
COAP: A Software-Defined Approach for Home WLAN
Management through an Open API

Ashish Patro, Suman Banerjee
Department of Computer Sciences, University of Wisconsin Madison

{patro, suman}@cs.wisc.edu

ABSTRACT
In recent years, there has been a rapid growth in the adoption and
usage of WiFi enabled networked devices at homes such as lap-
tops, handheld device and wireless entertainment devices. In dense
wireless deployments at homes, such as apartment buildings, neigh-
boring home WLANs share the same unlicensed spectrum by de-
ploying consumer-grade access points in their individual homes. In
such environments, WiFi networks can suffer from intermittent per-
formance issues such as wireless packet losses, interference from
WiFi and non-WiFi sources due to the increasing diversity of de-
vices that share the spectrum. In this paper, we propose a vendor-
neutral cloud-based centralized framework called COAP to config-
ure, co-ordinate and manage individual home APs using an open
API implemented over the OpenFlow SDN framework.This paper
describes the framework and motivates the potential benefits of the
framework in home WLANs.

Categories and Subject Descriptors
C.0 [System Architectures]; C.2.1 [Network Architecture and
Design]: Wireless communication

Keywords
Home WiFi networks; Deployment; Routers; COAP

1. INTRODUCTION
Networking at homes continues to get complex over time requir-

ing users to configure and manage them. Central to home network-
ing infrastructure, are wireless Access Points (APs), that allow a
plethora of WiFi-capable devices to access Internet-based services,
e.g., laptops, handheld devices, game controllers (Wii, XBox), me-
dia streaming devices (Apple TV, Google TV, Roku), and many
more. Standalone APs today are supplied by a number of diverse
vendors — Linksys, Netgear, DLink, Belkin, to name a few. Given
its central role in home networks, the performance and experience
of users at homes depend centrally on efficient and dynamic config-
uration of these APs. In this paper, we argue for a simple vendor-
neutral API that should be implemented by commodity home wire-
less APs to enable a cloud-based management service that enables
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch’14, September 11, 2014, Maui, Hawaii, USA.
Copyright 2014 ACM 978-1-4503-3074-9/14/09 ...$15.00.
.

COAP%
Enabled%APs%

.%

.%

.%

Apartment%
Building%

Internet%

COAP%
Controller%

(Hosted%by%ISP%
or%Building%
manager)%

Figure 1: An example of COAP deployment within a residential
apartment building consisting of diverse COAP capable home
APs and a cloud based controller.
coordination between neighboring home APs, provides better per-
formance, and reduces burden on users.

A vendor-neutral API and a cloud-based management ser-
vice for home wireless APs: In many dense urban environments,
a large number of APs (often more than a 50 or 100 of them) from
different AP vendors and their associated clients are in range and
cause interference to each other. For example, each home AP in
our deployment had 20 - 60 neighboring SSIDs. These environ-
ments are further challenged by many other wireless devices and
appliances, e.g., Bluetooth headsets, cordless handsets, wireless se-
curity cameras, and even microwave ovens, that can also operate in
the same spectrum and cause further interference. Individual home
users neither have the sophistication nor the patience to frequently
tune their wireless APs with optimal settings to mitigate the impact
of interference.

In our proposed service, called COAP (Coordination framework
for Open APs), participating commodity wireless APs (across dif-
ferent vendors) are configured to securely connect to a cloud-based
controller (Figure 1). Proprietary cloud-based solutions to manage
individual home APs [4] exist today. However, such solutions do
not attempt to leverage cooperation or coordination between neigh-
boring APs. The controller provides all necessary management ser-
vices that can be operated by a third-party (potentially distinct from
the individual ISPs). In general, it is desirable that all nearby APs
use the same controller service for the management function. We
believe that our architecture is particularly applicable to large apart-
ment buildings where one could envision that the apartment man-
agement contract with a single controller service (e.g., through a
fixed annual fee) and all residents are asked to utilize the desig-
nated controller service within the building. This service would be
no different than many other utilities distributed to residents, e.g.,
water, electricity, etc., which is arranged by the apartment manage-

 0

 4

 8

 12

 9.5 10 10.5 11T
ra

ff
ic

 (
in

 M
b

p
s
)

 (
A

P
 1

)

Time of day (hour)

 0

 0.25

 0.5

 0.75

 1

 9.5 10 10.5 11A
ir
ti
m

e
 U

ti
liz

a
ti
o

n
 (

A
P

 2
)

Time of day (hour)

Figure 2: WiFi traffic at AP 1 (top) causing high airtime utiliza-
tion at a nearby Access Point, AP 2 (bottom).
ment. Individual residents can also pick different controller services
to realize many of our proposed benefits. However, some advanced
features, e.g., improved interference management and mitigation,
are better served if neighboring APs participate through the same
service.

Using Software-Defined approach in homes vs enterprise
wireless networks: The concept of Software Defined Networking
(SDN) for WLAN management, using a centralized controller for
managing APs is gaining popularity in enterprise WLANs [20].
Further, a few commercial solutions, e.g., Meraki [10], provide
vendor-specific proprietary cloud-managed service for APs in en-
terprise environments. The specific mechanisms used in all such
solutions are based on proprietary signaling that primarily manage
hardware of a single vendor alone. In this paper, we argue for an
open, vendor neutral API for home APs that should be supported by
each AP manufacturer to allow third-party controller services to be
designed, implemented, and deployed for RF management of home
APs. We believe that a SDN based approach (using an open API)
is also important in home environments where each wireless neigh-
borhood has a diverse set of APs. But, unlike enterprise environ-
ments, homogeneity in such environments is likely hard to achieve.
Furthermore, enterprise WLANs consist of a tightly managed con-
trol and data plane with very low latencies between the controller
and the APs (order of micro-seconds). It is only possible to create
a loosely coupled control and data plane for home settings due to
the Internet scale latencies between the APs and controller (tens of
milliseconds).

Our proposed API extends the OpenFlow SDN framework [9]
and uses the open source Floodlight controller [3] to provide wire-
less management capabilities. They are complementary to recent
proposals [21, 19] that use SDNs tomanage residential wired broad-
band networks. Furthermore, with the growing demands on in-
home wireless networks, especially with the dominance and growth
in usage of HD media streaming services and devices, the need for
coordination between neighbors will continue to grow.

2. WHY USE A CENTRALIZED FRAME-
WORK?

In our recent measurement study using a deployment of 30 APs
in Madison, Wisconsin [13], we observed many issues due to the
ad-hoc deployment of APs in dense residential environments. Fol-
lowing is the summary of the main issues experienced in such
deployments.

• WiFi interference. Home APs can experience high airtime
utilization/channel contention due to factors such as high ex-
ternal traffic and/or use of low PHY rates by legacy clients

History Logs

- Link Statistics
- Traffic Statistics
- Non-WiFi activity

COAPManager StatsManagerConfigManager

APConfigManager BasicStatsReporterDiagnosticStatsReporter

Cloud Based COAP Controller

Access Point (APs 1…n)

clickairsharkAP specific interfaces
(e.g., luci)

OpenFlow modules

Floodlight modules

Learning
algorithms

Figure 3: Access Point and controller components of the
COAP framework. The "COAPManager" is the main module
which manages other modules at the controller.

causing rate anomaly. During periods of active traffic from
such transmitters, the average airtime utilization at the neigh-
boring APs increased upto 70%. Figure 2 shows one such
scenario observed from the deployment. Traffic from AP 1
resulted in high airtime utilization (> 70%) observed by the
neighboring AP 2 operating on the same WiFi channel for
more than 1 hour. Such activity from a single AP can increase
the congestion experienced by nearby APs. Also, some links
can occasionally experience hidden terminal (HT) style in-
terference from nearby APs, resulting in packet losses at the
clients and lower throughput.

• Non-WiFi interference. Unlike the 802.11 protocol, some
non-WiFi devices (e.g., microwave ovens, cordless phones)
do not backoff to existing wireless activity on the same chan-
nel and can cause packet losses at the receiver due to overlap-
ping transmissions with WiFi packets. In [13], we observed
that the microwave ovens caused upto 80% degradation in
link performance across multiple locations.

• Inefficient and static channel assignments. We also used
the deployment in [13] to study the channel assignment pat-
terns of neighboring APs. More than 50% amongst around
300 APs observed during this 1 month period used a single
static WiFi channel. This causes the AP to miss multiple op-
portunities to use better WiFi channels to prevent the afore-
mentioned problems.

In each of these cases, if an AP is able to determine the wireless
context at its neighboring APs and WiFi channels, it can determine
the best remedial measure. Individual APs, however, do not have
the full view of wireless activities, since each AP can only observe
its current channel of operation. If the entire set of nearby APs can

Function Description
APConfigManager: Module to receive configuration commands from the controller and execute them at the AP
SetParameters(channel, power) Configures the AP to a particular channel and/or transmit power.
SetAirtimeAccess(slotDuration, transmitBitmap) Manage airtime access of APs by throttling/slotting transmissions (§4.2).
BasicStatsReporter: Module to report aggregate wireless statistics to the controller
GetNeighborInfo() Scans all WiFi channels for neighboring APs’ beacons, gets MAC address (hashed) and RSSI.
GetAirtimeUtilization() Get the current channel’s airtime utilization (0 - 100%) over the most recent time epoch.
GetClientInfo() Get information about associated clients: e.g., MAC address (hashed), device type.
GetLocalLinkStatistics() Get packet transmission statistics per local link: e.g., signal strength and total packets

sent, received, retried.
GetTrafficInfo() Get statistics about current traffic: e.g., source id, type, packet count, bytes sent (§4.3).
DiagnosticStatsReporter: Module to report more detailed wireless statistics for diagnosis purposes
GetNonWifiDevices() Get neighboring non-WiFi activity (using Airshark [14]): e.g., device type, duration etc.
GetPacketSummaries() Get fine grained MAC layer packet transmission reports summaries [13] for overheard links.

Each packet summary contains: timestamp, packet length, PHY rate, retry bit and RSSI.
GetSyncBeacons() Get overheard beacon information (receive. timestamp, MAC sequence number, hashed MAC id)

on the same WiFi channel for time synchronization (§4.2).

Table 1: Main functions implemented by the COAP APs. Most functions are fairly simple to implement. We are planning to release
the API specification and reference implementation: http://research.cs.wisc.edu/wings/projects/coap/.

aggregate this information at a COAP controller service, the latter
can then instruct the participating APs on potential adaptations (§4).

3. COAP FRAMEWORK AND API
As discussed in the previous section, some degree of coordi-

nation between in-range wireless transmissions is key to achiev-
ing improved performance. We now present the details of the
COAP framework which uses the OpenFlow [9] SDN framework
to centrally manages and enables cooperation between APs across
neighboring homes. An important aspect of the framework is that
it only requires a software upgrade for commodity home APs and
doesn’t require any client device support or modifications.

3.1 Framework details
To participate in the COAP framework, APs need to expose

a vendor-neutral open API (Table1) to communicate with the
COAP controller. COAP is complementary to SDN proposals [21,
19] that manage residential wired broadband networks. To imple-
ment COAP, we extend the popular OpenFlow [9] SDN framework
to implement the modules shown in figure 3. We implement the
COAP controller modules over Floodlight [3] (an open-source
Java-based OpenFlow SDN controller) to communicate with the
OpenFlow module at the APs. With this setup, our goal is to moti-
vate the usage of SDN style networks to manage residential wireless
networks. Other open frameworks (e.g., CAPWAP [5]) can also be
used to implement the COAP API.

Our implementation consists of 9000 lines of code (LOC) for the
controller, 4000 LOC for the COAP APs and 800 LOC to imple-
ment OpenFlow wireless extensions. We have deployed COAP en-
abled OpenWrt [2] based APs across 12 homes for a period of more
than 8 months to gather statistics as well as experiment with the
basic management capabilities. Following are additional imple-
mentation details about COAP:

Access Points. COAP APs need to implement three different mod-
ules that expose a set of capabilities (related to configuration, diag-
nostics and statistics collection) to the controller. Table 1 describes
the different capabilities implemented within each modules. They
allow the controller to learn about the wireless activity as well as
provides a set of key "hooks" to configure and manage the APs.

In our current implementation for OpenWrt based Access Points,
we use the open-source click [1] framework to implement the statis-

tics gathering capabilities of the BasicStatsReporter and Diagnos-
ticStatsReportermodules for the COAP APs. We use it to parse the
packet headers of the local and neighboring WiFi links to obtain
anonymized aggregate link level statistics. We use Airshark [14] to
provide the non-WiFi device detection capability using commodity
WiFi cards. The OpenFlow [9] module at the COAP APs commu-
nicates with the SDN controller (figure 3) as well as interfaces with
Airshark and click-based modules using netcat and a standard mes-
saging format. The netcat interface allows AP vendors to replace
the click and Airshark modules with their own implementation for
reporting WiFi and non-WiFi statistics (e.g., using SNMP) in Ta-
ble 1.

TheAPConfigManagermodule interfaces with the OpenWrt con-
figuration tool (luci) to performAP level configurations. (e.g., chan-
nel, transmit power). Depending on the AP platform, COAP can
interface with other configuration protocols (e.g., netconf [6]). Be-
yond this basic control, the AP provides an API to remotely manage
its airtime access. For example, by slotting time into fine grained
intervals (e.g., 10 ms periods), the controller can manage an AP’s
airtime access to reduce channel contention for important flows and
mitigate receiver-side interference (§4.2).

Controller. The COAP controller is implemented over the Java
based open source OpenFlow controller, Floodlight, and currently
runs on a standard Linux server for our deployment. Floodlight al-
lows developers to use one of the existing modules or implement
their own modules within the framework. All COAP controller
modules, StatsManager, COAPManager and ConfigManager, are
implemented as modules within Floodlight. The controller uses the
OpenFlow with COAP-specific protocol extensions to collect data
from the APs as well as apply the configuration updates.

All server modules and tasks are managed by the COAPManager
module, through which it manages and configures the connected
APs. In the COAP framework, the COAPManager module allows
administrators which can allow them to implement custom poli-
cies based on their requirements. The server also maintains logs
about previous wireless activity (WiFi and non-WiFi) for diagnos-
tic purposes and learn and build models to predict wireless usage
characteristics at each AP’s location (§4.3).

Wireless extensions for OpenFlow. The OpenFlow communica-
tion protocol currently consists of capabilities to exchange switch
related statistics (e.g., statistics per switch port, flow, queue, etc.).

-10

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14

A
ir
ti
m

e
 u

ti
liz

a
ti
o

n
 r

e
d

u
c
ti
o

n
 (

%
)

AP ID

Median utilization
90th percentile utilization

Figure 4: Percentage reduction in median and 90th percentile
airtime utilization in our deployment of 12 COAP APs using
airtime-based channel configuration.
We augmented this feature to also exchange COAP related wireless
statistics (Table 1) and transmit wireless configuration updates.

4. LEVERAGING COOPERATION ACROSS
HOME APS THROUGH COAP

By leveraging cooperation between neighboring APs, the
COAP framework enables administrators to implement diverse
controller applications to enable coordination and improve overall
performance. To get maximum benefits from the framework, a
single controller should be used for managing COAP APs within a
multi-dwelling residential unit (e.g., an apartment building). This
is because, coalescing results from multiple APs within the same
building at a single controller can allow the COAP controller to
create a better wireless performance map for the building. If a
single ISP services the entire apartment building, it can host the
COAP controller within its premises as another service for its cus-
tomers. Otherwise, if a building is serviced by multiple ISPs, the
building manager can purchase the COAP controller service from
third-party cloud based providers.

We now discuss two applications – channel assignment and
interference management using COAP airtime management API
through a combination of real world deployments as well as and
controlled experiments.

4.1 WiFi Channel Configuration
In enterprise WLANs, AP configurations (e.g., channel, trans-

mit power) are managed by a vendor specific central controller.
In homes, such configurations are usually performed manually by
users or done individually based on local-only observations by APs.
Furthermore, channel configurations were observed to be static for
more than 50% of home APs [13]. This can lead to inefficient uti-
lization of the spectrum.

In the COAP framework, such functions (e.g., channel assign-
ment) can be delegated to the controller. For example, by combining
recent information about airtime utilization on different channels
(e.g., within last ’x’ minutes) from a COAP AP’s neighbors, the
controller can perform better channel assignments compared to
only local AP observations.

What are the performance improvements due to centralized chan-
nel assignments?

To study the benefits of using COAP framework for channel as-
signments, we performed "airtime-aware" dynamic channel assign-
ments to minimize airtime utilization (and reduce contention) expe-
rienced by our residential deployment of 12 COAP APs. Reducing
airtime utilization increases the available throughput [16]. Due to
the sparsity of our AP deployment, we used a secondary wireless
card on our APs to collect airtime utilization information across all

(a) Throttling transmissions: Throttle(AP1)

AP1

AP2

t1 t2 t3 t4

.............
Time

AP1: SetAirtimeAccess(10ms, "1010")

(e.g., video flow)

(e.g., bulk download)

AP1

AP2

t1 t2 t3 t4

..............

(b) Slotting transmissions: Slot(AP1, AP2)

Time

AP1: SetAirtimeAccess(10ms, "1010")
AP2: SetAirtimeAccess(10ms, "0101")

Figure 5: Two mechanisms to manage airtime access of
COAP APs: Throttle(APx) (top) and Slot(APx, APy) (bot-
tom). Throttle limits the airtime access of a single COAP AP
while Slot coordinates the airtime access of two interfering
COAP APs.
channels in a round robin fashion. In this manner, we emulated the
usage of nearby APs to collect airtime utilization information.

Over a span of 6 days, we employed 2 channel configuration
strategies on alternate days (1 day per configuration): static (and
random) channel assignment, and dynamic channel assignments us-
ing COAP to reduce airtime utilization at COAP APs. In the sec-
ond scenario, airtime utilization statistics from the most recent 5
minute interval was used to estimate external wireless activity and
select the best channel per AP [16]. These channel configuration
updates were applied during periods without high network activity
to avoid service disruption for users.

Figure 4 shows the percentage reduction for median and 90th per-
centile airtime utilization values across the residential deployments
of 12 COAP APs for the COAP-based dynamic channel configu-
ration over the static channel assignment scheme, which is the case
across majority of homes today [13] due to lack of centralized man-
agement. It shows that the dynamic "airtime-aware" scheme per-
formed better than a random channel assignment scheme for 10 out
of the 12 APs. Four out of the 12 APs (APs 9 - 12) experienced
20% or more (upto 47%) reduction in airtime utilization. This
shows the potential gains achievable through a centralized approach
to home AP management. Even non-participating APs in the vicin-
ity of COAP APs can benefit from dynamic channel assignment of
COAP APs due to better load balancing of traffic on different chan-
nels resulting in lower channel contention. Further proliferation of
WiFi-capable devices and high volume traffic (e.g., HD videos) will
further increase the future utility of COAP based approaches to re-
duce channel contention.

4.2 Airtime Management
For the COAP framework, we developed the SetAirtimeAc-

cess(transmit_bitmap, slot_duration) API (Table 1) which provides
a lightweight and flexible primitive to the COAP controller to man-
age the airtime access patterns of COAP APs. We propose this
API for solving two problems experienced by home APs (§2): (i)
Channel congestion caused by nearby AP traffic, (ii) hidden termi-
nal style interference resulting in packet losses. The intuition is to

 0

 3

 6

 9

 12

 15

 0 10 20 30 40 50

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (in sec)

Throttle Link 2

Link 2 improves

Link 1
Link 2

 0

 3

 6

 9

 12

 15

 0 5 10 15 20

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (in sec)

Slotting started

HT Link
Affected Link

Figure 6: Mitigating interference: (Top) Concurrent traffic
from a poor link (Link 2) degrades TCP throughput of link 1;
throttling link 2 causes 2x improvement for link 1. (Bottom)
Transmissions from a hidden terminal degrades a nearby link’s
performance; slotting the two APs improves the affected link’s
throughput by 4×.
mitigate these scenarios by controlling the airtime access patterns
of the interfering APs.

For example, the impact of hidden terminal interference can
be mitigated by preventing overlapping transmissions between the
two interfering APs. To detect hidden terminal interference, we
borrow techniques from prior work [18, 13] that correlates time-
series packet losses and activity of nearby links. Similarly, chan-
nel congestion experienced by high priority flows (e.g., VOIP,
HTTP based video flows) can be mitigated by reducing the air-
time access of nearby APs with low priority flows (e.g., bulk down-
loads). Lightweight and coarse-grained classification techniques
(e.g., [11]) can be used to detect flow types and identify these sen-
sitive flows.

4.2.1 API details
We use two mechanisms to manage the airtime access of

COAP APs (Figure 5): Throttle(APx) and Slot(APx, APy).
For this purpose, the controller divides time into small "slots" (10
- 20 ms) and can enable/disable transmissions of COAP APs on a
per-slot basis to manage their airtime access. Throttle(APx) is
used to limit a COAP AP’s transmission to certain slots to decrease
its airtime utilization, and thus reduce channel contention at the
neighboring APs. Slot(APx, APy) is used by the COAP con-
troller to configure two APs to transmit in non-overlapping time
slots. This is useful in mitigating hidden terminal interference
since overlapping transmissions cause packet losses at clients.

In contrast to enterprise-centric centralized approaches such as
CENTAUR [17] that explicitly schedule flows on the data path to
mitigate interference, it is not possible to do across home APs due
to the lack of a centralized data-plane. But the centralized SDN
framework still allows the COAP controller to coordinate trans-
missions between nearby home APs using the aforementioned API.
This approach is motivated by RxIP [8], which uses a distributed
mechanism for coordinating AP transmissions but can result in
scalability issues in large multi-dwelling residential units.

API usage. To use this API, COAP APs are configured with the
two parameters: "slot duration" and "transmit bitmap". The slot

duration (e.g., 10 ms) determines the time granularity to use for air-
time access management (enable/disable transmissions). The per-
AP transmit bitmap specifies the slots in which the AP is allowed to
transmit. For example, a transmit bitmap of "1010" indicates that
the AP is allowed to transmit in time slots 0 and 2 and disabled in
slots 1 and 3 (Figure 5, top). This pattern represents a throttle value
of 50% since the AP can only transmit data packets during 50% of
the time.

For the Slot(APx, APy) mechanism, the COAP framework
uses a passive mechanism from [15] to synchronize the APs’ clocks
with < 0.5 ms error which is much smaller than the slot duration
of 10 to 20 ms.

Implementation. We have instrumented the ath9k wireless drivers
for our 802.11n based APs to support this API. For example, to
throttle the airtime access of an AP, we disable the AP’s transmit
queue (using the AR_Q_TXD register) to block packet transmis-
sions for the required period of time. Since this is a software-only
modification, the underlying implementation of this feature can be
driver specific and transparent to the COAP API. We explain the
now usage of this API using a couple of example scenarios.

Example Scenarios. We now present a couple of example scenar-
ios to show how the COAP controller can manage the links’ air-
time access using the Throttle(APx) and Slot(APx, APy)mech-
anisms.

In the first scenario (Figure 6, top), the iperf throughput of Link 1
at 12 Mbps degrades due to overlapping transmissions from a poor
link (Link 2) which uses low PHY rates (at t = 10 seconds). At t =
30 seconds, the controller throttles Link 2 by limiting its transmis-
sions to alternate 10 ms time slots (50% throttle), This improves the
performance of link 1 from 6 Mbps to 12 Mbps due to the sufficient
airtime available to get the desired throughput. At t = 45 seconds,
the link quality of link 2 improves, allowing to get higher through-
put (from 4Mbps to 7.8 Mbps) with the same 50% airtime throttle.
Thus, this API provides a strict control over an AP’s transmissions
which is independent of the varying link + PHY layer properties
(e.g., signal strength and data rates) and provides protection to im-
portant flows.

In the second scenario (Figure 6, bottom), a link experiences poor
throughput (2 Mbps) due to interference caused by a nearby hid-
den terminal AP resulting in high losses and backoffs. At t = 10
seconds, the controller detects this interference and protects the af-
fected flow by configuring the twoAPs to transmit in alternating and
non-overlapping time slots (using transmit bitmaps of "1010" and
"0101"). The protection provided by slotting increases the through-
put of the affected link to 9 - 10 Mbps (4× improvement) while the
hidden terminal AP still obtains a throughput of 8 - 10 Mbps.

4.3 Context-aware AP Configuration
For other potential applications, the controller can utilize server

logs about previous wireless activity observed by each AP to ap-
ply learning-techniques to mine context-related information. One
example is the "time-of-day" context about previous non-WiFi ac-
tivity at a particular location. If the usage of some non-WiFi device
(e.g., cordless phones, microwave ovens) is highly correlated with a
particular period of the day, the controller can pre-emptively config-
ure the APs (e.g., channel) to avoid interference from the particular
device.

Another example is the "client type" context to predict future
wireless activity. For example, if a WiFi client associated to an AP
(e.g., Wireless TV) has long periods of continuous activity, the con-
troller can leverage this information for future configuration of the
AP and its neighbors. Following is an example scenario – "AP 4 has

started a high-volume HD video flow on his wireless TV, which is
going to last for 30 minutes with 90% probability. Therefore, move
adjacent APs to other WiFi channels to reduce channel contention
during this traffic’s presence."

5. RELATED WORK
SDN style management of APs. Meraki [10] pioneered the con-
cept of cloud-based management of enterprise APs based on an pro-
prietary solution that configures their homogeneous APs remotely
though the cloud. Dyson [12] proposes a centralized framework to
manage APs and clients in enterprise WLANs using a set of APIs
at both APs and clients. We propose an open API by augmenting
existing SDN frameworks to enable cooperation between hetero-
geneous neighboring APs in residential settings. OpenFlow [9] is
an open and popular SDN framework designed to manage routing
policies and other networking-related configurations. Prior work on
using OpenFlow for 802.11 networks [7, 20] focused on building an
experimental platforms for enterprise network deployments. Our
goal is to use the SDN approach to actively cloud-manage wireless
parameters of 802.11 networks and build management frameworks,
especially for residential settings. It is also possible to use other
open AP management standards (e.g., CAPWAP [5]) to implement
COAP related APIs to manage residential AP deployments.

Using multi-AP support in non-enterprise 802.11 deployments.
Prior research has proposed mechanisms to leverage support from
multiple APs to use AP virtualization to improve video performance
through bandwidth sharing [19] and mitigate hidden terminals us-
ing distributed algorithms [8]. With COAP, we motivate the use
of a cloud-based framework to enable cooperation between nearby
home APs and mitigate wireless problems in residential WiFi de-
ployments. This is done by aggregating airtime utilization infor-
mation from nearby APs for channel configuration, coordinating
airtime access across APs to alleviate both channel congestion and
hidden terminal scenarios and learning from prior activity to predict
traffic usage patterns and future non-WiFi interference.

6. CONCLUSION
We presented theCOAP framework, which uses a vendor-neutral

open API and a cloud based controller to enable cooperation be-
tween heterogeneous and co-located home WiFi APs in dense resi-
dential deployments (e.g., apartment buildings). We describe mul-
tiple applications to motivate the benefits of using this centralized
framework in such deployments – better channel assignments us-
ing airtime utilization information from co-located home APs and
managing airtime access of neighboring APs to reduce channel con-
tention for important flows as well as mitigate hidden terminal in-
terference. In future work, we plan to explore the possibilities of
leveraging the COAP framework to develop context-aware applica-
tions and apply pre-emptive configurations at APs to mitigate per-
formance issues.

We will continue to refine our controller implementation as
well as our API specifications as we continue to learn from
our deployments. We also plan to open-source our COAP im-
plementation in near-future to motivate and engage develop-
ers, vendors and other stakeholders to encourage the adop-
tion of this framework. We’ll be publishing these updates at:
http://research.cs.wisc.edu/wings/projects/coap/.

7. ACKNOWLEDGMENTS
This work is supported in part by the US National Science

Foundation through awards CNS-1040648, CNS-0916955, CNS-

0855201, CNS-0747177, CNS-1064944, CNS-1059306, CNS-
1345293, CNS-1343363, CNS-1258290, and CNS-1405667 and
by a Microsoft Research PhD Fellowship.

8. REFERENCES
[1] Click modular router.

http://www.read.cs.ucla.edu/click/click.
[2] Openwrt. https://openwrt.org/.
[3] Project floodlight.

http://www.projectfloodlight.org/floodlight/.
[4] D-Link. Cloud router.

http://www.dlink-cloud.com/solutions.aspx.
[5] IETF. Capwap protocol specification.

http://tools.ietf.org/search/rfc5415.
[6] IETF. netconf. http://datatracker.ietf.org/wg/netconf/charter/.
[7] Kok-Kiong Yap et al. The Stanford OpenRoads Deployment.

In Proceedings of the annual conference on WinTech, 2009.
[8] J. Manweiler, P. Franklin, and R. Choudhury. RxIP:

Monitoring the health of home wireless networks. In
INFOCOM 2012.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM
Comput. Commun. Rev., 2008.

[10] Meraki. Enterprise cloud management.
http://www.meraki.com/products/wireless/enterprise-cloud-
management.

[11] A. W. Moore and K. Papagiannaki. Toward the accurate
identification of network applications. PAM’05.

[12] R. Murty, J. Padhye, A. Wolman, and M. Welsh. Dyson: An
Architecture for Extensible Wireless LANs. USENIX
ATC’10.

[13] A. Patro, S. Govindan, and S. Banerjee. Observing Home
Wireless Experience Through WiFi APs. MobiCom ’13.

[14] S. Rayanchu, A. Patro, and S. Banerjee. Airshark: Detecting
non-WiFi RF devices using commodity WiFi hardware. IMC
’11.

[15] S. Rayanchu, A. Patro, and S. Banerjee. Catching Whales
and Minnows Using WiFiNet: Deconstructing non-WiFi
Interference Using WiFi Hardware. NSDI’12.

[16] E. Rozner, Y. Mehta, A. Akella, and L. Qiu. Traffic-Aware
Channel Assignment in Enterprise Wireless LANs. In ICNP
2007.

[17] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee,
S. Keshav, K. Papagiannaki, and A. Mishra. CENTAUR:
Realizing the Full Potential of Centralized Wlans Through a
Hybrid Data Path. MobiCom ’09.

[18] V. Shrivastava, S. Rayanchu, S. Banerjee, and
K. Papagiannaki. PIE in the sky: online passive interference
estimation for enterprise WLANs. NSDI’11.

[19] V. Sivaraman, T. Moors, H. Habibi Gharakheili, D. Ong,
J. Matthews, and C. Russell. Virtualizing the Access
Network via Open APIs. CoNEXT ’13.

[20] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and
T. Vazao. Towards programmable enterprise WLANs with
Odin. HotSDN ’12.

[21] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and
N. McKeown. Slicing home networks. In Proceedings of the
2nd ACM SIGCOMM workshop on Home networks,
HomeNets ’11.

