
AJAX Crawler

Paul Suganthan G C
Department of Computer Science and Engineering

CEG, Anna University, Chennai, India

Email: paul.suganthan@gmail.com

Abstract—This paper describes the implementation of an
AJAX(Asynchronous Javascript And XML) Crawler built in
Java. With the advent of Web 2.0 , AJAX is being used widely
to enhance interactivity and user experience. Also standalone
AJAX applications are also being developed. For example, Google
Maps, Gmail and Yahoo! Mail are classic examples of AJAX
applications. Current crawlers ignore AJAX content as well as
dynamic content added through client side script. Thus most
of the dynamic content is still hidden. This paper presents an
AJAX Crawler and also discusses about the optimizations and
issues regarding crawling AJAX.

I. INTRODUCTION

In a traditional web application, every page has a unique

URL , whereas in a AJAX application every state cannot be

represented by a unique URL. A particular URL may have a lot

of states with different content. Dynamic content is added to

the DOM(Document Object Model) through Javascript. Thus

an AJAX Crawler requires the ability to execute Javascript.

Traditional crawlers doesn’t require a Javascript engine. Thus

for crawling AJAX we need to simulate the behavior of

a browser. The numerous limitations in crawling AJAX is

overcome by the fact that large amount of hidden web need

to be crawled and made searchable. This paper describes the

implementation of an AJAX Crawler built using HtmlUnit Java

library. The challenges that exist in crawling AJAX are

• Javascript execution

• Constructing the navigation model

• DOM Analysis

II. EVENT MODEL

In an AJAX application, client side events trigger the change

in DOM structure of a webpage. For crawling the numerous

states in a particular page, these client side events need to

be invoked. We consider only click event. First, we need to

identify the HTML elements which need to be clicked. Then

the click event has to be invoked on those elements.

A. Identification of Clickables

Clickables are those HTML elements on which click event

can be invoked. Identification of Clickables is the first phase

in an AJAX Crawler. It involves identifying events that would

modify the current DOM. The main issue regarding this is

that events may be added to an HTML element in many

ways. A number of ways to add event listener are shown

below.

• <div id=test onclick=‘test function();’ >

• test.onclick=test function;

• test.addEventListener(‘click’,test function,false);

• Using Jquery javascript library,

$(‘#test’).click(function()

{
test function();

});

All the above 4 methods, perform the same function of adding

the event onclick on element test. Thus event generating

elements cannot be identified in a standard way because of

the numerous Javascript libraries that exist and each has

its own way of defining event handlers. So the approach

of clicking all the clickable elements is being followed.

Though this approach is time consuming and can cause

sub elements to be clicked repeatedly, it has the advantage

of all the possible states being reached. XPath is used

to retrieve the clickable elements. The XPath expression

to retrieve all clickable elements in a webpage is shown below.

//a | //address | //area | //b | //bdo | //big |
//blockquote | //body | //button | //caption | //cite |
//code | //dd | //dfn | //div | //dl | //dt | //em |
//fieldset | //form | //h1 | //h6 | //hr | //i | //img |
//input | //kbd | //label | //legend | //li | //map |
//object | //ol | //p | //pre | //samp | //select |
//small | //span | //strong | //sub | //sup | //table |
//tbody | //td | //textarea | //tfoot | //th | //thead |
//tr | //tt | //ul | //var

B. Event Invokation

HtmlUnit library provides the ability to invoke any event

on an HTML element. The event is invoked on all elements

retrieved using XPath expression. After an event is invoked

on an element, we need to wait for background Javascript

execution.

III. AJAX WEBSITE MODEL

A. State Machine

An AJAX webpage can be represented by a State machine

[1]. Thus the navigation model of an AJAX driven webpage

can be visualized as a State Machine. The state machine can

be viewed as a Directed Multigraph. JUNG (Java Universal

Network/Graph Framework) [2] is used for building the state

machine. The state machine is stored in GraphML [3] format.

978-1-4673-2149-5/12/$31.00 ©2012 IEEE 27

Nodes represents application states

Edges represent transition between states

A sample GraphML file depicting a state machine is shown

below.

<?xml version=”1.0” encoding=”UTF-8”? >

<graphml

xmlns=”http://graphml.graphdrawing.org/xmlns/graphml”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://graphml.graphdrawing.org/xmlns/graphml”

>

<key id=”event” for=”edge” ><desc >Event type</desc ></key

>

<key id=”target” for=”edge” ><desc >Event generating

element</desc ></key >

<graph edgedefault=”directed” >

<node id=”0”/ ><node id=”1”/ >

<node id=”2”/ ><node id=”3”/ >

<edge source=”0” target=”1” >

<data key=”event” >onclick</data >

<data key=”target” >/html/body/div/table/tbody/tr[1]/td[3]/div[1]

</data >

</edge >

<edge source=”0” target=”2” >

<data key=”event” >onclick</data >

<data key=”target” >/html/body/div </data >

</edge >

<edge source=”0” target=”3” >

<data key=”event” >onclick</data >

<data key=”target” >/html/body/div/table/tbody/tr[1]/td[1]/div/div[4]

</data >

</edge >

<edge source=”1” target=”2” >

<data key=”event” >onclick</data >

<data key=”target” >

/html/body/div/table/tbody/tr[1]/td[1]/div/div[8]/strong </data >

</edge ></graph ></graphml >

From the above GraphML file, the following inferences

can derived,

• Number of nodes(application states) = 4

• The application state changes from source to target on

clicking the element derived by the Xpath expression

stored in a key named target. Thus from the GraphML

file, the path from one state to another can be obtained.

IV. CRAWLING AJAX

A. Crawling Algorithm

The first step in crawling is to load the initial state and then

wait for background Javascript execution [4] (this handles the

case when an AJAX call is made using onload event). Then

all clickables in the initial state are found and the event is

invoked. The clickables are extracted using XPath expression.

Those elements matching the XPath expression are clicked.

If there are DOM changes, then the state machine is updated.

The crawling is done in a breadth first manner. First all states

originating from the intial state are found. Then each state

is crawled in a similar fashion. HtmlUnit [5] Java library

is used for implementing the AJAX Crawling Algorithm. A

WebClient object can be viewed as a Browser instance. This

covers the requirement of an AJAX Crawler to be capable of

executing Javascript.

Algorithm 1 Ajax Crawling algorithm

1: procedure CRAWL(url)
2: Load url in HtmlUnit WebClient

3: Wait for background Javascript execution

4: StateMachine← Initialize state machine

5: StateMachine.add(initial state)

6: while still some state uncrawled do

7: current state ← find some uncrawled state to

crawl

8: webclient ← get web client (current state,

StateMachine, url)

9: while current state still uncrawled do

10: crawl state(webclient,current state,StateMachine)

11: webclient ← get web client (current state,

StateMachine, url)

12: end while

13: end while

14: save the StateMachine

15: end procedure

Algorithm 2 Ajax Crawling algorithm (Continued)

1: procedure GET WEB CLIENT(state, StateMachine, url)
2: webclient← Load url in HtmlUnit WebClient

3: Wait for background Javascript execution

4: path ← Find shortest path from initial state to

current state

5: while current state not reached do

6: xpath ← Get Xpath to traverse to next state in

path

7: Generate the click event on the element retrieved

by xpath

8: Wait for background Javascript execution

9: end while

10: return webclient
11: end procedure

One of the problems with the HtmlUnit Webclient is

that, once a DOM change occurs and another state is

reached, we can’t be able to go back to the source state

to continue the breadth first crawling process. We need to

again traverse from the initial state to the source state , to

continue the crawling process. This is done by the function

GET WEB CLIENT. Here we find the path from the intial

state to the current state to be crawled. Then invoke the

events along the path to reach the current state. Another

issue with the WebClient is that it cannot be serialized

2012 International Conference on Data Science & Engineering (ICDSE) 28

and stored. Thus each time when there is a DOM change,

there is a need to traverse from the initial state to current state.

The algorithm for crawling a individual state is described

by the function CRAWL STATE. Special care must be taken

in order to avoid regenerating states that have already been

crawled (i.e., duplicate elimination). This is a problem also

encountered in traditional search engines. However, traditional

crawling can most of the time solve this by comparing the

URLs of the given pages - a quick operation. AJAX cannot

count on that, since all AJAX states have the same URL.

Currently, we compare the DOM tree as a whole to check

if two states are same.

Algorithm 3 Ajax Crawling algorithm (Continued)

1: procedure CRAWL STATE(webclient, state, StateMachine)

2: elements← Get all clickable elements using Xpath

3: while still an element remaining do

4: xpath← Get Xpath of the current element

5: if current element is already clicked in the current

state then

6: continue

7: end if

8: if current element is an anchor element then

9: href ← Get href attribute of the current

element

10: if href is null then

11: Generate the click event on current element

12: Wait for background Javascript execution

13: if dom is changed then

14: if new state is not already present in

StateMachine then

15: Add the new state to StateMachine

16: Add a transition from current state

to new state

17: end if

18: return

19: end if

20: end if

21: else

22: Generate the click event on current element

23: Wait for background Javascript execution

24: if dom is changed then

25: if new state is not already present in

StateMachine then

26: Add the new state to StateMachine

27: Add a transition from current state to

new state

28: end if

29: return

30: end if

31: end if

32: end while

33: end procedure

B. Reconstruction of a particular state after crawling

After crawling the states of a particular URL, the states

should be indexed to be able to be searched by the search

engine. Thus a state needs to be reconstructed for being

displayed in search results. A web browser can load only the

initial state of a URL. But we need to load subsequent states

which actually occur in browser after a sequence of Javascript

events are invoked. Thus we use Selenium Web Driver [6] to

load a particular state in browser directly. A Web Driver can

be viewed as a browser which can be controlled through code.

Hence we find the path from the initial state to the state to be

loaded. At the beginning, the initial state is loaded in the Web

Driver. Then the Javascript events along the path are invoked

in the Web Driver until the required state in reached. Thus

the required state is loaded in the browser to be viewed by

the user. From then the user can continue browsing from the

required state like a normal browser.

Algorithm 4 Reconstruction of a particular state after crawling

1: procedure RECONSTRUCT STATE(state)

2: Read the graphML file of the corresponding URL and

construct a Directed Multigraph

3: path ← Find shortest path from initial state to the

state to be constructed (Dijkstra Algorithm)

4: Load the initial state in a Web Driver like Selenium

5: while state not reached do

6: xpath ← Get Xpath expression of the element to

be clicked next

7: Generate the click event on the element retrieved

by xpath

8: Wait for background Javascript execution

9: end while

10: The required state is currently loaded in the Web

Driver

11: end procedure

V. ANALYSIS

A. Results

Table I contains the list sample test cases used for evaluating

the performance of AJAX Crawler.

Case AJAX Site
C1 http://test.thurls.com/ajax/home.php
C2 http://spci.st.ewi.tudelft.nl/demo/aowe/
C3 http://www.itrix.co.in/
C4 http://demo.tutorialzine.com/2009/09/simple-ajax-website-jquery/demo.html
C5 http://test.thurls.com/ajax/home1.php

TABLE I
TEST CASES

Table II contains the experimental results obtained for the

sample test cases. Probable Clickables are those elements in

the DOM which can be clicked. Detected Clickables are those

elements that actually trigger change in DOM structure.

2012 International Conference on Data Science & Engineering (ICDSE) 29

Case Maximum
DOM String
Size(bytes)

Probable
Clickables

Detected
Clickables

Number
of States

C1 5829 24 8 8
C2 6378 61 11 11
C3 17422 167 27 27
C4 2159 23 5 5
C5 8233 58 26 26

TABLE II
EXPERIMENTAL RESULTS

Table III contains the crawling time for each test case. Also

crawl time per state is also shown.

Case Number
of States

Total Crawling time
(in mins)

Crawling time per
state (in mins)

C1 8 11.44 1.43
C2 11 216.45 19.68
C3 27 607.5 22.5
C4 5 34.9 6.98
C5 26 103.13 3.97

TABLE III
CRAWLING TIME

B. Performance of the AJAX Crawler

The performance of an AJAX Crawler depends on the

following factors.

• AJAX Request time

• Network Latency

• Web Server Request/Response time

• Selection of clickables

C. Optimizations

The following are some of the possible extensions or

optimizations that can be added to the AJAX Crawler.

• Using the DOM change statistics between states

Consider a transition from state 1 to 2. Now there

may be many static elements common to states 1 and

2. So the effect of invoking the events on these static

elements in both the states is same. Thus, the elements

which get added or changed in DOM when the state

changes from 1 to 2 needs to be found out. The events

need to be invoked only on those changed elements

in state 2. The remaining transitions are same as in state 1.

• Multi Threading

This can be done by having separate HtmlUnit

webclient in each thread. To make sure that multiple

threads dont crawl the same path, the state machine

needs to be synchronized between the threads.

• Avoid invoking events on nested elements

When the event has already been invoked on a

element, the event need not been invoked again on the

enclosing parent element. For example, Consider the

following HTML element,

<div>test</div>

Here the clicking the element testhas the

same effect as clicking <div>test</div>.

Thus event need not be invoked on the enclosing parent

element. This would reduce the number of duplicate

transitions in the state machine.

VI. CONCLUSION

The implementation of a basic AJAX Crawler has been

discussed in this paper. Also possible optimizations have been

identified. Crawling AJAX is a difficult problem that is not

addressed by current search engines. But crawling AJAX

results in improved search result quality. To integrate AJAX

Crawler with current search engines, the AJAX crawling has

to be highly optimized. The crawling time of a webpage by

traditional crawlers is in the order of milli seconds where as

the crawling time of a URL by AJAX Crawler is normally

in order of minutes. Thus the AJAX crawling time has to

be significantly reduced to be integrated with current search

engines.

REFERENCES

[1] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web
applications through dynamic analysis of user interface state changes,”
ACM Trans. Web, vol. 6, no. 1, pp. 3:1–3:30, Mar. 2012. [Online].
Available: http://doi.acm.org/10.1145/2109205.2109208

[2] “JUNG,” http://jung.sourceforge.net/, 2010.
[3] “GraphML,” http://graphml.graphdrawing.org/, 2007.
[4] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou, “Ajax

crawl: Making ajax applications searchable,” in Proceedings of the

2009 IEEE International Conference on Data Engineering, ser. ICDE
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 78–89.
[Online]. Available: http://dx.doi.org/10.1109/ICDE.2009.90

[5] “HtmlUnit,” http://htmlunit.sourceforge.net/, 2011.
[6] “Selenium Web Driver,” http://seleniumhq.org/docs/03 webdriver.html,

2011.

2012 International Conference on Data Science & Engineering (ICDSE) 30

