
AirTrack: Locating Non-WiFi Interferers
using Commodity WiFi Hardware

Ashish Patro∗, Shravan Rayanchu∗, Suman Banerjee
{patro, shravan, suman}@cs.wisc.edu

University of Wisconsin Madison

Introduction
Recent studies [1, 4, 5] have shown that interference due to
non-WiFi RF devices has become a major problem in today’s
802.11 networks. In our own experiments, we observed that
high powered interferers like analog cordless phones, video
cameras can cause an 802.11 link to experience complete
loss of connectivity. Figure 1 shows an example of non-WiFi
RF activity in a university cafe, where a FHSS cordless
phone and a Microwave oven caused increased interference.
Knowledge about the active non-WiFi RF devices and their
physical locations can help the WLAN administrators take
corrective actions (e.g., bringing down rogue non-WiFi
transmitters, or by altering some of the operational wireless
parameters). In this paper, we focus on the problem of
locating the non-WiFi interferers in a WLAN without using
any specialized hardware. Specifically, we try to answer the
following question:
“How can a system using only WiFi nodes accurately

locate non-WiFi RF devices? Further, how can it do this in
real-time, in a non-intrusive manner, and without the help of
any additional sensors or hardware?"
In our attempt to answer the above question, we present

AirTrack — a system to locate non-WiFi devices using com-
modity WiFi hardware. AirTrack is non-intrusive, as it
employs a passive approach (i.e., it does not introduce any
additional traffic into the wireless medium) and localizes non-
WiFi devices in real-time.
Goals and challenges. Locating non-WiFi transmitters using
only WiFi hardware is particularly challenging because WiFi
nodes cannot decode the transmissions from these devices
(e.g., Microwaves, video cameras, Xbox). While it is possible
to equip each WiFi node with additional hardware (e.g., a
Bluetooth interface to detect Bluetooth devices, a ZigBee
interface to detect ZigBee devices), such a solution is clearly
not scalable. In some cases, doing so might not even help
detect the interferer because the received interference power
might be simply due to unintended radiations from the device
(e.g., Microwave ovens). With AirTrack, we first wish to detect
and uniquely identify the presence of multiple, simultaneously
operating non-WiFi devices using limited signal information
(e.g., RSS per sub-carrier) provided by commodityWiFi cards.
For example, if two Bluetooth devices and an analog phone are
operating simultaneously, AirTrack should be able to detect all
the three device instances. We note that detecting the presence
∗Student authors are listed in alphabetical order.

2412 MHz 2462 MHz2437 MHz
-120

-100

-80

-60

-40

-20

0

Po
w

er
 (d

B
m

)

Frequency (MHz)

FHSS Cordless Phone
Microwave Oven

Figure 1: Snapshot of spectrum showing activity from a FHSS cordless
phone and a Microwave oven. Measurements were taken at a university
cafe using AirMaestro RF signal analyzer[1].

of multiple non-WiFi device instances of the same type is
much harder as it requires segregating the transmissions
belonging to each active device instance. Further, we wish
to physically locate each non-WiFi device instance. An
additional challenge in localization stems from the fact that
the transmit power of the non-WiFi device is unknown.
Background. Emerging WiFi cards are capable of providing
spectral samples — information about the signal power
received in each of the sub-carriers of an 802.11 channel.
Using these spectral samples, authors in [5] developed
Airshark, a system that detects the presence of non-WiFi
devices. Airshark extracts novel features using only received
power samples, and employs decision tree classifiers to
detect different device types. Post detection, it outputs a
set of “pulses” (time-frequency blocks representing device
transmissions), and tags these pulses with the appropriate
device type (e.g., Bluetooth or a ZigBee pulse). Each pulse
reported by an Airshark node consists of local timestamps
indicating the start and end times of the pulse transmission
derived from the “mactimestamp” of theWiFi radio employed
by node, the center frequency and bandwidth of the pulse
observed at this node, the received power of the pulse and
finally a tag, indicating the non-WiFi device type.

While Airshark can detect the presence of non-WiFi device
transmissions, it cannot differentiate amongst the multiple
non-WiFi device instances of the same type that are active si-
multaneously and it cannot determine their physical locations.
For example, if two FHSS phones are active at the same time,
Airshark will report that it detected an FHSS phone, but it
cannot uniquely identify the actual number of phones or their
physical locations. This is because Airshark cannot segregate
the pulses belonging to each device instance. Traditional
WiFi localization systems do not have to deal with this issue,
as the source address field can be used to segregate frames
belonging to a particular WiFi transmitter.

1

S0

S1

Ai
rs

ha
rk

 n
od

es

SN

 pulses

 frames

 pulses

 frames

 pulses

 frames

Sy
nc

hr
on

iz
at

io
n

1 3

1
2

3

1
2

4

M
er

gi
ng

1

2

3

4

C
lu

st
er

in
g

1

2

3

4

Lo
ca

liz
at

io
n Dev 1:

Room 7388

Dev 2:
Room 5172

4

Figure 2: Overview of the localization process used in AirTrack.

Our proposed approach — AirTrack
AirTrack addresses the above issues by using multiple
WiFi APs (equipped with Airshark module), and provides
mechanisms to facilitate: (i) synchronizing timestamps of
multiple APs, (ii) establishing a unique ID (or a mock-
MAC address) for each active non-WiFi device instance and
segregating pulse transmissions belonging to each device (iii)
localizing each non-WiFi device instance (of an unknown
transmit power). We first present the basic idea and intuition
behind our approach. We then explain each of the components
in detail.

Basic idea. We assume an enterprise WLAN set up where all
the APs are connected to a central controller. Tagged pulses
from different APs can be collected at the controller for further
analysis. Consider an example where two Bluetooth devices
d1 and d2 are switched on in the vicinity of 4 APs. Assume
that APs s1, s2 and s3 can hear transmissions from device
d1, whereas s2, s3 and s4 can hear transmissions from device
d2. In this case, all 4 APs report pulses tagged with type
‘Bluetooth’. How can we separate the pulses that belong to
device d1 from those that belong to d2? If the timestamps of
all APs are synchronized, then we can examine the pulses that
are received by a subset of the APs at the same time instance.
In this example, if we find three pulses received by the set of
APs s1, s2 and s3 that have the same device type, frequency
and bandwidth and the same start and end times, then it is
most likely that the three APs received the same pulse. This
enables us to identify the distinct pulses, and the set of APs
that received these pulses along with their received signal
strength (RSS). The next task is to then cluster these distinct
pulses based on some criteria in order to segregate them into
different device instances. AirTrack uses criteria like timing
properties exhibited by various non-WiFi devices, and the RSS
from the set of APs that hear the pulse to perform clustering.
Each cluster then represents transmissions from a single non-
WiFi device instance, and the cluster center represents a mock-
MAC — a unique ID for this non-WiFi device. Finally, the
signal strengths of the pulses in each cluster can be used to
localize the device. Figure 2 presents an overview of thewhole
process. We now explain each of the above components.
Opportunistic synchronization. Our first task is to synchro-
nize the timestamps at multiple APs. A typical approach to
synchronization is to find common reference points and then
adjusting the clocks to establish a global timeline [2]. One

can use “common” pulses among different APs in order to
achieve this. However, this poses a chicken-and-egg problem:
we had set out to use synchronized timestamps at APs to find
the common pulses. AirTrack solves this issues by leveraging
theWiFi hardware— the timestamps of the pulses are derived
from the same clock which is used to timestamp the received
802.11 frames. Therefore, we first synchronize all the APs
using “common” frames received as reference points, and then
using the synchronized APs to find “common” pulses. Since
it is highly unlikely that we find one reference frame that is
received by all APs, AirTrack opportunistically synchronizes
“pairs of APs” using common frames, and then transitively
synchronize across all APs. This procedure is repeated
every sync interval. We currently use a sync interval of 100
ms which results in tight synchronization between the APs
(synchronization error of less than 2−4 µs).
Merging pulse traces to identify distinct pulses. After the
pulses captured by multiple APs are synchronized in time,
AirTrack attempts to ‘merge’ the common pulses captured by
the different APs using a merging module. When multiple
APs record a particular pulse emitted by a non-WiFi device,
AirTrack combines the pulse information (e.g., RSS) from
these APs to create a single pulse instance or a “merged pulse”.

The merging process is handled separately for devices that
operate by emitting short pulses (e.g., frequency hoppers
or devices like ZigBee) and high duty devices that emit
continuously emit energy when they are active (e.g., analog
phone). For the former class of devices, we identify if the
same pulse (emitted by a particular non-WiFi device instance)
was observed at different APs by matching the start/end times
of the pulses, center frequency and bandwidth of the pulses
along with the pulse type. If a pulse if transmitted by the same
non-WiFi device instance (e.g. a particular Bluetooth device),
then APs in the reception range of this device hear this pulse
at the same time and frequency. For the latter class of devices
(e.g. analog phone) which emit energy continuously while
operating, we use a more coarse grained approach: we merge
instances from those APs that report this device and have the
same start time and center frequency. For example, if multiple
APs observe instances of an analog phone at the same center
frequency, but have different start times for these instances,
we don’t merge them as they correspond to different devices
present in the environment.
Creating a mock-MAC to identify device instances. When
multiple devices of the same type operate simultaneously, it
becomes necessary to separate their merged pulses in order to
carry out localization for each device. For high duty devices,
we simply create a mock-MAC as {ts, fc, (si, RSSi)} where
ts is the coarse-grained start time at which the device instance
was first detected, fc is the center frequency of this device,
and the set (si, RSSi) represents all the APs which reported
this device at the same instant, along with their mean RSS.
However, creating a mock-MAC for pulse transmitters (e.g.,
Bluetooth) is not as simple. We need clustering mechanisms
to segregate the merged pulses belonging to each device.
Each resulting cluster represents the set of merged pulses

2

-60
-40

-20
-60

-40
-20

-60

-40

-20

RSS

Device 1
Device 2

RSS
RSS

RSS

 0

 2500

 5000

 7500

 10000

 0 20 40 60 80 100 120 140 160

In
te

r-
pu

ls
e

tim
in

g

Cluster points (feature vectors)

Device 1
Device 2

Figure 3: Clustering for two FHSS cordless phone devices using (left)
timing property and (right) signal strength (This experiment was done
using 3 APs, so each axis represents the RSS observed at each AP).

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

C
D

F

Error (meters)

Figure 4: Non-WiFi device localization error (in meters) for our
deployment of 5 APs.
obtained from an individual non-WiFi device and we use
the cluster center as the unique mock-MAC. We currently
cluster the merged pulses along two dimensions: (i) Inter-
pulse timing signatures (for devices like Microwave ovens
and FHSS Phones) (ii) RSS vector created during the merging
stage that contains the received signal strengths at the APs
constituting each merged pulse.

Pulses from devices such as FHSS phone and Microwaves
exhibit specific inter-pulse timing signatures that can be used
to distinguish betweenmultiple device instances. For example,
in WDCT cordless phones, the handset and the base transmit
alternatively, and the gap between consecutive pulse start
times is 5 ms [5]. We found RSS based clustering to be
more challenging because of missing RSS values for some
of the APs — even if a non-WiFi device is in the vicinity of
n APs, many pulses are captured only at a subset of these
n APs due to factors such as missing spectral samples at
the AP and RSS variations. We experimented with two
clustering algorithms that can handle such missing attributes:
Expectation-Maximization (EM) and DBSCAN. While the
EM algorithm runs slower than DBSCAN, it results in better
clustering. This clustering process is invoked once every 10
seconds, so we found the overhead of EM acceptable.
Localizing a non-WiFi device instance. We localize a non-
WiFi device as follows: we divide the entire region into grids
of size 1× 1 meters. We denote the co-ordinate of a grid i as
(xi, yi). Let dij denote the distance between grids i and j. We
assume that the grid locations of the APs are known apriori.
Further, for each AP j, let Pj denote the mean received power
from the non-WiFi device.

Now, if the non-WiFi device is at a grid i, then the received
power at an AP located at grid j can be computed as
Pexp(dij) = P o − 10γlog10dij , where γ is the pathloss
exponent and P o is the power received from the non-WiFi
device when placed at a distance of 1 meter from an AP
(henceforth referred to as transmit power). Localizing the
non-WiFi device would require us to find φ = (xi, yi, γ, P

o)

that minimizes the error between the expected received power
Pexp(dij) and actual received power Pj for all APs, i.e, we
wish to find φ = (xi, yi, γ, P

o) that minimizes

E(φ) =
∑
j

|Pj − P o + 10γlog10dij | (1)

In our current prototype of AirTrack, we perform an exhaustive
search to find φ that results in minimum error for localiza-
tion. To reduce the complexity of the algorithm, we collect
measurements to estimate the path loss exponent, γ: each
AP sniffs the frames (e.g., beacons) from other APs in the
vicinity and records the average RSS. Since the co-ordinates
of all APs are known, γ can be estimated periodically. We
are currently exploring mechanisms similar to [3] to further
reduce the complexity of our algorithm.

Results
Implementation and deployment. Our current prototype
of AirTrack consists of 5 APs spanning one floor of our
department building. Each AP is equipped with Atheros
AR9280 AGN wireless card and runs an Airshark module [5].
All the APs are connected to a central controller over the
Ethernet. The spectral samples from the card are processed
by the Airshark module and it outputs pulses tagged with
device type. Tagged pulses, along with captured wireless
frames are used by AirTrack to perform synchronization and
device localization.
Preliminary results. We experimented with different non-
WiFi devices, and benchmarked the clustering algorithms to
understand their performance. Figure 3 shows the perfor-
mance of EM clustering in the presence of two FHSS cordless
phone devices that were placed 15 meters apart — both RSS
based clustering and timing based clustering correctly output
two distinct device instances (clusters) and segregate their
pulses. However, we observed that the performance of RSS
based clustering degrades when the devices are close to each
other (e.g.,< 3meters apart) as it outputs only one cluster. We
are currently developing an improved algorithm combining
the above two metrics. We also ran our localization algorithm
while placing the cordless phones at different distances and
measured its performance. Figure 4 shows that the error
in localizing non-WiFi devices is less than 6 meters in our
current deployment. We are currently experimenting with
different non-WiFi device combinations and AP topologies
to benchmark AirTrack’s performance in diverse scenarios.

1. REFERENCES
[1] Bandspeed AirMaestro. Understanding the Effects of Radio Frequency

(RF) Interference on WLAN performance and Security, 2010.
http://www.bandspeed.com/.

[2] Cheng Y. et al. Jigsaw: Solving the puzzle of enterprise 802.11 analysis.
In SIGCOMM’06.

[3] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan. Indoor
localization without the pain. MobiCom ’10.

[4] S. Gollakota, F. Adib, D. Katabi, and S. Seshan. Clearing the RF Smog:
Making 802.11 Robust to Cross-Technology Interference. In ACM
SIGCOMM 2011.

[5] S. Rayanchu, A. Patro, and S. Banerjee. Airshark: Detecting Non-WiFi
RF Devices using Commodity WiFi Hardware. In ACM IMC 2011.
http://cs.wisc.edu/~shravan/IMC2011_airshark.pdf.

3

