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ABSTRACT
We propose Snoopy, a system that can translate one’s mobile phone
or tablet into a low-cost, yet effective RF spectrum analyzer. Since
typical spectrum analyzers are specialized hardware that is both ex-
pensive to acquire and cumbersome to carry around, they are rarely
available for quick-and-easy spectrum sensing while on the go. To
address this challenge, Snoopy augments popular mobile devices
with a small attachable hardware unit (RF frequency translators)
that can provide a reasonable view of the wireless spectrum across
different frequency bands. It achieves this by leveraging the spec-
tral scan functionality available in certain 802.11 NICs (e.g., the
Atheros 9280 family of chipsets), which provides an unique lens
towards the WiFi spectrum (2.4GHz). Through the use of suitable
frequency translation, such a view can be flexibly shifted to other
spectrum bands. Although such a construction might not match
the precision and accuracy of the most sophisticated but expensive
spectrum analyzers, we show that by leveraging some carefully de-
signed spectral features, Snoopy can achieve decent accuracy in
the TV whitespace band (512 – 698MHz) – it can detect primary
signals up to - 90dBm with an average error rate of <15%, while
achieving a median error of <4dB in estimating the power of these
signals. These promising results suggest that Snoopy is an intrigu-
ing option in bringing the ability of spectrum sensing to the masses,
thereby truly enabling crowd-sourcing options in this domain.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion; C.4 [Performance of Systems]: Measurement techniques

Keywords
Spectrum sensing; Crowdsourcing; Smartphone; TV whitespaces

1. INTRODUCTION
Smartphones and tablets are among the most common devices

that are carried around by individuals today. As the number of such
devices exceed the count of the worldwide human population, a ser-
vice that is enabled in these devices can truly achieve global reach.
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This has led to mushrooming of many data-aggregation services
implemented on them that take advantage of its scale and pene-
tration. In this paper, we consider the possibility of implementing
a low-cost RF spectrum sensing capability on this common plat-
form, thereby unlocking significant new opportunities for citizen-
contributed analytics of the RF spectrum.

Current RF spectrum sensing approaches: The ability to ef-
ficiently sense and infer spectrum occupancy is an important need
in the evolving debate of spectrum availability. Many use cases ex-
ist today. Regulatory bodies across the world, such as FCC in the
US and Ofcom in the UK, are exploring new policy regimes where
dynamic spectrum sharing will play an increasingly central role.
To ensure such decisions are grounded in reality, these organiza-
tions need widespread data to determine the efficacy of spectrum
utilization. Similarly, if one is curious to learn whether prohibited
wireless transmitters are operating in a certain region (for exam-
ple, cellphones not in the airplane mode in a flying aircraft or in
a sensitive facility), spectrum sensing can provide the answer. In
particular, any kind of spectrum transmission policy enforcement
rely on effective spectrum sensing at its core.

RF spectrum sensing has traditionally been done following a
“cathedral” model, by using sophisticated and specialized hard-
ware, e.g., high-end spectrum analyzers. This type of hardware
is both expensive and cumbersome, and can only be operated by a
few experts. Using such hardware, a few concerted efforts from re-
searchers have led to significant spectrum measurements. Notable
among them are the efforts of SharedSpectrum [14], the Spectrum
Observatory project [8], and SpecNet [3]. While these measure-
ment efforts can provide high quality and actionable data, the cost
of hardware and training effort for operating these systems have
limited their deployment to a selected few sites and locations.

Proposed approach in Snoopy: In this work, we envision an
alternative solution where the capability of RF spectrum sensing
is embedded in some popular off-the-shelf mobile devices, thus
bringing spectrum sensing to the “bazaar” and opening it up to
the masses. Such a solution can truly enable the creation of a
widespread real-time spectrum observatory. In particular, we pro-
pose a measurement system called Snoopy (Spectrum knowledge
out of pocket), which can turn those off-the-shelf smartphone de-
vices into spectrum sensors to effectively perform spectrum moni-
toring functions.

The advantage of this bazaar-style spectrum sensing is obvious
— many more users can easily deploy this service, thus allowing
a greater reach of spectrum sensing activities. To realize this goal,
our proposed solution - Snoopy utilizes emerging features that are
available in many common WiFi NICs to collect energy samples
for each WiFi subcarrier at a fine timescale (often referred to as
WiFi spectrum scan). Drivers capable of exposing such spectral



data exists for the Intel 5300 cards [5]. In addition, we have re-
cently released an analogous driver for the Atheros 92xx and 93xx
chipsets [19]. By attaching a RF frequency translator to this type
of WiFi NICs, it is possible to turn this WiFi spectral scan feature
into a wide-band spectrum sensing functionality (the exact bands
that can be scanned depends on the precise frequency translator
used). For our initial prototype, we use a slightly expensive RF
frequency translator from prior work [13,16]. Nevertheless, in dis-
cussion with various hardware vendors, it appears that relatively
low-cost versions (< $50 [9] and likely far cheaper) are possible,
especially if the focus is purely for receiving spectrum data, and
not for transmitting.

While extolling the virtues of Snoopy, we hasten to add that such
low cost hardware is not likely to achieve the same level of accu-
racy compared to those sophisticated spectrum analyzers. High-
end spectrum analyzers like ThinkRF analyzer [17] usually have
a much higher sampling rate (125MHz), thereby achieving a finer
frequency granularity (< 1 KHz). Compared to the spectrum gran-
ularity of WiFi spectral scan in Snoopy (∼ 312.5 KHz), the for-
mer can potentially achieve greater accuracy for detecting signal
activity when combined with some well-known feature based de-
tection algorithms [3, 11, 15]. Nevertheless, we show that some
carefully designed statistics on the low-resolution spectrum can in-
deed be helpful in improving detection accuracy. These statistical
features are widely present in many types of signals (e.g., TV, mi-
crophone, WiFi, WiMax) and thus generally applicable to feature
detection techniques. In addition, we believe that the affordabil-
ity of such hardware along with the simplicity of the mobile plat-
form’s software can make it a compelling sensing device, at least
for researchers and hobbyists, thus leading to its wide adoption as a
“quick-and-dirty” tool. This makes combining data from many di-
verse sources possible to ultimately achieve a significantly higher
measurement accuracy.

Before delving into the design of Snoopy, we would like to point
out that one recent effort [2] has also proposed the use of mobile
devices for RF spectrum sensing. The solution is based on a dif-
ferent architecture that uses a RTL-SDR hardware (essentially a
TV-dongle) to directly capture measurements at specific parts of
a frequency band. While retaining many benefits of Snoopy, we
believe that the granularity of WiFi spectral data available from
common WiFi NICs are finer and richer than those available from
common TV dongles, ultimately enabling Snoopy to achieve higher
accuracy in estimating signal power and detecting different types
of signals from spectrum measurements (e.g., TV broadcasts and
microphones in the TV band in our experiment). Furthermore,
a frequency translator can flexibly sense a wider band (30 MHz
- 7.5GHz) than RTL-SDR (52 MHz - 2.2 GHz). Nevertheless,
Snoopy suffers from a current limitation that it only works with
WiFi radios based on above chipsets, which could either be built
into smartphone devices or attached externally through their Mi-
croUSB port. Unfortunately, none of them have exposed an exter-
nal RF connector to interface with our frequency translator. Thus,
in our proof-of-the-concept implementation, we use an OpenWrt
router hosting a Atheros 9280 card to serve as mobile devices,
which is connected to our translator via a RF cable (Figure 1).

Key Contributions: We had to address a number of technical
challenges that form the key contributions of this work:

• We have designed and implemented a mobile device based spec-
trum sensing system – Snoopy. Snoopy leverages the spectrum
sensing capabilities of off-the-shelf WiFi cards (Atheros chipsets
9280, 9271, etc.), while attaching them with a frequency trans-
lator to achieve a wide sensing range from 30 MHz - 7.5 GHz
(§2).

Frequency 
TranslatorOpenWRT
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Atheros 9280
WiFi Card

Antenna
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Figure 1: Snoopy sensing prototype.

• We have developed specific techniques that take the sub-carrier
spectrum scan data from the WiFi cards to detect signals at low-
power (up to -90dBm). Our experiments on the UHF televi-
sion band show that Snoopy can detect primary signals (i.e., TV
and microphone) at a wide range of power with an error rate of
<15%. In addition, it can measure the power of TV channels
with an error of < 4dB in most cases (§3).

• We have ported the software module of Snoopy to an Android
application that is readily available for Nexus Android tablets
and phones to perform spectrum sensing in the 2.4 GHz WiFi
band [20]. We have also released an open-source version of the
WiFi spectral scan feature for the Android platform that can be
utilized by the community [19]. We are currently working on the
last hurdle of building a compatible hardware connector for our
frequency translator to connect to off-the-shelf mobile devices,
which will be discussed in §5.

2. SNOOPY DESIGN
In this section, we first highlight the major challenges in design-

ing a low-cost mobile sensing platform. We then present Snoopy
and its key techniques to overcome these challenges.

Design challenges: We have identified three major challenges
in designing a mobile sensing platform for satisfying various as-
pects of performance requirement, i.e., delay, frequency range, and
detection sensitivity.

• Low-latency: Snoopy aims to perform real-time spectrum anal-
ysis with a low latency on the order of milliseconds. This rules
out many software based FFT options.

• Frequency range: Snoopy should be flexible enough to monitor
a wide frequency range spanning UHF, cellular, ISM bands.

• Detection sensitivity: Prior work Airshark [12] focused on in-
terference scenarios and is capable of detecting both WiFi and
Non-WiFi interference signals at a relatively high power (> -80
dBm). In contrast, Snoopy aims to determine spectrum avail-
ability, thus having to use the same WiFi scanner in Airshark
to detect primary signals (e.g., TV and microphones in the TV
band) at a much lower power (up to -90dBm).

Snoopy consists of three major components — a) a frequency
translator that translates incoming signals from any frequency band
to the 2.4GHz WiFi band, b) a WiFi based mobile device that uses
its built-in WiFi radio to collect spectrum samples (FFTs) of the
translated signal, c) a software module that performs an enhanced
signal detection algorithm on the spectrum scan data to detect dif-
ferent types of signals and measure their power. Figure 1 shows
our sensing prototype, which uses a OpenWRT based router con-
trolling an Atheros AR9280 card as the mobile device to conduct
spectrum sensing.



fout

fc

Frequency Mixer

Frequency 
Synthesizer

fin

Figure 2: Simplified diagram of a RF frequency translator.

Frequency translator: Figure 2 shows a simplified diagram to
illustrate the operation of a RF frequency translator. A translator
leverages two major hardware components for frequency transla-
tion, i.e., frequency synthesizer and frequency mixer. The fre-
quency synthesizer is able to generate a carrier signal (sine waves)
at any specified frequency fc. This signal is taken by the fre-
quency mixer, which combines it with the input RF signal at fin
to generate an output signal at a center frequency of fout. Here
fout = fin + fc. By tuning fc, we can convert signals from any
target band to the WiFi band (fout = 2.4 GHz), thereby allowing
the WiFi radio of a mobile device to collect spectrum data of these
signals after frequency conversion 1.

In our current implementation, we use the Wide Band Digital
Radio (WDR) to perform the frequency translation function. This
platform has been used in prior work [13, 16] to translate 2.4 GHz
WiFi signals to the 600 MHz television band to enable TV whites-
pace communications. Similar platforms have been reported in
prior work such as WhiteFi [4]. There are two unique advantages
of our translator platform. First, it can translate signals from a wide
frequency range of 30MHz – 7.5GHz, thus allowing Snoopy to
monitor a variety of licensed and unlicensed bands including land
mobile, radio navigation, television, cellular, satellite, and so on. In
addition, its frequency synthesizer incurs very low latency (≈1ms)
in switching across frequencies (fc), thus allowing Snoopy to fast
sweep across a wide range of spectrum. The WDR uses an Ether-
net connection to receive configuration information about fc, and
leverages RF cables to send and receive wireless signals.

Spectrum sensing on WiFi cards: After translating a target fre-
quency band to the WiFi band, Snoopy leverages the off-the-shelf
WiFi radio of mobile devices to generate its spectrum. Our current
prototype is built on Atheros AR9280 AGN cards and leverages
the driver module developed in prior work Airshark [12] to extract
spectrum samples. Each spectrum sample comprises the power of
64 sub-carriers (FFTs) over a 20MHz WiFi channel, with each FFT
representing the power over a 312.5KHz band (20MHz/64). Since
these FFT samples are generated by the WiFi hardware, it incurs a
very low latency (120us) for producing a 20MHz spectrum. Never-
theless, we find it can take much longer time (≈20ms) to switch to
a different WiFi channel. Given the much lower latency (1ms) of
the translator in switching frequencies, we decide to fixed the op-
erating channel of the WiFi card (at 2437MHz), but only changing
the carrier frequency fc of the translator. Table 1 summarizes the
latency of different operations performed by Snoopy.

Using WiFi cards to determine TV whitespaces: Prior work
such as Airshark [12] has used the aforementioned WiFi radio ca-

1A typical RF translator can convert signals in both directions, even
though we use it for reception alone.

Operation Latency
Capturing 20MHz spectrum by a WiFi radio 120us
Switching frequency bands by a translator 1ms

Signal detection for each TV channel by a router 10ms

Table 1: Approximate latency of different operations in Snoopy.

Signal Types Spectrum Features

TV v.s. Noise Power, Fourier Transformation coefficients
Microphone v.s. Noise Power, 75th quartile FFT, Fourier Transformation coefficients

TV v.s. Microphone 75th quartile FFT

Table 2: Features used by Snoopy to classify different types of sig-
nals in the TV band.

pabilities to detect non-WiFi activity. In this paper, we motivate
the use of these capabilities for determining spectrum availability,
with TV whitespaces as an example. Compared to detecting non-
WiFi activity, this task is much more challenging due to the need to
detect weak primary signals.

To demonstrate this challenge, we used Snoopy and a high-end
spectrum analyzer [17] to capture the spectrum of a digital TV sig-
nal and a microphone signal at two different powers. We will give
more details about this spectrum analyzer in Section 3. Figure 3
shows that the spectra captured by these devices have a similar
shape for each signal type. Nevertheless, the spectrum collected
by Snoopy is much more coarse-grained, with a noisy and fluctuat-
ing power distribution in most of its FFT bins. This is because its
wider FFT bins can aggregate more noise and the frequency transla-
tor also introduces non-negligible distortion. This jagged spectrum
leads to far less distinguishable peak features (i.e., TV pilot and mi-
crophone tones), which in turn cause higher errors of state-of-the-
art feature detection algorithms [7, 11, 15] (Section 3). To improve
the accuracy of primary signal detection, we have developed an en-
hanced feature detection algorithm that leverages some statistical
feature inherent in the low resolution spectrum as described next.

Signal detection based on statistical spectrum features: Our
proposed detection algorithm leverages two statistics of the low-
resolution spectrum as additional features to improve detection ac-
curacy. These statistics are 1) 75th quartile of FFTs, 2) coeffi-
cients of Discrete Fourier Transformation performed on the col-
lected spectrum (FFT over FFT). These features are motivated by
the distinct power distribution in the spectrum of primary signals
from that of noise. Specifically, Feature 1 is based on the fact that a
microphone signal has most of its power concentrated on its audio
tones (2 – 3 FFT bins), whereas a TV signal and noise have a rela-
tively even power distribution across the entire 6MHz TV channel
(Figure 3(b) 3(d)). Thus, the 75th quartile of FFTs for a micro-
phone signal is much higher than TV and noise, thus serving an
effective feature to detect microphone signals.

The motivation behind Feature 2 is that the envelop of a spec-
trum can be represented by the sum of sinusoid waves at different
frequencies, by performing Discrete Fourier Transformation again.
The coefficients of Fourier Transformation are the weights used to
combine different sinusoid waves to reconstruct the original spec-
tral shape. Thus, the distribution of these coefficients can compre-
hensively capture all the shape related features, including the band-
width and peak features used in prior approaches [7, 11, 15], along
with many subtle ones such as the notch in the center of a WiFi
spectrum. To make best of this generalized shape feature, we lever-
age some state-of-the-art classifiers to assign different weights on
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Figure 3: Spectrum of primary signals captured at different powers by a high-end spectrum analyzer (at 0.238KHz resolution) and Snoopy
(at 312.5KHz resolution). The left 2 graphs show the TV spectrum and the right 2 graphs show the microphone spectrum.
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Figure 4: Coefficients of Discrete Fourier Transformation applied to the spectrum of different types of signals.

these coefficients, thereby relying more on those distinct features
for signal classification.

To demonstrate the efficacy of this statistical feature, Figure 4
shows the co-efficient values after applying Fourier Transformation
on the spectrum of different signals captured by Snoopy as shown
in Figure 3(b) 3(d). For each spectrum, we have normalized the
spectral FFTs to their median value before applying Fourier Trans-
formation to make these coefficients invariant to the signal power.
The x axis shows the index of coefficients and a higher order index
indicates a sine wave at higher frequency. We note the distribution
of co-coefficients differ for each type of signals. The microphone
signal has a large high-order coefficient due to its narrow tone. In
contrast, the noise has a larger zero-order coefficient because it has
a random fluctuating pattern. Finally, a TV signal has similar co-
efficients because of its trapezoid spectrum with jagged envelop.
These distinct distributions suggest that the coefficients of Fourier
Transformation applied to the spectrum envelop can indeed be a
useful feature for classifying different types of signals.

Putting it all together, our detection procedure proceeds as fol-
lows. a) We start by using Airshark module to collect spectrum
from 20 MHz spectral blocks in the UHF band. The collected spec-
trum is divided according to 6MHz TV channels. b) We then scale
these FFTs by their median value to gather spectral features that are
invariant of signal power. c) The 75th quartile of the scaled FFTs
is calculated. d) We also apply Fourier Transformation on these
FFTs to obtain their transformation coefficients. d) We feed these
spectral statistics along with channel power to a classifier for deter-
mining the type of signals in each TV channel (i.e., TV, MIC). We
have experimented with two state-of-the-art classifiers, i.e., support
vector machine (SVM) and multinomial logistic regression. Their
performance is compared in Section 3. Table 2 summarizes the
useful features for classifying different types of signals.

Implementation: Since existing smartphones do not expose any
RF connector of their WiFi radios, our proof-of-the-concept imple-

mentation uses a Alix3D2 router board equipped with an Atheros
9280 AGN card as the mobile device. The WiFi card is connected
to a WDR radio via a RF cable as shown in Figure 1. The router
uses an Ethernet connection to configure the WDR to measure a
specific frequency band. It receives spectrum samples from the
WiFi card to detect primary signals (e.g., TV and microphone)
while measuring their power. The entire sensing procedure is im-
plemented in ≈1000 lines of Python code. It incurs a low latency
of about 10ms for processing each 6MHz TV channel. We have
also released a smartphone based platform [20] that can provide
spectrum sensing capabilities for the WiFi band.

3. EVALUATION
In this section, we evaluate the performance of Snoopy in per-

forming two popular spectrum sensing functions in the UHF tele-
vision band — a) detecting primary signals, b) measuring channel
power. We perform a head-to-head comparison between Snoopy
and a high-end spectrum analyzer to understand the performance
limitation of our platform. Overall, we find Snoopy has a reason-
ably low error rate of <15% in detecting different types of primary
signals at up to -90dBm, which is <10% higher than the spectrum
analyzer. In addition, it achieves a median error of < 4dB in mea-
suring the power for most of the TV channels.

Dataset: We collected two datasets of spectrum measurements
from the Snoopy platform and a high-end spectrum analyzer from
ThinkRF Inc [17]. The ThinkRF analyzer has a 8MHz capture
bandwidth with 32768 FFTs, thus producing spectrums at a very
fine-grained resolution of 238Hz (see Figure 3(a) 3(c)). This device
was used in prior work [15] to accurately detect TV signals at up
to -114dBm. Thus, we used this analyzer to establish ground-truth
results by connecting both devices to a single antenna through a
RF splitter. We have measured 8 UHF channels that are distributed
across the entire UHF band. Using the ThinkRF analyzer, we have
detected TV signals in 4 channels and microphone signals in 2 other
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Detected TV Microphone Noise
Ground truth

TV 97.7% 1.3% 1%
Microphone 8.4% 91.5% 0.1%

Noise 12.3% 0.5% 87.2%

Table 3: Accuracy of Snoopy in detecting different types of signals
with a SVM classifier.

channels. We then used a RF attenuator to attenuate these primary
signals (TV and MICs) for constructing spectrum traces at a wide
range of power (from -90dBm to -50dBm at 10dB step).

Methodology: To evaluate the accuracy of detecting primary
signals, we applied 5-fold cross validation on each dataset by us-
ing 80% spectrum samples to train different signal classifiers, and
tested them on the remaining data. To quantify the performance
of measuring channel power, we compared the power readings that
are calculated from spectrum measurements collected by Snoopy
and ThinkRF.

Metrics: We applied two metrics to evaluate Snoopy. The mis-
detection rate is the ratio of the number of mis-detected spectrum
measurements divided by the total number of measurements. The
absolute power error is the difference in power readings between
Snoopy and the ThinkRF analyzer.

Accuracy in detecting primary signals with two platforms:
We start by comparing the performance of Snoopy and the ThinkRF
analyzer for detecting two types of primary signals in the UHF band
(i.e., TV and microphone). Figure 5 shows the error rates of detect-
ing primary signals at various powers by the two platforms using
different classifiers (i.e., support vector machine and multinomial
logistic regression). We first observe that when using a SVM clas-
sifier, Snoopy can achieve low error rates of 3 – 15% for detect-
ing primary signals at up to -90dBm. These error rates are only
3 – 10% higher than that of the commercial spectrum analyzer
using the same classifier. We also note that SVM classifier per-
forms constantly better than multinomial regression classifier for
both platforms at all the signal powers. This is because multino-
mial regression assumes a linear trend between the classification
probability and the signal power, which can be violated by these
measurements. Thus, we choose SVM classifier in our final imple-
mentation. The error rates increase at a lower signal power because
the weak signals have a less distinct spectral features from noise
spikes. On the other hand, we have found very low error rates
(<0.1%) of both platforms in detecting strong primary signals at
above -70dBm. We omit this result for the sake of brevity.

Table 3 shows the error rate of Snoopy in classifying different
types of signals from its entire dataset using a SVM classifier –
Snoopy (SVM). We observe that most of the errors come from mis-
classification between TV signals and noise because they both have
a flat spectrum shape that renders the feature of 75th quartile of FFT
to be less effective. In addition, the higher noise floor and distortion
introduced by the Snoopy platform can lead to a jagged TV spec-
trum that has similar Fourier Transform coefficients to noise. We
will discuss possible approaches to enhancing detection accuracy
in Section 5.

Accuracy in detecting primary signals based on different fea-
tures: We next quantify the performance gain of incorporating
statistical features into signal detection. Figure 6 shows the mis-
detection rates of the two platforms based on peak features alone
and the additional use of statistical spectral features using a SVM
classifier. These peak features have been used in several state-of-
the-art spectrum sensing systems [11,15]. We observe that for spec-
trum collected by Snoopy, statistical features can reduce the error
rate by 1 – 5% at different signal powers. Our further analysis
shows that the 75-quartile of FFTs is effective in detecting micro-
phone signals, while the Fourier Transform coefficients are bene-
ficial for distinguishing both types of primary signals from noise.
For the ThinkRF analyzer, however, the statistical features can in-
troduce slightly higher errors. The reason is that the peak features
in its high-resolution spectrum are clear enough for signal detection
(Figure 3), and the noise fluctuation can sometimes disturb spec-
tral statistics introducing unnecessary errors. Thus, our proposed
statistical features, while beneficial for classifying coarse-grained
spectrum, should be replaced with simple peak features for analyz-
ing high-resolution spectrum. Dynamically adapting these features
based on the spectral resolution is part of our future work.

Accuracy in measuring channel power: We next evaluate the
accuracy of Snoopy in measuring the power of different TV chan-
nels. This function is useful for estimating the quality of an oper-
ation channel and debugging interference related issues. Figure 7
shows the median error of Snoopy in measuring the power of 4
channels with TV signals and 1 channel with noise (28). We note
a low median error of <4dB and a 90th quartile error of <8dB for
most of the channels except channel 49. The higher error for chan-
nel 49 comes from the significant distortion introduced by the fre-
quency translator in the upper UHF band. We find this uneven fre-
quency response is quite common for wide-band frequency trans-
lators. Fortunately, we observe all the power offsets have a low
variation of < 6dB (error bar). This allows us to use the median
error to effectively calibrate these power readings in Snoopy. Such
a median error can be obtained by collecting a few measurements
in each channel through an one-time calibration effort .



4. RELATED WORK
Spectrum utilization: Several measurement studies have iden-

tified spectrum under-utilization in different frequency bands. Au-
thors in [18] have monitored a wide spectrum range (20MHz-6GHz)
from three countries and reported that 54% of spectrum is never
used and 26% is partially in use. Other work [10,21] has found sub-
stantial spectrum resources in TV whitespaces, and proposed dif-
ferent spectrum database designs to better predict vacant TV spec-
trum. Nevertheless, most of the prior work is based on measure-
ments at a very few locations. V-Scope [15] is a recent measure-
ment system that leverages spectrum sensors mounted on public ve-
hicles to collect wide-area measurements for enhancing TV whites-
pace databases. Snoopy can significantly extend the measurement
coverage of these prior systems by bringing spectrum sensing to
the masses of mobile devices.

Sensing platforms: Prior measurement systems [3, 11, 15] use
commercial spectrum analyzers to collect measurements, while ex-
tracting spectral features to detect different types of primary sig-
nals. Unlike these systems, Snoopy can potentially transform off-
the-shelf smartphones to spectrum sensors by using a frequency
translator to extend the sensing capability of their WiFi radios.
While similar translation devices have been reported in prior sys-
tems [4,11], they are primarily used to enable TV whitespaces com-
munications by translating signals of commercial WiFi radios.

A recent system [2] has explored the similar concept of spec-
trum sensing on smartphones by connecting them with a TV don-
gle (RTL-SDR). While the two systems share the same goal, their
approaches differ significantly. Snoopy relies on the WiFi radio of
smartphone devices to collect spectrum measurements, and lever-
ages a frequency translator to extend its sensing range. Such an
approach has a much higher sampling rate (40MHz) in the WiFi
radio compared to the RTL-SDR (2.4MHz), thus providing a much
wider instantaneous bandwidth (40MHz) for detecting wide-band
signals. The statistical spectral features exploited by Snoopy can
also be beneficial to RTL-SDR for signal detection. Nevertheless,
Snoopy is not readily applicable to existing smartphone devices,
which do not expose a RF connector from their WiFi radio to con-
nect to our current translator hardware. Despite these tradeoffs, we
believe the two platforms can potentially be complementary and
operate together in a mobile device to meet different requirements
in speed, power and accuracy in near future.

5. DISCUSSION AND FUTURE WORK
Improving measurement accuracy: Our current system relies

on a single mobile device to detect primary signals. In future, we
intend to enhance detection accuracy by aggregating spectrum mea-
surements from multiple devices operating at different locations.
A key challenge of this collaborative sensing is to calibrate mea-
surement discrepancy among these sensing devices, which can be
caused by hardware variation along with different position and ori-
entation of mobile devices. We are also trying to exploit the tem-
poral diversity of measurements collected at different time to im-
prove accuracy. Finally, since a frequency translator can introduce
varying power offset at different frequencies, it would be useful to
design some self-calibration procedures to compensate this error.
One possible solution is to use the WiFi radio to send a calibration
signal, and measure its received power after frequency translation.

Integration with off-the-shelf mobile devices: Existing smart-
phones and tablets do not expose a compatible RF connector (SMA)
for their built-in WiFi radio to connect to a frequency translator. To
make Snoopy readily deployable, we intend to develop a new ver-
sion of frequency translators that uses a MicroUSB connector to

interface with smartphone devices. One alternative solution could
be to attach a small WiFi repeater to the output port of the translator,
which wirelessly relays the converted signals to mobile devices.

Bootstrapping users: Collecting measurements on mobile de-
vices can reduce battery life, while uploading them to a central-
ized monitoring infrastructure might consume cellular data usage.
To attract users to participate in this measurement campaign, we
envision spectrum owners or regulation enforcement entities (e.g.,
whitespace spectrum database operators [6]) to purchase spectrum
measurements from mobile phone users at a price based on the
value of the measurements they collect. Such a business model
has already been adopted in some startup companies [1] to crowd-
source sensor data from mobile phones for retail store analytics and
city planning.
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