ∈ [p3] and every tuple
S2(b, c) to all processors (w1, h2(b), h3(c)) for w1 ∈ [p1]. By
Corollary 3.2, on skew-free databases the load per server is
O(m/p2/3) (times some polylog factor). But even on skewed

database the load per server is O(m/p1/3). The second algo-
rithm allocates shares p1 = p2 = 1, p3 = p. This corresponds
to a standard hash-join on the variable z. On a skew-free
database (equivalently, when every value of z has frequency
at most m/p in both relations) the load per server is O(m/p)
with high probability. However, if it is skewed, then the load
can be as bad as O(m): this occurs when all tuples have the
same value z.

Generalizing the example, for every conjunctive query with
k variables, we can execute the HC algorithm with equal
shares p1 = . . . = pk = p1/k. Then, the algorithm achieves
a maximum load per server of at most O(maxj Mj/p

1/k).
However, in practice, in applications where skew is ex-

pected, it is better to design specialized algorithms, as we
further discuss in section 4. Therefore, we focus our analysis
on skew-free databases, and optimize the expected load.

Choosing the Shares. Here we discuss how to compute
the shares pi to optimize the expected load per server. Afrati
and Ullman compute the shares by optimizing the total load
∑

j mj/
∏

i:i∈Sj
pi subject to the constraint

∏

i pi = 1, which

is a non-linear system that can be solved using Lagrange
multipliers. Here we take a different approach. First, we
write the shares as pi = pei where ei ∈ [0, 1] is called the
share exponent for xi, and denote L the maximum load per
server, thus Mj/

∏

i:i∈Sj
pi ≤ L for every j. Denote λ =

logp L and µj = logp Mj (we will assume w.l.o.g. that mj ≥
p, hence µj ≥ 1 for all j). Then, we optimize the LP:

minimize λ

subject to
∑

i∈[k]

−ei ≥ −1

∀j ∈ [ℓ] :
∑

i∈Sj

ei + λ ≥ µj

∀i ∈ [k] :ei ≥ 0, λ ≥ 0 (5)

Denote Lupper = pe
∗

where e∗ is the objective value of the
optimal solution to the above LP. We have:

Theorem 3.4. For a query q and p servers, with statis-
tics M, let e = e1, . . . , ek be share exponents that are opti-
mal for the above LP. Then, the expected load per server is
Lupper. Moreover, if every Sj is skew-free w.r.t. to e, then
the maximum load per server is O(Lupper · ln

k(p)) with high
probability.

In subsection 3.3 we will give a closed form expression for
Lupper and also provide an example. But first, we prove a
matching lower bound.

3.2 The Lower Bound
We prove a lower bound for the maximum load per server

over databases with statistics M. Fix some constant 0 <
δ < minj{aj}, and assume that for every relation Sj its
cardinality satisfies mj ≤ nδ, where n is the domain size of
each attribute.

Consider the probability space where each relation Sj is
chosen independently and uniformly at random from all sub-
sets of [n]aj with exactly mj tuples. Denote E[|q(I)|] the ex-
pected number of answers to q: we can show that E[|q(I)|] =

nk−a∏ℓ
j=1 mj .

Fix a query q and a fractional edge packing u of q. Denote
u =

∑ℓ
j=1 uj the value of the packing, and:

K(u,M) =
ℓ
∏

j=1

M
uj

j (6)

L(u,M, p) =

(

K(u,M)

p

)1/u

(7)

Further denote Llower = maxu L(u,M, p), where u ranges
over all fractional edge packings for q. Let c be a constant,

c =
aj−δ

3aj
, where aj is the maximum arity of all relations.

We prove in the full paper:

Theorem 3.5. Fix statistics M, and consider any deter-
ministic MPC algorithm that runs in one communication
round on p servers. Let u be any edge packing of q. Any



server i with load Li reports at most

Lu
i

cuK(u,M)
·E[|q(I)|]

answers in expectation, where I is a randomly chosen database
with statistics M. Therefore, the p servers of the algorithm
report at most

(

L

c · L(u,M, p)

)u

·E[|q(I)|]

answers in expectation, where L is the maximum load.
As a consequence, any algorithm that computes q correctly

over any database with statistics M must have load L ≥
cLlower bits6.

In our previous work [4], we presented a matching lower
and upper bound for computing q on some restricted database
instances, where the relations Sj are matchings and have the
same cardinalities; the proof of Theorem 3.5 is an extension
of the lower bound proof in [4]. We explain here the relation-
ship. When all cardinalities are equal, M1 = . . . = Mℓ = M ,
then Llower = M/p1/u, and this quantity is maximized when
u is a maximum fractional edge packing, whose value is de-
noted τ∗: by duality, this is equal to the fractional ver-
tex covering number for q. The bound in [4] is c′M/p1/τ

∗

(the constant c′ in [4] is tighter). Theorem 3.5 generalizes
the lower bound to arbitrary cardinalities, in which case
L(u,M, p) is not necessarily maximized at τ∗. In the rest
of this section we prove that Llower = Lupper.

3.3 Proof of Equivalence
The feasible solutions of the edge packing constraints in (2)

define a feasible and bounded convex polytope. An ex-
treme point of a polytope is one that cannot be written as
a convex combination of two other distinct points of the
polytope. Each extreme point can be obtained by choos-
ing k constraints, transform them into equalities and solve
the corresponding linear system. The set of extreme points
for (2), denoted pk(q), is thus finite and can be bounded by
|pk(q)| ≤

(

k+ℓ
k

)

, i.e. it depends only on the query.
We prove here:

Theorem 3.6. For any vector of statistics M and num-
ber of processors p , we have:

Llower = Lupper = max
u∈pk(q)

L(u,M, p)

Before we prove the theorem we discuss its implications.
We start with an example.

Example 3.7. Consider the triangle query

C3 = S1(x1, x2), S2(x2, x3), S3(x3, x1)

and assume the three cardinalities are m1,m2,m3. Then,
pk(C3) has four vertices, and each gives a different value
for L(u,M, p):

u L(u,M, p)

(1/2, 1/2, 1/2) (M1M2M3)
1/3/p2/3

(1, 0, 0) M1/p
(0, 1, 0) M2/p
(0, 0, 1) M3/p

6This follows by observing that, when L(u,M, p) is maxi-
mized, then u =

∑

j uj ≥ 1.

The first vertex is the solution to u1 + u2 = u1 + u3 =
u2 + u3 = 1; the second the solution to u1 + u2 = 1, u2 =
u3 = 0, etc. Thus, the load of the algorithm is the largest
of these four quantities, and this is also the lower bound of
any algorithm. In other words, the optimal solution to the
LP (5) can be given in closed form, as the maximum over
four expressions.

Next, we use the theorem to compute the space expo-
nent. In [4] we showed that, for every query q, the op-
timal load over databases restricted to matchings of equal
size M is O(M/p1−ε), where 0 ≤ ε < 1 is called the space
exponent for q. Consider now a database with arbitrary
statistics, and denote M = maxj Mj . Thus, we may assume
w.l.o.g. that for every j, Mj = M/pνj for some νj ≥ 0.

Then, L(u,M, p) = M/p(
∑

j νjuj+1)/u. To obtain the op-
timal load, one needs to find u ∈ pk(q) that minimizes
v = (

∑

j νjuj +1)/(
∑

j uj). Denoting v∗ the minimal value,

the load isM/pv
∗

. Thus, the space exponent for given statis-
tics is 1− v∗.

Proof of Theorem 3.6. Recall that Lupper is p
e∗ , where

e∗ is the objective value of the optimal solution to the primal
LP problem (5). Consider its dual LP:

maximize
∑

j∈[ℓ]

µjfj − f

subject to
∑

j∈[ℓ]

fj ≤ 1

∀i ∈ [k] :
∑

j:i∈Sj

fj − f ≤ 0

∀j ∈ [ℓ] :fj ≥ 0, f ≥ 0 (8)

By the primal-dual theorem, the objective is also maxi-
mized at e∗. Writing uj = fj/f and u = 1/f , we transform
it into the following non-linear optimization problem:

maximize
1

u
·





∑

j∈[ℓ]

µjuj − 1





subject to
∑

j∈[ℓ]

uj ≤ u

∀i ∈ [k] :
∑

j:i∈Sj

uj ≤ 1

∀j ∈ [ℓ] :uj ≥, 0 u ≥ 0 (9)

The optimal solution of the above non-linear problem,
with value u∗, must satisfy u =

∑

j uj , otherwise we simply

replace u with
∑

j uj and obtain a feasible solution with at

least as good objective function (indeed, µj ≥ 1 for any j,
and hence

∑

j µjuj ≥
∑

j uj ≥ 1, since any optimal u will

have sum at least 1). Therefore, the optimal is given by a
fractional edge packing u. Furthermore, for any packing u,
the objective function

∑

j
1
u
· (µjuj − 1) is logp L(u,M, p).

To conclude the proof of the theorem, we show that (a)
e∗ = u∗ and (b) the optimum is obtained when u ∈ pk(q).
This follows from:

Lemma 3.8. Let F : Rk+1 → Rk+1: F (x0, x1, . . . , xk) =
(1/x0, x1/x0, . . . , xk/x0). Then:

• F is its own inverse, F = F−1.



• F maps any feasible solution to (8) to a feasible solu-
tion to (9), and conversely.

• F maps a convex set to a convex set.

Proof. If y0 = 1/x0 and yj = xj/x0, then obviously
x0 = 1/y0 and xj = yj/y0. The second item can be checked
directly. For the third item, it suffices to prove that F maps
a convex combination λx + λ′x′ where λ + λ′ = 1 into a
convex combination µF (x) + µ′F (x′), where µ + µ′ = 1.
Assuming x = (x0, x1, . . . , xk) and x′ = (x′

0, x
′
1, . . . , x

′
k), this

follows by setting µ = x0/(λx0 + λx′
0) and µ′ = x′

0/(λx0 +
λx′

0).

This completes the proof of Theorem 3.6.

4. COMPLEX DATABASE STATISTICS
In this section, we discuss algorithms and lower bounds for

the case where the input servers are provided by additional
information regarding skew.

4.1 A Simple Case: Join
We start with a simple example, the join of two tables,

q(x, y, z) = S1(x, z), S2(y, z), to illustrate the main algo-
rithmic and proof ideas. Let m1,m2 be the cardinalities of
S1, S2. For any value h ∈ [n] that variable z may assume, let
mj(h) denote the frequency of h in Sj , j = 1, 2; h is called
a heavy hitter in Sj if mj(h) ≥ mj/p. For general queries,
the threshold for a heavy hitter will differ. We assume that
heavy hitters and their frequencies are known initially by
the algorithm.
The algorithm uses the same principle popular in virtually

all parallel join implementations to date: identify the heavy
hitters and treat them differently. However, the analysis and
optimality proof is new, to the best of our knowledge.
The Algorithm. Let H denote the set of heavy hitters

either in S1 or in S2. Note that |H| ≤ 2p. The algorithm will
deal with the tuples that have no heavy hitter values (light
tuples) by running the vanilla HC algorithm. However, it
will adapt its function for heavy hitters.
To compute q, the algorithm must compute for each h ∈ H

the subquery q[h/z] = S1(x, h), S2(y, h), which is equivalent
to computing the cartesian product qz = S′

1(x), S
′
2(z), where

S′
1(x) = S1(x, h) and S′

2(y) = S2(y, h), and the relations
have cardinality m1(h) and m2(h) respectively (and size in
bits M1(h),M2(h)). We call qz the residual query. The al-
gorithm will allocate ph servers to compute q[h/z] for each
h ∈ H, such that

∑

h∈H ph = Θ(p). Since the unary re-
lations have no skew, Theorem 3.6 says that the maximum
load Lh for each h is given by

Lh = Õ

(

max
u∈pk(qz)

L(u,M(h), ph)

)

where Õ hides the polylog dependence on p. One can com-
pute that pk(qz) = {(1, 1), (1, 0), (0, 1)}. At this point, since
ph is not specified, it is not clear which edge packing maxi-
mizes the above quantity for each h. To overcome this prob-
lem, we further refine the assignment of servers to heavy hit-
ters: we allocate ph,u servers to each h and each u ∈ pk(qz),
such that ph =

∑

u
ph,u.

Now, for a given u ∈ pk(q), we can evenly distribute the
load among the heavy hitters by choosing ph,u such that for
any h, h′ ∈ H, we have L(u,M(h), ph,u) = L(u,M(h′), ph′,u).

In particular, we will choose the server allocation propor-
tionally to the ”heaviness” of executing the residual query:

ph,u =

⌈

p ·
K(u,M(h))

∑

h′∈H K(u,M(h′))

⌉

It is easy to check that the total number of servers will be
Θ(p), and that the load Lh will be

Lh = Õ

(

max
u∈pk(qz)

(
∑

h∈H M1(h)
u1M2(h)

u2

p

)1/(u1+u2)
)

By plugging in the possible values of pk(qz), as well as
the load for the vanilla HC algorithm that runs on the light
tuples, we obtain that the maximum load will be

Õ

(

max

{

M1

p
,
M2

p
,

(
∑

h∈H M1(h)M2(h)

p

)1/2
})

(10)

The first two terms are exactly what we would get from
the analysis of the HC algorithm, and do not depend on the
occurrence of heavy hitters, while the third term depends on
the frequencies of the heavy hitters and can be much larger
than the first two. In the extreme, a single heavy hitter h
with mj(h) = mj for j = 1, 2 will demand maximum load

equal to Õ(
√

M1M2/p).
The Lower Bound. We show here that the above al-

gorithm is optimal within a polylog factor of p. Recall that
in section 3 we have shown that any algorithm that com-
putes correctly a query q must have maximum load at least
Ω(maxu∈pk(q){L(u,M, p)}). Since pk(q) = {(1, 0), (0, 1)}
in the case of the join, we already have a lower bound of
Ω(max{M1/p,M2/p}) for the load.

Hence, to show optimality it suffices to show that the
load L is further lower bounded by the third term of (10).
We sketch here the main idea of the proof. Recall that
in section 3 we constructed a uniformly random instance to
show the lower bound. For skewed data, we have to con-
struct a random instance I that agrees with the frequency
information mj(h) for each h ∈ [n]. To do this, we create I
by choosing a uniformly random subinstance for each resid-
ual query q[h/z]. Notice that, by our construction, the size
of the join will be

∑

h∈[n] m1(h)m2(h).

Now, let Ls
j(h) denote the expected number of tuples from

the subinstance Sj(h) that are known by some server s (s =
1, . . . , p) after communication. We show in subsection 4.3
that, in order for the servers to report correctly all join tu-
ples, we must have that for each h ∈ [n]:

p
∑

s=1

Ls
1(h)L

s
2(h) ≥ m1(h)m2(h)

We can now sum up the above inequalities for all h ∈ [n]:

∑

h∈[n]

m1(h)m2(h) ≤
∑

h∈[n]

p
∑

s=1

Ls
1(h)L

s
2(h)

=

p
∑

s=1

∑

h∈[n]

Ls
1(h)L

s
2(h) ≤

p
∑

s=1





∑

h∈[n]

Ls
1(h)









∑

h∈[n]

Ls
2(h)





Observe that
∑

h Ls
j(h) denotes the expected number of tu-

ples from Sj known by a server s. Since s will receive at
most L bits, it can be shown (details in subsection 4.3) that



∑

h Ls
j(h) ≤ L/(2c log(n)) for some constant c. We now

obtain:
∑

h∈[n]

M1(h)M2(h) ≤ pL2

which proves our lower bound.

4.2 An Algorithm for the General Case
We now generalize some of the ideas for the simple join to

an arbitrary conjunctive query q. Extending the notion for
simple joins, for each relation Sj with |Sj | = mj we say that
a partial assignment hj to a subset xj ⊂ vars(Sj) is a heavy
hitter if and only if the number of tuples, mj(hj), from Sj

that contain hj satisfies mj(hj) > mj/p. As before, there
are O(p) such heavy hitters. We will assume that each input
server knows the entire set of heavy hitters for all relations.
Bin Combinations. For simplicity we assume that p is

a power of 2. We will not produce quite as smooth a bound
as we did for the simple join, since we will initially group
the frequencies to bins, which will add a logO(1) p factor to
the bound. In particular, for each relation Sj and subset
of variables xj , we define log2 p bins for the frequencies, or
degrees of each of the heavy hitters. The b-th bin, for b =
1, . . . , log2 p will contain all heavy hitters hj withmj/2

b−1 ≥
mj(hj) > mj/2

b. The last bin, a bin of light hitters with
b = log2 p + 1, will contain all assignments hj to xj that
are not heavy hitters. Notice that, when xj = ∅, the only
non-empty bin is the first bin, the only heavy hitter is the
empty tuple hj = (), and mj(hj) = mj .
For a bin b on xj define βb = logp(2

b−1); observe that for

each heavy hitter bin, there are at most 2pβb heavy hitters
in this bin, and for the last bin we have βb = 1. Instead of
identifying each bin using its index b, we identify each bin
by βb, called its bin exponent, along with the index of the
relation Sj for which it is defined, and the set xj ⊂ vars(Sj).
Note that 0 = β1 < β2 < · · · < βlog2 p+1 = 1.

Definition 4.1 (Bin Combination). Consider a set of
variables x ⊂ V = vars(q), and define xj = x∩vars(Sj). A
pair B = (x, (βj)j) is called a bin combination if (1) βj = 0
for every j where xj = ∅, and (2) there is some consistent
assignment h to x such that for each j with xj 6= ∅ the in-
duced assignment hj to xj has bin exponent βj in relation
Sj. We write C(B) for the set of all such assignments h.

Algorithm BinHC. The algorithm BinHC allocates p
virtual processors to each bin combination and handles as-
sociated inputs separately. There are O(log p) bin choices for
each relation and therefore the algorithm requires at most
logO(1) p virtual processors in total. Let Nbc be the num-
ber of possible bin combinations. As in the join algorithm
(subsection 4.1), within each bin combination we partition
the p servers among the heavy hitters, using ph = p/|C(B)|
servers for heavy hitter h (note that ph is independent of
h, since we have ensured complete uniformity within a bin
combination). Unfortunately, we can only process ≤ p heavy
hitters in every bin combination, while in genera, we may
have C(B) > p: e.g. if x contains variables x1 in S1 and
x2 in S2, there may be up to p× p heavy hitters in this bin
combination.
To solve this issue, for each B we will define a set C′(B) ⊆

C(B) with |C′(B)| ≤ p and sets S
(B)
j ⊆ Sj of tuples for

j ∈ [ℓ] that extend hj for some h ∈ C′(B).

The BinHC algorithm for B, in short BinHC(B), will com-

pute all query answers for the subinstance IB = (S
(B)
j )j . If

α(B) = logp |C
′(B)|, the algorithm will run the HC algo-

rithm on p1−α(B) virtual processors for each of the heavy
hitters h ∈ C′(B) so as to compute q(IB).

The share exponents for the HC algorithm will be pro-
vided by a modification of the vertex covering primal LP (5),
which describes an algorithm that suffices for all light hit-
ters. Recall that in this LP, µj = logp Mj and λ is logp L
for the load L. That LP corresponds to the bin combination
B∅ which has x = ∅ and all βj = 0. More generally, the LP
associated with our algorithm for bin combination B is:

mininimize λ (11)

subject to

∀j ∈ [ℓ] : λ+
∑

xi∈vars(Sj)−xj

ei ≥ µj − βj

∑

i∈V −x

ei ≤ 1− α(B)

∀i ∈ V − x : ei ≥ 0, λ ≥ 0

Let (e
(B)
i )i∈V −x′) be the optimal solution for the above LP

and (λ(B) the minimum value of the objective function.
To complete the description of BinHC, we need to define

C′(B) and (S
(B)
j )j . We define C′(B) inductively. For the

bin combination B∅, C
′(B∅) = C(B∅) and it has 1 element,

the empty partial assignment. For B 6= B∅, C
′(B) is defined

based on optimal solutions to the above LP applied to bin
combinations B′ with x′ ⊂ x (such solutions may not be
unique but we fix one arbitrarily for each bin combination).

For h′ ∈ C′(B′), we say that a heavy hitter hj of Sj that is
an extension of h′

j to xj is overweight for B
′ if there are more

than Nbc · mj/p
βj+

∑
i∈xj−x

′
j
e
(B′)
i

elements of Sj consistent
with hj . C′(B) consists of all assignments h ∈ C(B) such
that there is some j ∈ [ℓ], some bin combination B′ on set
x′ ⊂ x such that x − x′ ⊆ vars(Sj), and some h′ ∈ C′(B′)
such that h is an extension of h′ and hj is an overweight
heavy hitter of Sj for B′. The following lemma, which is
proved in the full paper, shows that α(B) ≤ 1.

Lemma 4.2. For all bin combinations B, |C′(B)| ≤ p.

Let AB ⊆ [ℓ] be the set of all j such that xj 6= ∅. For

each j ∈ [ℓ] − AB, let S
(B)
j consist of all tuples in Sj that

do not contain any heavy hitter h′′
j of Sj that is overweight

for B. For each j ∈ AB, and h ∈ C′(B) let S
(B)
j (h) consist

of all tuples in Sj that contain hj on xj (with bin exponent
βj) but do not contain any heavy hitter h′′

j of Sj that is

overweight for B and a proper extension of hj . S
(B)
j will be

the union of all S
(B)
j (h) for all h ∈ C′(B).

Analysis. We analyze here the BinHC algorithm. We
show first that it correctly computes all answers to the query
q on the relations Sj .

Lemma 4.3 (Correctness). Every tuple in the join of

(Sj)j∈[ℓ] is contained in a join of subrelations (S
(B)
j )j∈[ℓ] for

some bin combination B.

Proof. Observe first that every join tuple is vacuously
consistent with the empty bin combination B∅. Therefore



the join of (S
(B∅)
j )j∈[ℓ] contains all join tuples that do not

contain an overweight heavy hitter hj for any relation Sj

with respect to B∅ (and therefore contains all join tuples
that are not consistent with any heavy hitter). Now fix a
join tuple t that is overweight for B∅. By definition, there
is an associated relation Sj1 and x1 ⊂ vars(Sj1) such that
h1 = (tx1) is an overweight heavy hitter of Sj1 for B∅. Let
B1 be the bin combination associated with h1. By defini-
tion h1 ∈ C′(B1). Now either t is contained in the join of

(S
(B1)
j )j∈[ℓ] and we are done or there is some relation Sj2

and x2 such that x2 − x1 ⊂ vars(Sj2) such that h2 = (tx2)
has the property that h2

j2 is an overweight heavy hitter of
Sj2 for B1. Again, in the latter case, if B2 is the bin com-
bination associated with h2 then h2 ∈ C′(B2) by definition
and we can repeat the previous argument for B2 instead of
B1. Since the number of variables grows at each iteration,
we can repeat this at most k times before finding a first Br

such that t is not associated with any overweight heavy hit-
ter for Br. In this case t will be computed in the join of

(S
(Br)
j )j∈[ℓ].

We next analyze the load for BinHC(B), and show that it

is within a logO(1) p factor of pλ
(B)

, where λ(B) is the optimal
value given by the LP for B.

Lemma 4.4. Let h be an assignment to x that is consis-
tent with bin combination B. If we hash each residual re-

lation S
(B)
j (h) on vars(Sj)− xj using pe

(B)
i values for each

xi ∈ vars(Sj)− xj , each processor has load (in bits)

O

(

(Nbc · ln p)
r′ ·Mj/p

min(βj+
∑

i∈vars(Sj)−xj
e
(B)
i

,1)
)

with high probability, where r′ = maxj(rj − |xj |).

Proof. For j ∈ [ℓ]−AB, S
(B)
j only contains tuples of Sj

that are not overweight for B, which means that for every
x′′
j ⊆ vars(Sj) and every heavy hitter assignment h′′ to the

variables of x′′
j , there are at most

Nbc ·mj/p
βj+

∑
i∈x

′′
j

e
(B)
i

= Nbc ·mj/p
βj+

∑
i∈x

′′
j
−xj

e
(B)
i

elements of Sj consistent with h′′. Every other assignment
h′′ to the variables of x′′

j is a light hitter and therefore is
contained in at most mj/p consistent tuples of Sj . For j ∈
AB, we obtain the same bound, where the only difference
is that we need to restrict things to extensions of hj . This

bound gives the smoothness condition on S
(B)
j (h) necessary

to apply Lemma 3.1 to each relation S
(B)
j (h) and yields the

claimed result.

As a corollary, we obtain:

Corollary 4.5. Let Lmin = maxj(Mj/p). The maxi-
mum load of BinHC(B) is O((Nbc ·ln p)

rmax ·max(Lmin, p
λ))

with high probability, where λ = λ(B) is the optimum of the
LP for B and rmax is the maximum arity of any Sj.

Proof. There are p1−α(B) processors allocated to each h

and pα(B) such assignments h so that the maximum load
per h is also the maximum overall load. Given the presence
of the Lmin term, it suffices to show that the maximum

load per h due to relation S
(B)
j (h) is at most (ln p)k−|x| ·

max(Mj/p, p
λ) for each j ∈ [ℓ]. Observe that by construc-

tion, pλ is the smallest value s.t. pλ·p
βj+

∑
xi∈vars(Sj)−xj

e
(B)
i ≥

Mj for all j and
∑

i∈x
e
(B)
i ≤ 1 − α(B). Lemma 4.4 then

implies that the load due to relation S
(B)
j (h) is at most a

polylogarithmic factor times

max(Mj/p,Mj/p
βj+

∑
xi∈vars(Sj)−Hj

e
(B)
i )

which is at most max(Mj/p, p
λ).

We can now upper bound the maximum load of the BinHC
algorithm. Denote M(B) = (M1/p

β1 , . . . ,Mℓ/p
βℓ). Then:

Theorem 4.6 (Maximum Load). The BinHC algorithm
has with high probability maximum load

L = O

(

logO(1) p · max
B,u∈pk(qx)

L(u,M(B), p1−α(B))

)

Proof. There are only logO(1) p choices of B and for each
choice of B, by Corollary 4.5, the load with p virtual proces-

sors is O(logO(1) p · max(Lmin, p
λ(B)

)). We first show that
we can remove the Lmin term. Indeed, observe that in the
original LP which corresponds to an empty bin combination
B, we have λ+

∑

i∈Sj
ei ≥ µj for each j ∈ [ℓ] and

∑

i ei ≤ 1.

This implies that λ ≥ µj − 1 and hence pλ ≥ Mj/p for each
j, so pλ ≥ Lmin. Finally, by applying a duality argument
to (11), we have:

λ(B) = max
u∈pk(qx)

{L(u,M(B), p1−α(B))}

This completes the proof.

4.3 Lower Bound
In this section we give a lower bound for the load of any

deterministic algorithm that computes a query q, and gen-
eralize the lower bound in Theorem 3.5, which was over
databases with cardinality statistics M. Our new lower
bound generalizes this to databases with a fixed degree se-
quence: if the degree sequence is skewed, then the new
bounds can be stronger, proving that skew in the input data
makes query evaluation harder.

For a relation Sj , let xj ⊆ vars(Sj) and dj = |xj |. A
statistics of type xj , or xj-statistics, is a function mj :
[n]dj → N. An instance of Sj satisfies the statistics mj

if for any tuple hj ∈ [n]dj , its frequency is precisely mj(hj),
in other words |σxj=hj

(Sj)| = mj(hj). As an example, if
S(x, y) is a binary relation, then an x-statistics is a degree
sequence m(1),m(2), . . . ,m(n); also, if xj = ∅ then an xj-
statistics consists of a single number, which denotes the car-
dinality of Sj . In general, the xj-statistics define uniquely
the cardinality of Sj , as |Sj | =

∑

hj∈[n]
dj mj(hj).

Fix a set of variables x from q, let d = |x|, and denote
xj = x ∩ vars(Sj) for every j. A statistics of type x for
the database is a vector m = (m1, . . . ,mℓ), where each mj

is an xj-statistics for Sj . We associate with m the function
m : [n]k → (N)ℓ, m(h) = (m1(h1), . . . ,mℓ(hℓ)); here and
in the rest of the section, hj denotes πxj (h), i.e. the re-
striction of the tuple h to the variables in xj . When x = ∅,
then m simply consists of ℓ numbers, each representing the
cardinality of a relation; thus, a x-statistics generalizes the
cardinality statistics from section 3. Recall that we use up-
per case M = (M1, . . . ,Mℓ) to denote the same statistics



expressed in bits, i.e. Mj(hj) = ajmj(hj) log n. As before,
we fix some constant 0 < δ < 1, and assume every relation
Sj , has cardinality ≤ nδ.
In this section, we fix x-statistics M and consider the

probability space where the instance is chosen uniformly at
random over all instances that satisfy M.
To prove the lower bound we need some notations. Let qx

be the residual query, obtained by removing all variables x,
and decreasing the arities of Sj as necessary: the new arity
of Sj is aj − dj . Clearly, every fractional edge packing of q
is also a fractional edge packing of qx, but the converse does
not hold in general. Let u be a fractional edge packing of qx.
We say that u saturates a variable xi ∈ x, if

∑

j:i∈Sj
uj ≥ 1;

we say that u saturates x if it saturates all variables in x.
For every fractional edge packing u of qx that saturates x,
denote as before u =

∑ℓ
j=1 uj and, using K defined in (6):

Lx(u,M, p) =

(
∑

h∈[n]d K(u,M(h))

p

)1/u

(12)

Further denote Llower = maxu Lx(u,M, p), and let c be the

constant c = minj
aj−dj−δ

3aj
.

Theorem 4.7. Given a query q, fix statistics M of type
x, where x is a strict subset of the variables, and consider
any deterministic MPC algorithm that runs in one com-
munication round on p servers and has maximum load L.
Then, for any edge packing u of q that saturates x, any al-
gorithm that computes q correctly must have maximum load
L ≥ cLx(u,M, p) bits.

Note that, when x = ∅ then Lx(u,M, p) = L(u,M, p),
defined in (7); therefore, our theorem is a generalization of
the simpler lower bound Theorem 3.5. Before we prove the
theorem, we show an example.

Example 4.8. We first revisit the lower bound we de-
scribed in subsection 4.1 for q(x, y, z) = S1(x, z), S2(y, z).
If x = ∅ then the lower bound is maxu L(u, (M1,M2), p),
which is max(M1/p,M2/p), because there are two packings
in pk(q): (1, 0) and (0, 1). For x = {z}, the residual query is
qx = S1(x), S2(y) and its sole packing is (1, 1), which satu-
rates the variable z. The packing produces an additional new

lower bound:
√

∑

h∈[n] M1(h)M2(h)/p. The lower bound is

the maximum of these quantities.
Next, consider C3. In addition to the lower bounds in

Example 3.7, we obtain new bounds by setting x = {x1}.
The residual query is S1(x2), S2(x2, x3), S3(x3) and (1, 0, 1)
is a packing that saturates x1 (while for example (0, 1, 0)
does not). This gives us a new lower bound, of the form
√

∑

h∈[n] m1(h)m3(h)/p.

In the rest of the section we prove Theorem 4.7. Fix a
concrete instance Sj , and let aj ∈ Sj . We write aj |h to de-
note that the tuple aj from Sj matches with h at their com-
mon variables, and denote (Sj)h the subset of tuples aj that
match h: Sj(h) = {aj | aj ∈ Sj ,aj |h}. Let Ih denote the
restriction of I to h, in other words Ih = (S1(h), . . . , Sℓ(h)).
When I is chosen at random over the probability space de-

fined by the x-statistics M, then, for a fixed tuple h ∈ [n]d,
the restriction Ih is a uniformly chosen instance over all in-
stances with cardinalities M(h), which is precisely the prob-
ability space that we used in the proof of Theorem 3.6. In

particular, for every aj ∈ [n]dj such that aj |h, the proba-
bility that Sj contains aj is P (aj ∈ Sj) = mj(hj)/n

aj−dj ;
thus, our proof below is an extension of that of Theorem 3.6.
We first compute the expected number of answers for q on
the subinstance Ih:

Lemma 4.9. E[|q(Ih)|] = nk−d∏ℓ
j=1

mj(hj)

n
aj−dj

Proof. We can write:

E[|q(Ih)|] =
∑

a|h

P (
ℓ
∧

j=1

(aj ∈ Sj)) =
∑

a|h

ℓ
∏

j=1

P (aj ∈ Sj)

=
∑

a|h

ℓ
∏

j=1

mj(hj)n
dj−aj = nk−d

ℓ
∏

j=1

mj(hj)n
dj−aj

where the last equality follows from the fact that the number
of tuples a|h is exactly nk−d.

Single Server.
Let us fix some server and let m(I) be the message the

server receives on input I. For any fixed value m of m(I),
let Km(Sj) be the set of tuples from relation Sj known by
the server. Let wj(aj) to denote the probability that the
server knows the tuple aj ∈ Sj . In other words wj(aj) =
P (aj ∈ Kmj(Sj)(Sj)), where the probability is over the ran-
dom choices of Sj . This is upper bounded by P (aj ∈ Sj):

wj(aj |h) ≤ mj(hj)/n
aj−dj (13)

We derive a second upper bound by exploiting the fact
that the server receives a limited number of bits.

Lemma 4.10. Let L be the number of bits a server re-
ceives. If aj > dj, then

∑

aj∈[n]
aj wj(aj) ≤ L

caj log(n)
for

some constant c > 0.

Proof. Since
∑

aj∈[n]
aj wj(aj) = E[|Km(Sj)(Sj)|], we

will bound the right hand side. Now, notice that:

H(Sj) = H(m(Sj)) +
∑

m

P (m(Sj) = m) ·H(Sj |m(Sj) = m)

≤ L+
∑

m

P (m(Sj) = m) ·H(Sj |m(Sj) = m) (14)

For every h, let Km(Sj(h)) denote the known tuples from
the restriction of Sj to h. We can now show that:

H(Sj |m(Sj) = m) ≤
∑

h

(

1−
|Km(Sj(h))|

cmj(hj)

)

log

(

naj−dj

mj(hj)

)

= H(Sj)−
∑

h

|Km(Sj(h))|

cmj(hj)
log

(

naj−dj

mj(hj)

)

≤ H(Sj)−
∑

h

|Km(Sj(h))|

cmj(hj)
mj(hj)(aj − dj − δ) log(n)

= H(Sj)− (1/c) · |Km(Sj)|(aj − dj − δ) log(n)

where the proof for the first inequality is in the full paper.
Plugging this in Equation 14, we have:

H(Sj) ≤ L+H(Sj)− (1/c) ·E[|Km(Sj)|](aj − dj − δ) log(n)

or equivalently, since c ≤ 3:

E[|Km(Sj)|] ≤
3L

(aj − dj − δ) log(n)

This concludes our proof.



In the case where aj = dj , the instance Ih specifies exactly
the relation Sj , and so wj(aj) ∈ {0, 1} for every aj . Denote
by J(x) the set of relations Sj for which aj > dj .
Recall that u is a fractional edge packing for the residual

query qx that saturates x. Define the extended query qx
′ to

consists of qx, where we add a new atom S′
i(xi) for every

variable xi ∈ vars(qx). Define u′
i = 1 −

∑

j:i∈Sj
uj . In

other words, u′
i is defined to be the slack at the variable

xi of the packing u. The new edge packing (u,u′) for the
extended query q′x has no more slack, hence it is both a tight
fractional edge packing and a tight fractional edge cover for
qx. By adding all equalities of the tight packing we obtain:

ℓ
∑

j=1

(aj − dj)uj +

k−d
∑

i=1

u′
i = k − d

We next compute how many output tuples from q(Ih) will
be known in expectation by the server. Note that q(Ih) =
qx(Ih), and thus:

E[|Km(q(Ih))|] = E[|Km(qx(Ih))|] =
∑

a∈[n]k−d

ℓ
∏

j=1

wj(aj |h)

=
∑

a∈[n]k−d

ℓ
∏

j=1

wj(aj |h)
k−d
∏

i=1

w′
i(ai)

≤
k−d
∏

i=1

nu′
i ·

ℓ
∏

j=1





∑

a∈[n]
aj−dj

wj(a|h)
1/uj





uj

By writing wj(a|h)
1/uj = wj(a|h)

1/uj−1wj(a|h), we can
bound the quantity as follows:

∑

a∈[n]
aj−dj

wj(a|h)
1/uj ≤

(

mj(hj)

naj−dj

)1/uj−1
∑

a∈[n]
aj−dj

wj(a|h)

= (mj(hj)n
dj−aj )1/uj−1Lj(h)

where Lj(h) =
∑

a∈[n]
aj−dj wj(a|h). Notice that for every

relation Sj ,
∑

hj∈[n]
dj Lj(hj) =

∑

aj∈[n]
aj wj(aj).

E[|Km(q(Ih))|]

≤ n
∑k−d

i=1 u′
i

ℓ
∏

j=1

(

Lj(h)mj(hj)
1/uj−1n(dj−aj)(1/uj−1)

)uj

=

ℓ
∏

j=1

Lj(h)
uj ·

ℓ
∏

j=1

mj(hj)
−uj ·E[|q(Ih)|]

All Servers.
Let us first index the quantities Km, Lj with the server

s = 1, . . . , p they correspond to: Ks
m, Ls

j . Let H be the set

of h ∈ [n]d such that for every j /∈ J(x), mj(h) = 1. Observe
that if h /∈ H, then for some j /∈ J(x) we have mj(h) = 0,
which implies that q(Ih) = ∅ independent of the random
subinstance. For some h ∈ [n]d, the expected number of
answers that all servers will produce for the subinstance Ih
is E[|Km(q(Ih))|] =

∑

s E[|Ks
m(q(Ih))|]. If some h ∈ H this

number is not at least E[|q(Ih)|], the algorithm will fail to
compute q(I) (since any h /∈ H never produces answers, we

do not need to consider it). Consequently, for every h ∈ H
we must have that

∑

s

∏

j∈J(x)

Ls
j(hj)

uj ≥
∏

j∈J(x)

mj(hj)
uj (15)

Summing the inequalities for every h ∈ H:
∑

h∈H

∏

j∈J(x)

mj(hj)
uj ≤

∑

h∈H

∑

s

∏

j∈J(x)

Lj(hj)
uj

=
∑

s





∑

h∈H

∏

j∈J(x)

Lj(hj)
uj





≤
∑

s

∏

j∈J(x)





∑

hj

Ls
j(hj)





uj

where the last inequality comes from the following applica-
tion of Friedgut’s inequality.

Lemma 4.11. If u saturates x in query q,

∑

h

∏

j

Lj(hj)
uj ≤

∏

j





∑

hj

Lj(hj)





uj

Since we have Mj = ajmj log(n), and for any relation
where j ∈ J(x) also

∑

hj
Ls

j(hj) ≤ L/(caj log(n)) (from

Lemma 4.10) for every server s, we obtain that :

∑

h

ℓ
∏

j=1

Mj(hj)
uj =

∑

h∈H

∏

j∈J(x)

Mj(hj)
uj ≤

∑

s

∏

j∈J(x)

(L/c)uj

= p

(

L

c

)

∑
j∈J(x) uj

≤ p

(

L

c

)

∑
j uj

which completes the proof of Theorem 4.7.
Upper and Lower Bound Comparison. To compare

the lower bound with the upper bound we obtained from
the BinHC algorithm in Theorem 4.6, we apply the lower
bound for a particular bin combination B with set x. In this
case, the definition of bin exponents implies that mj(hj) ≥
mj/(2p

βj ) for the heavy hitters. Then:

L ≥ max
u′

(
∑

h∈[n]d

∏

j Mj(hj)
u′
j

p

)1/u′

≥ max
u′

(

pα
∏

j(Mj/2p
βj )u

′
j

p

)1/u′

=
1

2
max
u′

(
∏

j(Mj/p
βj )u

′
j

p1−α

)1/u′

=
1

2
max
u′

{L(u′,M(B), p1−α)}

where, in contrast to Theorem 4.6, the edge packing u′ ranges
only over edge packings of the residual query qx that saturate
all variables in x.

5. MAP-REDUCE MODELS
In this section, we discuss the connection between the

MPC model and the Map-Reduce model presented by Afrati
et. al [1]. In contrast to the MPC model, where the num-
ber of servers p is the main parameter, in the model of [1]



the main parameter is an upper bound q on the number
of input tuples a reducer can receive, which is called re-
ducer size. Given an input I, a Map-Reduce algorithm is
restricted to deterministically send each input tuple inde-
pendently to some reducer, which will then produce all the
outputs that can be extracted from the received tuples. If
qi ≤ q is the number of inputs assigned to the i-th reducer,
where i = 1, . . . , p, we define the replication rate r of the
algorithm r =

∑p
i=1 qi/|I|.

In [1], the authors provide lower and upper bounds on r
with respect to q and the size of the input. However, their
results are restricted to binary relations where all sizes are
equal, and they provide matching upper and lower bounds
only for a subclass of such queries. We show next how to
apply the results of this paper to remove these restrictions,
and further consider an even stronger computation model
for our lower bounds.
First, we express the bound on the data received by the

reducers in bits: let L be the maximum number of bits each
reducer can receive. The input size |I| is also expressed in
bits. We will also allow any algorithm to use randomization.
Finally, we relax the assumption on how the inputs are com-
municated to the reducers: instead of restricting each input
tuple to be sent independently, we assume that the input
data is initially partitioned into a number of input servers
p0 (where p0 must be bigger than the query size), and allow
the algorithm to communicate bits to reducers by accessing
all the data in one such input server. Notice that this set-
ting allows for stronger algorithms that use input statistics
to improve communication.
If each reducer receives Li bits, the replication rate r is

defined as r =
∑p

i=1 Li/|I|. Notice that any algorithm with
replication rate r must use p ≥ (r|I|)/L reducers. Now, let
q be a conjunctive query, where Sj has Mj = ajmj log n bits
(n is the size of the domain).

Theorem 5.1. Let q be a conjunctive query where Sj has
size (in bits) Mj . Any algorithm that computes q with re-
ducer size L, where L ≤ Mj for every Sj

7 must have repli-
cation rate

r ≥
cuL
∑

j Mj
max

u

ℓ
∏

j=1

(

Mj

L

)uj

where u ranges over all fractional edge packings of q.

Proof. Let fi be the fraction of answers returned by
server i, in expectation, where I is a randomly chosen database

with statistics M. By Theorem 3.5, fi ≤
Lu

i

cuK(u,M)
. Since

we assume all answers are returned,

1 ≤

p
∑

i=1

fi =

p
∑

i=1

Lu
i

cuK(u,M)
=

∑p
i=1 LiL

u−1
i

cuK(u,M)

≤
Lu−1∑p

i=1 Li

cuK(u,M)
=

Lu−1r|I|

cuK(u,M)

where we used the fact that u ≥ 1 for the optimal u. The
claim follows by using the definition of K (6) and noting
that |I| =

∑

j Mj .

We should note here that, following from our analysis
in section 3, the bound provided by Theorem 5.1 is matched

7if L > Mj , we can send the whole relation to any reducer
without cost

by the HyperCube algorithm with appropriate shares. We
illustrate Theorem 5.1 with an example.

Example 5.2 (Triangles). Consider the triangle query
C3 and assume that all sizes are equal to M . In this case,
the edge packing that maximizes the lower bound is the one
that maximizes

∑

j uj , (1/2, 1/2, 1/2). Thus, we obtain a

bound Ω(
√

M/L) for the replication rate. This is exactly the
formula proved in [1], but notice that we can derive bounds
even if the sizes are not equal. Further, observe that any
algorithm must use at least Ω((M/L)3/2) reducers.

6. CONCLUSIONS
In this paper we have studied the parallel query evaluation

problem on databases in two settings: the first with known
cardinalities, and the second with additionally known heavy
hitters and their frequency. In the first case we have given
matching lower and upper bounds (within a polylog factor
of p) that are described in terms of fractional edge packings
of the query. In the second case we have shown both lower
and upper bounds described in terms of fractional packings
of the residual queries, one residual query for each type of
heavy hitter.
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