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ABSTRACT

Big Data industrial systems that address problems such as
classification, information extraction, and entity matching
very commonly use hand-crafted rules. Today, however, lit-
tle is understood about the usage of such rules. In this paper
we explore this issue. We discuss how these systems differ
from those considered in academia. We describe default so-
lutions, their limitations, and reasons for using rules. We
show examples of extensive rule usage in industry. Contrary
to popular perceptions, we show that there is a rich set of
research challenges in rule generation, evaluation, execution,
optimization, and maintenance. We discuss ongoing work at
WalmartLabs and UW-Madison that illustrate these chal-
lenges. Our main conclusions are (1) using rules (together
with techniques such as learning and crowdsourcing) is fun-
damental to building semantics-intensive Big Data systems,
and (2) it is increasingly critical to address rule management,
given the tens of thousands of rules industrial systems often
manage today in an ad-hoc fashion.

Categories and Subject Descriptors

H.2.4 [Information Systems|: Database Management -
Systems
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1. INTRODUCTION

Big Data is now pervasive, leading to many large-scale
problems in classification, information extraction (IE), and
entity matching (EM), among others. Industrial solutions
to these problems very commonly use hand-crafted rules (in
addition to techniques such as learning and crowdsourcing)
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[33, 8, 12]. Examples of such rules are “if the title of a
product contains the phrase ‘wedding band’ then it is a ring”
and “two books match if they agree on the ISBNs and the
number of pages”.

Today, however, little is understood about rules in such
Big Data industrial systems. What kinds of rules do they
typically use? Who writes these rules? Why do they use
rules? Are these reasons fundamental, suggesting that rules
will be used in the foreseeable future? How pervasive is
rule usage? How many rules are there in a typical system?
Hundreds of rules, or tens of thousands? Is there any inter-
esting research agenda regarding rules? Isn’t it simply the
case that someone just sits down and manually writes rules?
Can’t we just use machine learning?

As far as we can tell, very little if any has been published
about these issues, with the lone exception of [8], which
shows that rule usage is pervasive in industrial IE systems
(see the related work section).

In this paper, we build on our experience at WalmartLabs,
Kosmix (a startup acquired by Walmart), and UW-Madison
to explore these issues in depth. We consider Big Data sys-
tems that focus on semantics intensive topics, such as classi-
fication, IE, clustering, EM, vertical search, knowledge base
(KB) construction, and tweet interpretation, among others.
These systems often use a lot of domain knowledge to pro-
duce results of high accuracy (e.g., high precision and recall).
Numerous such systems have been deployed in practice, and
more are coming.

To make the discussion concrete, throughout the paper we
will focus on Big Data classification systems, in particular
on Chimera, a product classification system at WalmartLabs.
This system has been described in [33]; here we only focus
on aspects that are relevant to rule usage. Later we will
touch on other types of Big Data systems such as IE and
EM ones.

We discuss four important characteristics of the classifica-
tion problem underlying Chimera. (1) The data is large scale,
never ending, and ever changing, arriving in batches at irreg-
ular time intervals. (2) Chimera must maintain high preci-
sion (at least 92%) at all time, and improve recall (which can
be low initially) over time. (3) System accuracy can quickly
degrade, due to ever-changing and unpredictable data. Thus
we need a way to quickly debug, “scale down”, repair, and
restore the system. (4) The team size is limited, consist-
ing of a few CS developers and domain analysts, and some
crowdsourcing budget. As a result, first-responder work as
well as ongoing monitoring, repair, and improvement work



are done mostly by domain analysts, who have little or no
CS background.
We discuss how these characteristics set Chimera-like prob-

lems apart from those considered in academia. Briefly, academia
develops algorithms to perform one-shot classification, whereas

industry develops systems to perform ongoing classification.
This fundamental difference produces drastically different
objectives.

Next, we describe a common learning-based solution to
classification, limitations of this solution, and reasons for
using rules. There are many. Sometimes it is much easier to
write rules than to learn (e.g., to capture the knowledge that
if a product has an attribute called “isbn” then it is a book).
When the system makes a mistake, it is often faster and eas-
ier for analysts (who have no or minimal CS background) to
write rules to “patch” the system behavior, until when CS de-
velopers can debug and fix the underlying problems. Rules
can handle cases that learning cannot yet handle, as well as
“corner cases”. Rules enable rapid debugging and adjusting
the system (e.g., scaling it down). Liability concerns may
require certain predictions to be explainable, which in turn
requires rules, and so on. Many of these reasons are funda-
mental and so rules are likely to be used into the foreseeable
future.

Next, we show that, contrary to the popular perception
in academia, there is a rich set of research challenges in rule
languages, rule system properties and design, rule genera-
tion, quality evaluation, rule execution and optimization,
and rule maintenance. These challenges span the entire
gamut from low-level system challenges (e.g., how to ex-
ecute tens of thousands of rules on a machine cluster) to
high-level user challenges (e.g., how to help domain analysts
write rules).

To further illustrate these challenges, we describe ongoing
rule management work at WalmartLabs and UW-Madison.
Among others, we discuss work that helps domain analysts
refine classification rules in mere minutes (rather than hours),
and work that uses labeled data to automatically generate
a large set of rules, thereby significantly improving the sys-
tem’s recall.

Finally, we discuss how other types of Big Data industrial
systems also use rules quite extensively, often for many of
the reasons underlying Chimera. We consider for example
IE systems being developed at WalmartLabs and elsewhere,
EM systems at WalmartLabs, and knowledge base construc-
tion systems and tweet tagging and monitoring systems at
Kosmix.

We close the paper by circling back to the notion of se-
mantics intensive Big Data industrial systems. Fundamen-
tally, such systems must utilize a lot of domain knowledge,
in whatever ways judged most efficient, using a limited team
of people with varying technical expertise. As a result, they
often use a wide range of techniques, including rules, learn-
ing, knowledge bases, and crowdsourcing. Thus, we believe
that rules are fundamental, but must be used in conjunction
with other techniques. As rules are being increasingly used
in industry, often in an ad-hoc fashion, and as Big Data in-
dustrial systems keep accumulating rules, often in the tens
of thousands, articulating and addressing a research agenda
on rule management are becoming increasingly critical, and
the goal of this paper is to help make a small step in this
direction.

2. BIG DATA CLASSIFICATION

As mentioned in the introduction, to make the discussion
concrete, we will focus on Big Data classification systems,
in particular on Chimera, a product classification system at
WalmartLabs. Section 6 discusses other types of Big Data
systems, such as I[E and EM ones.

In this section we briefly describe the classification prob-
lem underlying Chimera (see [33] for more details), the main
difference between this problem and those commonly con-
sidered in academia, and a popular learning-based solution.
Section 3 discusses limitations of this solution, reasons for
rules, and how Chimera uses rules today.

2.1 Product Classification

The Chimera system has been developed at WalmartLabs
in the past few years to classify millions of product items
into 5,000+ product types [33]. A product item is a record
of attribute-value pairs that describe a product. Figure 1
shows three product items in JSON format. Attributes
“Item ID” and “Title” are required. Most product items
also have a “Description” attribute, and some have more at-
tributes (e.g., “Manufacturer”, “Color”). Millions of product
items are being sent in continuously from thousands of Wal-
mart vendors (because new products appear all the time).

We maintain more than 5,000 mutually exclusive prod-
uct types, such as “laptop computers”, “area rugs”, “dining
chairs”, and “rings”. This set of product types is constantly
being revised. For the purpose of this paper, however, we
will assume that it remains unchanged; managing a changing
set of types is ongoing work.

Our goal then is to classify each incoming product item
into a product type. For example, the three products in
Figure 1 are classified into the types “area rugs”, “rings” and
“laptop bags & cases” respectively.

2.2 Problem Requirements

Developing Chimera raises the following difficult issues re-
garding the data, quality, system, and the team.

1. Large Scale, Never Ending, Ever-Changing Data:
Chimera is clearly large-scale: it must classify millions of
product items into 5,000+ types. Chimera is also “never
ending”™: it is deployed 24/7, with batches of data arriving
at irregular intervals. For example, in the morning a small
vendor on Walmart’s market place may send in a few tens
of items, but hours later a large vendor may send in a few
millions of items.

Since the data keeps “trickling in”, Chimera can never be
sure that it has seen the entire universe of items (so that
it can take a random sample that will be representative of
items in the future, say). This of course assumes that the
overall distribution of items is static. Unfortunately at this
scale it often is not: the overall distribution is changing, and
concept drift becomes common (e.g., the notion “computer
cables” keeps drifting because new types of computer cables
keep appearing).

2. Ongoing Quality Requirements: When data ar-
rives, Chimera tries to classify as fast and accurately as pos-
sible. The business unit requires that Chimera maintain high
precision at all times, at 92% or higher (i.e., at least 92%
of Chimera’s classification results should be correct). This is
because the product type is used to determine the “shelf” on
walmart.com on which to put the item. Clearly, incorrect



{“Item ID" : 30427934,

“Title” : “Eastern Weavers Rugs EYEBALLWH-8x10 Shag Eyeball White 8x10 Rug”,

“Description” : “Primary Color: White- Secondary Color: White- Construction: Hand Woven- Material: Felted Wool- Pile Height: 1in - Style: Shag SKU: EASW1957” }

{“Item ID" : 31962310,

“Title" : “1-3/8 Carat T.G.W. Created White Sapphire and 1/4 Carat T.\WW. Diamond 10 Carat White Gold Engagement Ring”,
“Description” : “The engagement ring showcases a stunning created white sapphire at its center and a total of 24 round, pave-set diamonds along the top and sides

of the rib-detailed band.” }

{“ltem ID" : 17673919,
“Title" : “Royce Leather Ladies Leather Laptop Briefcase”,

“Description” : “This handy ladies laptop brief has three zippered compartments.Topped off with two handles and a comfortable shoulder strap.” }

Figure 1: Three examples of product items.

classification will put the item on the wrong “shelf”, making
it difficult for customers to find the item.

It is difficult to build a “perfect” system in “one shot”. So
we seek to build an initial Chimera system that maintains
precision of 92% or higher, but can tolerate lower recall.
(This is because items that the system declines to classify
will be sent to a team that attempts to manually classify
as many items as possible, starting with those in product
segments judged to be of high value for e-commerce.) We
then seek to increase Chimera’s recall as much as possible,
over time.

3. Ongoing System Requirements: Since the incoming
data is ever changing, at certain times Chimera’s accuracy
may suddenly degrade, e.g., achieving precision significantly
lower than 92%. So we need a way to detect such quality
problems quickly.

Once detected, we need a way to quickly “scale down”
the system, e.g., disabling the “bad parts” of the currently
deployed system. For example, suppose Chimera suddenly
stops classifying clothes correctly, perhaps because all clothes
in the current batch come from a new vendor who describes
them using a new vocabulary. Then Chimera’s predictions
regarding clothes need to be temporarily disabled. Clearly,
the ability to quickly “scale down” Chimera is critical, oth-
erwise it will produce a lot of incorrect classifications that
significantly affect downstream modules.

After “scaling down” the system, we need a way to debug,
repair, then restore the system to the previous state quickly,
to maximize production throughputs.

Finally, we may also need to quickly “scale up” Chimera
in certain cases. For example, Chimera may decline to clas-
sify items sent in by a new vendor, because they belong to
unfamiliar types. The business unit however may want to
“onboard” these items (i.e., selling them on walmart.com) as
soon as possible, e.g., due to a contract with the vendor. In
such cases we need a way to extend Chimera to classify these
new items as soon as possible.

4. Limited Team Sizes with Varying Abilities: We
have limited human resources, typically 1-2 developers, 2-
3 analysts, and some crowdsourcing budget. Such limited
team sizes are actually quite common. As all parts of society
increasingly acquire, store, and process data, most compa-
nies cannot hire enough CS developers, having to “spread”
a relatively small number of CS developers over a growing
number of projects. To make up for this, companies often
hire a large number of data analysts.

The analysts cannot write complex code (as they typi-
cally have no or very little CS training). But they can be
trained to understand the domain, detect patterns, perform
semantics-intensive QA tasks (e.g., verifying classification

results), perform relatively simple data analyses, work with
the crowd, and write rules. (It is important to note that
domain analysts are not data scientists, who typically have
extensive training in CS, statistics, optimization, machine
learning, and data mining.) Due to limited human resources,
when a system like Chimera has become relatively stable, the
managers often move most CS developers to other projects,
and ask the data analysts to take over monitoring the sys-
tem. Thus, if system accuracy degrades, the analysts are
often the first responders and have to respond quickly.
Finally, many CS developers change jobs every few years.
When this happens, it shifts even more of the burden of
“babysitting” the system to the analysts. In addition, we
want the system to be constructed in a way that is easy for
newly hired CS developers to understand and extend.

2.3 Comparison with Problems in Academia

As described, the problem facing Chimera (and other sim-
ilar Big Data industrial systems) is very different compared
to classification problems commonly considered in academia.
Briefly, academia develops algorithms to perform one-shot
classification, whereas industry develops systems to perform
ongoing classification. This fundamental difference produces
drastically different objectives.

Specifically, academia typically seeks to develop algorithms
to classify a given set of items, with the objective of max-
imizing Fi while minimizing resources (e.g., time, storage).
There is no system nor team requirement. It is typically as-
sumed that a user will just run the algorithm automatically,
in one shot (though sometimes interactive human feedback
may be considered).

In sharp contrast, the main objective of Chimera is not
to maximize Fi, but to maintain a high precision thresh-
old at all time, while trying to improve recall over time.
System requirements such as the ability to rapidly identify
mistakes, scale down the system, scale up the system, etc.,
are extremely important to enable real-world deployment.
Furthermore, this must be done given the constraints on the
team’s size, abilities, and dynamics over time. The main
implication, as we will see, is that Chimera should use not
just classification algorithms already developed in academia,
but also a broad range of other techniques, including hand-
crafted rules, in order to satisfy its ongoing objectives.

3. USING RULES FOR CLASSIFICATION

We now describe why and how rules are used in Big Data
classification systems such as Chimera. But first we describe
a learning-based solution commonly employed as the first
solution in such systems (and in fact, it was the first solution
we tried for Chimera).



3.1 A Popular Learning-Based Solution

It is clear that we cannot manually classify all incom-
ing products, nor write manual rules for all 5,000+ prod-
uct types. Thus, a common first solution is to use machine
learning.

In this solution, we start by creating as much training data
as possible, using manual labeling and manual rules (i.e.,
creating the rules, applying them, then manually curating
the results if necessary). Next, we train a set of learning-
based classifiers (e.g., Naive Bayes, kNN, SVM, etc.), often
combining them into an ensemble. When a batch of data
comes in, we apply the ensemble to make predictions. Next,
we evaluate the precision of the predicted result, by taking
one or more samples then evaluating their precision using
crowdsourcing or analysts. If the precision of the entire re-
sult set is estimated to satisfy the required 92% threshold,
we pass the result set further down the production pipeline.

Otherwise we reject the batch, in which case the CS de-
velopers and analysts try to debug and improve the system,
then apply it again to the batch. The system may also
decline to make predictions for certain items in the batch.
These items are sent to a team that will attempt to manually
label as many items as possible, while the CS developers and
analysts attempt to improve Chimera so that it will make
predictions for such items in the future. In parallel with
these efforts, the CS developers and analysts will improve
Chimera further, whenever they have time, by creating more
training data, revising the learning algorithms, and adding
new learning algorithms.

3.2 The Need for Rules

The above solution when employed in Chimera did not
reach the required 92% precision threshold. Subsequently,
we decided to “augment” it with rules. In what follows we
discuss cases where using rules is necessary or highly bene-
ficial.

The Obvious Cases: Domain analysts often can quickly
write a set of rules that capture obvious classification pat-
terns, e.g., if a product has an “isbn” attribute, then it is a
book. In such cases, it does not make sense to try learning.
Rather, analysts should write these “obvious” rules (to be
added to the system in a rule-based module).

Analysts also often write rules to generate training data.
For example, an analyst writes a rule to classify products as
“motor 0il”, applies the rule, examines the predictions, cor-
rects or removes wrong predictions, then adds the remaining
predictions to the set of training data. In such cases, if the
rules seem accurate, we should also use them during the
classification process, e.g., by adding them to the rule-based
module mentioned above.

Correcting Learning’s Mistakes: Recall from Section
2.2 that when the system makes a mistake, we want to find
the reason and fix it quickly. However, when the learning
ensemble makes a mistake, it is often hard to find the reason.
Once we have found the reason, it is still hard to know how
to correct it. For example, it is often not clear if we should
correct the current training data (and how), add more train-
ing data, add new features, or adjust the parameters, etc.
In addition, diagnosing and correcting such mistakes of-
ten require deep knowledge about the learning algorithms.
So only the CS developers can do this, not the analysts.
However, there may not be enough CS developers. The CS

developers may not be around to do it right away (recall that
once the system has become stable, they may be moved to
other projects). Even if the CS developers are around to do
it, it may take a while and multiple rounds of trial and error
until the problem has been fixed satisfactorily.

In practice, more often than not, domain analysts are the
first responders, and they must correct such mistakes quickly.
But clearly the analysts cannot correct the “deep problems”
in the internals of the learning algorithms. They can only do
what we call “shallow behavioral modification”. Specifically,
they try to detect patterns of error (and are often quite good
at detecting these), then write hand-crafted rules to handle
such patterns. When the CS developers have time, they will
come in and try “deep therapy”, i.e., adjusting the learning
algorithms, if necessary.

As an imperfect analogy, suppose a person X is very good
at predicting many things, but often makes irrational pre-
dictions regarding stocks. Eventually a psychologist can do
“deep therapy” to diagnose and fix this problem. In the mean
time, X’s friends, not having the training of a psychologist,
will simply apply a “shallow behavior filtering rule” to ignore
all stock related predictions of X.

Covering Cases that Learning Cannot Yet Handle:
In such cases the analysts can write rules to improve the
system as much as possible. For example, creating training
data for learning algorithms is time consuming. So right
now Chimera has no training data for many product types
(or has very little training data and hence learning-based
predictions for these product types are not yet reliable). In
these cases the analysts may want to create as many clas-
sification rules as possible, to handle such product types,
thereby increasing the recall.

As yet another example, in certain cases it may be very
difficult to create representative training data for learning
algorithms. For instance, how do we obtain a representa-
tive sample for “handbags”? All the items named “satchel”,
“purse” and “tote” are handbags and it is hard to collect a
complete list of these representative items. Another exam-
ple is “computer cables”, which includes a variety of cables,
such as USB cables, networking cords, motherboard cables,
mouse cables, monitor cables, and so on. To obtain a rep-
resentative sample for such a product type, an analyst may
have to search the Web extensively for hours or days, to un-
derstand all the various subtypes that belong to the same
product type, a highly difficult task. In such cases it may
be better for analysts to write rules to classify products al-
ready known to belong to these types, then add more rules
as new kinds of products are discovered to also belong to
these types.

Concept Drift & Changing Distribution: A related
problem is that we do not know a priori the items of each
product type. In fact, the set of such items keeps chang-
ing, as new products appear. For example, the set of items
for “smart phone” keeps changing, as the notion of what
it means to be a smart phone changes, and new types of
smart phone appear on the market. Thus, we have a “con-
cept drift”. The distribution of all product items (over all
product types) is also constantly changing. Today there
may be a large portion of products in “Homes and Garden”,
but tomorrow this portion may shrink, in reaction to sea-
sonal and market changes. The concept drift and changing
distribution make it difficult to learn effectively. This in



turn increases the number of mistakes made by learning,
and requires using even more rules to “patch” the system’s
behavior.

Covering “Corner Cases”: We often have “corner cases”
that come from special sources and need to be handled in
special ways. For example, Walmart may agree to carry a
limited number of new products from a vendor, on a trial
basis. Since these products are new, training data for them is
not yet available, and it is also difficult to generate sufficient
training data for these cases. As a result, we cannot reliably
classify them using learning. On the other hand, analysts
often can write rules to quickly address many of these cases.

It is also difficult to use learning alone to “go the last
mile”. We can use it to achieve a certain precision, say 90%.
But going from there to near 100% is difficult, because these
remaining percentages often consists of “corner cases”, which
by their very nature are hard to generalize and thus are not
amenable to learning. To handle such cases, we often must
write rules.

Ability to Trace Errors & Adjust the System Quickly:

Recall that we want to debug a mistake and possibly “scale
down” the system quickly. Rules are naturally good for this
purpose, because if a misclassification is caused by a rule, we
can find that rule relatively quickly. If that rule misclassifies
widely, we can simply disable it, with minimal impacts on
the rest of the system. Thus, rules make the system “com-
positional”. In contrast, even if we can trace an error to
a learning module, disabling the module may significantly
impact the rest of the system. Furthermore, disabling or
correcting a few rules is significantly faster than retraining
certain learning modules. Finally, domain analysts (who are
often the first responders) can work much more easily with
rules than with learning modules.

Business Requirements: Business units often impose
constraints that require using rules. For example, legal and
liability concerns may require the system to be able to ez-
plain (or explain quickly, should the need arises) why it clas-
sifies certain products into certain types (e.g., medicine). In
such cases, rules will be used to ensure a clear explanation
can be generated quickly. As another example, a business
unit may require absolute certainty with respect to certain
product types. In such cases a rule is inserted killing off pre-
dictions regarding these types, routing such product items
to the manual classification team.

Other Considerations: Finally, there is a host of other
factors that also motivate using rules. Many systems like
Chimera use domain knowledge encoded in knowledge bases
(KBs), and a natural way to use such KBs is to write rules.
For example, Chimera uses several KBs that contain brand
names associated with product types. So if a product title
mentions “Apple”, say, then Chimera knows that the prod-
uct belongs to a limited list of types (e.g., phone, laptop,
etc.). Chimera applies such reasoning using rules. As an-
other example, the output of Chimera may be curated fur-
ther by people in other units downstream. Such curations
can be captured using rules then added back to Chimera, to
improve its future performance.

3.3 How Chimera Uses Rules Today

We now describe how Chimera uses rules (in conjunction
with learning). Figure 2 shows the overall architecture (see
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[33] for a detailed description). Given items to classify, the
Gate Keeper does preliminary processing, and under certain
conditions can immediately classify an item (see the line
from the Gate Keeper to the Result).

Items surviving the Gate Keeper are fed into classifiers.
There are three types of classifiers. (1) A rule-based classi-
fier that consists of a set of whitelist rules and blacklist rules
created by the analysts (see below). (2) An attribute/value-
based classifier that consists of rules involving attributes
(e.g., if a product item has the attribute “ISBN” then its
type is “Books”) or values (e.g., if the “Brand Name” at-
tribute of a product item has value “Apple”, then the type
can only be “laptop”, “phone”, etc.). (3) A set of learning-
based classifiers: k-NN, Naive Bayes, SVM, etc.

Given an item, all classifiers make predictions (each pre-
diction is a list of product types together with weights). The
Voting Master and the Filter combine these predictions into
a final prediction, which is added to the result set.

Next, we use crowdsourcing to evaluate a sample of the
result set. Given a pair (product item, final predicted prod-
uct type), we ask the crowd if the final predicted product
type can indeed be a good product type for the given prod-
uct item. Pairs that the crowd say “no” to are flagged as
potentially incorrect, and are sent to the analysts (the box
labeled Analysis in the figure). The analysts examine these
pairs, create rules, and relabel certain pairs. The newly cre-
ated rules are added to the rule-based and attribute/value-
based classifiers, while the relabeled pairs are added to the
learning-based classifiers as training data.

If the precision on the sample (as verified by the crowd) is
already sufficiently high, the result set is judged sufficiently
accurate and sent further down the production pipeline.
Otherwise, we incorporate the analysts’ feedback into Chimera,
rerun the system on the input items, sample and ask the
crowd to evaluate, and so on.

If the Voting Master refuses to make a prediction (due
to low confidence), the incoming item remains unclassified.
The analysts examine such items, then create rules and
training data, which again are incorporated into the system.
Chimera is then rerun on the product items.

Rules in Chimera: The analysts can write rules for virtu-
ally all modules in the system, to improve the accuracy and



exert fine-grained control. Specifically, they can add rules
to the Gate Keeper to bypass the system, to the classifiers
in form of whitelist- and blacklist rules, to the Combiner
to control the combination of predictions, and to the Filter
to control classifiers’ behavior (here the analysts use mostly
blacklist rules). Finally, in the evaluation stage they can
examine the various results and write many rules.

We keep the rule format fairly simple so that the analysts,
who cannot program, can write rules accurately and fast.
Specifically, we ask them to write whitelist rules and blacklist
rules. A whitelist rule r — t assigns the product type t to
any product whose title matches the regular expression r.
Example whitelist rules that our analysts wrote for product
types “rings” are:

rings? — rings
diamond.*trio sets? — rings

The first rule for example states that if a product title con-
tains “ring” or “rings”, then it is of product type “rings”.
Thus this rule would correctly classify the following product
titles as of type “rings”: “Always & Forever Platinaire Di-
amond Accent Ring” and “1/4 Carat T.W. Diamond Semi-
Eternity Ring in 10kt White Gold”. Similarly, a blacklist
rule r — NOT t states that if a product title matches the
regular expression r, then that product is not of the type ¢.

The Chimera system has been developed and deployed for
about two years. Initially, it used only learning-based classi-
fiers. Adding rules significantly helps improve both precision
and recall, with precision consistently in the range 92-93%,
over more than 16M items (see [33]).

As of March 2014, Chimera has 852K items in the training
data, for 3,663 product types, and 20,459 rules for 4,930
product types (15,058 whitelist rules and 5,401 blacklist
rules; an analyst can create 30-50 relatively simple rules per
day). Thus, for about 30% of product types there was insuf-
ficient training data, and these product types were handled
primarily by the rule-based and attribute/value-based clas-
sifiers.

4. A DIVERSE SET OF RESEARCH
CHALLENGES FOR RULES

We now discuss how Big Data classification systems such
as Chimera raise a rich and diverse set of challenges in rule
languages, rule system properties and design, rule gener-
ation, quality evaluation, rule execution and optimization,
and rule maintenance.

Rule Languages: A major challenge is to define rule
languages that analysts with no or minimal CS background
can use to write rules quickly and accurately. For exam-
ple, Chimera showed that analysts can write blacklist and

whitelist classification rules that apply relatively simple regexes

to product titles. But this rule language is somewhat lim-
ited. For example, it does not allow analysts to state that
“if the title contains ‘Apple’ but the price is less than $100
then the product is not a phone”, or “if the title contains
any word from a given dictionary then the product is either
a PC or a laptop”. Can we develop more expressive rule
languages that analysts can use? Should such languages be
declarative, procedural, or combining the elements of both?
Can analysts write user-defined functions (at least certain
relatively simple types of user-defined functions), and how?

Rule System Properties and Design: Over time, many
developers and analysts will modify, add, and remove rules
from a system. Rules will constantly be fixed, merged, and
split. It is important that the system remain robust and
predictable throughout such activities. Toward this goal, we
need to identify and formalize desirable rule system proper-
ties. For example, one such property could be “the output
of the system remains the same regardless of the order in
which the rules are being executed”.

We can then prove that certain systems possess certain
properties, or design a rule system (e.g., deciding how rules
will be combined, what types of rules will be executed in
what order) to exhibit certain properties. For example, in
Chimera the rule-based module always executes the whitelist
rules before the blacklist rules [33]. So under certain assump-
tions on how the rules interact, we can prove that the execu-
tion order among the whitelist rules (or the blacklist rules)
does not affect the final output of the rule-based module.

Rule Generation: Writing rules is often time consuming.
Hence, a major challenge is to help the analysts write rules
faster. For example, when an analyst writes a regex-based
rule for the “motor o0il” product type, how can we help the
analyst quickly create the regex used in the rule?

The above challenge considers the scenario where the an-
alyst tries to create a single rule. Sometimes he or she may
want to create many rules. For example, suppose there is no
learning-based method yet to classify products into a type
t. This can happen because there may not yet be enough
training data for ¢; or the CS developers may not yet be
able to take on this task; or they have started, but it will
take a while until learning-based methods have been thor-
oughly trained and tested. In such cases, the analyst may
want to quickly generate as many rules as possible to classify
products into type t. Such rules may not completely cover
all major cases for ¢, but they will help increase recall. A
challenge then is how to help the analyst create these rules.

In Section 5 we describe ongoing projects at WalmartLabs
and UW-Madison to address the above two challenges. Fi-
nally, we note that another related challenge is how to use
crowdsourcing to help the analysts, either in creating a sin-
gle rule or multiple rules.

Rule Quality Evaluation: This is a major challenge in
industry, given the large number of rules generated (any-
where from a few hundreds to a few tens of thousands for a
system). Currently there are three main methods to evaluate
the precision of rules. The first method uses a single vali-
dation set S, e.g., a set of products labeled with the correct
product types, to estimate the precision of each individual
rule. Generating this validation set S however is often very
expensive, even if we use crowdsourcing.

Further, S can only help evaluate rules that touch items
in S. In particular, it helps evaluate “head” rules, i.e., rules
that touch many items (and so many of these items are likely
to be in S). But it often cannot help evaluate “tail” rules,
i.e., rules that touch only a few items. An example “tail”
rule is “if a product title contains '’Christmas tree’; then it
belongs to the ‘holiday decoration’ product type” (assuming
that the retailer sells only a few Christmas tree products).
The validation set S often does not contain items touched by
such “tail” rules. Increasing the size of S can help alleviate
this problem, but would increase the cost of creating S (e.g.,
to label items in S with the correct product types).



The second method to evaluate rule quality creates a val-
idation set per rule. For example, let A be the set of items
touched by rule Ra. The work [18] proposes having the
crowd evaluate a sample taken from A then using that sam-
ple to estimate the precision of R4 (this work actually fo-
cuses on entity matching rules but the same algorithm ap-
plies to classification rules). However, evaluating the preci-
sion of tens of thousands of rules this way incurs prohibitive
costs. To address this problem, [18] exploits the overlap in
the coverage of the rules. Specifically, let B be the set of
items touched by another rule Rg. Assume that A and B
overlap, we can sample in A N B first (and outside that if
necessary), then use the result to evaluate both R4 and R,
thereby minimizing the number of items that we must sam-
ple. Again, this method works well for “head” rules, which
touch a large number of items and thus are likely to over-
lap. It does not work well for “tail” rules, which often do not
overlap in the coverage.

The third method gives up the goal of evaluating the in-
dividual rules, judging that to be too expensive. Instead, it
tries to evaluate the quality of a set of rules, e.g., those in a
rule-based module. Specifically, given a rule-based module
M to evaluate, this method uses crowdsourcing to evaluate
a sample taken from those items touched by M, then uses
that sample to estimate the precision of M.

Clearly, none of these three methods is satisfactory. Rule
quality evaluation therefore requires significantly more ef-
forts, and we briefly describe one such ongoing effort at
WalmartLabs and UW-Madison in Section 5.3.

Rule Execution and Optimization: Given the large
number of rules generated, executing all of them is often time
consuming, thus posing a problem for systems in production,
where we often want the output in seconds or minutes. A
major challenge therefore is to scale up the execution of tens
of thousands to hundreds of thousands of rules. A possible
solution is to index the rules so that given a particular data
item, we can quickly locate and execute only a (hopefully)
small set of rules (see [31] for an example of indexing in-
formation extraction rules to speed up their execution; the
technique described there can potentially be applied to clas-
sification rules). Another solution is to execute the rules in
parallel on a cluster of machines (e.g., using Hadoop).

Another interesting challenge concerns when the analyst
is still developing a rule R (e.g., debugging or refining it).
To do so, the analyst often needs to run variations of rule
R repeatedly on a development data set D. To develop R
effectively, the data set D often must be quite large. But
this incurs a lot of time evaluating R even just once on D,
thus making the process of developing R inefficient. To solve
this problem, a solution direction is to index the data set D
for efficient rule execution.

Rule Maintenance: Once generated and evaluated, rules
need to be maintained over a long period of time. This raises
many challenges. The first challenge is to detect and remove
imprecise rules (despite the development team’s best effort,
imprecise rules may still be added to the system).

The second challenge is to monitor and remove rules that
become imprecise or inapplicable. This may happen because
the universe of products and the way products are described
are constantly changing, thus making a rule imprecise. The
product taxonomy may also change, rendering certain rules
inapplicable. For example, when the product type “pants” is

divided into “work pants” and “jeans”, the rules written for
“pants” become inapplicable. They need to be removed and
new rules need to be written.

The third challenge is to detect and remove rules that are
“subsumed” by other rules. For example, two analysts may
independently add the two rules “denim.*jeans? — Jeans”
and “jeans? — Jeans” to the system at different times. It
is highly desirable to be able to detect that the first rule is
subsumed by the second one and hence should be removed.
A related challenge is to detect rules that overlap signif-
icantly, such as “(abrasive|sand(er|ing))[ -](wheels?|discs?)
— Abrasive wheels & discs” and “abrasive.*(wheels?|discs?)
— Abrasive wheels & discs”.

Finally, a major challenge is to decide how to consolidate
or split rules (such as the two “wheels & discs” rules just
listed above). Ideally, we want to consolidate the rules into
a smaller, easier-to-understand set. But we have found that
rule consolidation often makes certain tasks much harder for
analysts. For example, if we consolidate rules A and B into
a single rule C', then when rule C misclassifies, it can take
an analyst a long time to determine whether the problem
is in which part of rule C, e.g., rule A or B. Then once
the problem has been determined, it is more difficult for the
analyst to fix a single composite rule C, than a simpler rule
A or B. Thus, there is an inherent tension between the two
objectives of consolidating the rules and keeping the rules
“small” and simple to facilitate debugging and repairing.

5. RULE MANAGEMENT WORK
AT WALMARTLABS & UW-MADISON

We have described a diverse set of challenges for rule man-
agement, which so far have been addressed in an ad-hoc
fashion. As rules proliferate, these ad-hoc solutions are be-
coming increasingly unmanageable. Hence, it is important
to develop principled and effective solutions. We now briefly
describe our ongoing effort toward this goal at WalmartLabs
and UW-Madison. For space reasons, we focus on rule gener-
ation for product classification, then touch on other ongoing
efforts.

5.1 Supporting Analysts in Creating Rules

As discussed earlier, rule generation is time consuming.
Hence, we have developed a solution to help analysts write
rules faster, by quickly finding “synonyms” to add to a rule
under development.

Specifically, when creating rules, analysts often must write
regular expressions. For example, to classify product items
into “motor oil”, the analyst may examine a set of product
titles, then write the rule

Ri: (motor | engine) oils? — motor oil,

which states that if a product title contains the word “motor”
or “engine”, followed by “o0il” or “oils”, then it is “motor oil”.
Next, the analyst may examine even more product titles, to
find more “synonyms” for “motor” and “engine”, then add
them to the regex. Eventually, the rule may become:

Ry: (motor | engine | auto(motive)? | car | truck | suv |
van | vehicle | motorcycle | pick[ -]?up | scooter | atv | boat)
(oil | lubricant)s? — motor oil.

The first disjunction of the regex in the above rule contains

13 terms (e.g., “motor”, “engine”, etc.). Clearly, finding all
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For example, applying the generalized regex (\w+) (jean |
jeans) to the title “big men’s regular fit carpenter jeans, 2
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Figure 3: The architecture of the tool that supports
analysts in creating rules.

such terms is error-prone and time consuming (often taking
hours in our experience). To find these terms, the analyst
often has to painstakingly “comb” a very large set of product
titles, in order to maximize recall and avoid false positives.

In response, we developed a tool that helps the analyst
find such terms, which we call “synonyms”, in minutes in-
stead of hours. The analyst start by writing a short rule such
as Rule R; described above (see Figure 3). Next, suppose
the analyst wants to expand the disjunction in R;, given a
data set of product titles D. Then he or she provides the
following rule to the tool:

Rj3: (motor | engine | \syn) oils? — motor oil,

where the string “\syn” means that the analyst wants the
tool to find all synonyms for the corresponding disjunction
(this is necessary because a regex may contain multiple dis-
junctions, and currently for performance and manage-ability
reasons the tool focuses on finding synonyms for just one dis-
junction at a time).

Next, the tool processes the given data set D to find a
set of synonym candidates C. Next, it ranks these synonym
candidates, and shows the top k£ candidates. The analyst
provides feedback on which candidates are correct. The tool
uses the feedback to re-rank the remaining candidates. This
repeats until either all candidates in C have been verified by
the analyst, or when the analyst thinks he or she has found
enough synonyms. We now describe the main steps of the
tool in more details.

Finding Candidate Synonyms: Given an input regex R,
we begin by obtaining a set of generalized regexes, by allow-
ing any phrase up to a pre-specified size k in place of the dis-
junction marked with the \syn tag in R. Intuitively, we are
only looking for synonyms of the length up to k& words (cur-
rently set to 3). Thus, if R is (motor | engine | \syn) oils?,
then the following generalized regexes will be generated:

A\w+) oils?
A\w+\s+\w+) oils?
A\w+\s+H\w+\s+\w+) oils?

We then match the generalized regexes over the given data
D to extract a set of candidate synonyms. In particular, we
represent each match as a tuple <candidate synonym, pre-
fix, suffit> , where candidate synonym is the phrase that
appears in place of the marked disjunction in the current
match, and prefiz and suffix are the text appearing before
and after the candidate synonym in the product title, re-
spectively.

Find Synonyms
Update :

pack value bundle” produces the candidate synonym carpen-
ter, the prefix “big men’s reqular fit”, and the suffix “2 pack
value bundle”. We use the prefiz and suffiz (currently set to
be 5 words before and after the candidate synonym, respec-
tively) to define the context in which the candidate synonym
is used.

The set of all extracted candidate synonyms contains the
“golden synonyms”, those that have been specified by the
analyst in the input regex (e.g., “motor” and “engine” in
the “motor o0il” example). We remove such synonyms, then
return the remaining set as the set of candidate synonyms.
Let this set be C.

Ranking the Candidate Synonyms: Next we rank syn-
onyms in C' based on the similarities between their contexts
and those of the golden synonyms, using the intuition that
if a candidate synonym appears in contexts that are similar
to those of the golden synonyms, then it is more likely to be
a correct synonym. To do this, we use a TF/IDF weighting
scheme [29]. This scheme assigns higher scores to contexts
that share tokens, excepts where the tokens are very com-
mon (and thus having a low IDF score).

Specifically, given a match m, we first compute a prefix
vector P, = (pwy ,,, PWy s s PW, ,, ), Where pw, . is the
weight associated with prefix token ¢ in match m, and is
computed as pw, ,, = tf, ,, *idf,. Here, tf,  is the number

of times token t occurs in the prefix of match m, and idf, is
| M|

W)’ where |M| is the total number

computed as idf, = log(
of matches. . .

Next, we normalize the prefix vector P,, into P,,. We
compute a normalized suffix vector S,, for match m in a
similar fashion.

In the next step, for each candidate synonym c € C, we
compute, M;,,c, the mean of the normalized prefix vectors
of all of its matches. Similarly, we compute the mean suffix
vector M:p

Next, we compute Mp and M. s, the means of the normal-
ized prefix and suffix vectors of the matches corresponding
to all golden synonyms, respectively, in a similar fashion.

We are now in a position to compute the similarity score
between each candidate synonym ¢ € C and the golden
synonyms. First we compute the prefix similagity fmnd suf-
My, - M,

—2.c P and
| Mp,c||Mp|’

fix similarity for ¢ as: prefiz_sim(c) =

_ Mg - Ms
suf fiz_sim(c) = m

a linear combination of its prefix and suffix similarities:

The similarity score of ¢ is then

score(c) = wy x prefiz_sim(c) + ws * suf fiz_sim(c)

where w, and w, are balancing weights (currently set at
0.5).

Incorporating Analyst Feedback: Once we have ranked
the candidate synonyms, we start by showing the top k can-
didates to the analyst (currently k& = 10). For each candi-
date synonym, we also show a small set of sample product
titles in which the synonym appears, to help the analyst ver-
ify. Suppose the analyst has verified | candidates as correct,
then he or she will select these candidates (to be added to
the disjunction in the regex), and reject the remaining (k—1)
candidates. We use this information to rerank the remain-



Product Type Input Regex

Sample Synonyms Found

Area rugs (area | \syn) rugs?

shaw, oriental, drive, novelty, braided, royal, casual,
ivory, tufted, contemporary, floral

Athletic gloves (athletic | \syn) gloves?

impact, football, training, boxing, golf, workout

Shorts (boys? | \syn) shorts?

denim, knit, cotton blend, elastic, loose fit, classic mesh,
cargo, carpenter

Abrasive wheels & discs

(abrasive | \syn) (wheels? | discs?)

flap, grinding, fiber, sanding, zirconia fiber, abrasive
grinding, cutter, knot, twisted knot

Table 1: Sample regexes provided by the analyst to the tool, and synonyms found.

ing candidates (i.e., those not in the top k), then show the
analyst the next top k, and so on.

Specifically, once the analyst has “labeled” the top k can-
didates in each iteration, we refine the contexts of the golden
synonyms based on the feedback, by adjusting the weights
of the tokens in the mean prefix vector M, and the mean
suffix vector MS to take into account the labeled candidates.
In particular, we use the Rocchio algorithm [28], which in-
creases the weight of those tokens that appear in the pre-
fixes/suffixes of correct candidates, and decreases the weight
of those tokens that appear in the prefixes/suffixes of incor-
rect candidates. Specifically, after each iteration, we update
the mean prefix and suffix vectors as follows:

My=ax N, + 5 S M- ST M
|| ceC) |Cr cECnr

= N ﬂ - ¥ N
Ms*a*MerICT' Z Ms,c*mce;WMs,c

where C). is the set of correct candidate synonyms and C,,,
is the set of incorrect candidate synonyms labeled by the
analyst in the current iteration, and «, S and 7 are pre-
specified balancing weights.

The analyst iterates until all candidate synonyms have
been exhausted, or he or she has found sufficient synonyms.
At this point the tool terminates, returning an expanded
rule where the target disjunction has been expanded with
all new found synonyms.

Empirical Evaluation: We have evaluated the tool using
25 input regexes randomly selected from those being worked
on at the experiment time by the WalmartLabs analysts.
Table 5.3 shows examples of input regexes and sample syn-
onyms found. Out of the 25 selected regexes, the tool found
synonyms for 24 regexes, within three iterations (of work-
ing with the analyst). The largest and smallest number of
synonyms found are 24 and 2, respectively, with an aver-
age number of 7 per regex. The average time spent by the
analyst per regex is 4 minutes, a significant reduction from
hours spent in such cases. This tool has been in production
at WalmartLabs since June 2014.

5.2 Generating New Rules Using Labeled Data

As discussed in Section 4, in certain cases the analysts may
want to generate as many rules to classify a certain product
type t as possible. This may happen for a variety of reasons.
For example, suppose we have not yet managed to deploy
learning methods for ¢, because the CS developers are not
yet available. In this case, even though the analyst cannot
deploy learning algorithms, he or she can start labeling some
“training data” for ¢, or ask the crowd to label some training

data, use it to generate a set of classification rules, then
validate and deploy the rules.

As yet another example, perhaps learning methods have
been deployed for ¢, but the analysts want to use the same
training data (for those methods) to generate a set of rules,
in the hope that after validation and possible correction,
these rules can help improve the classification precision or
recall, or both, for ¢.

At WalmartLabs we have developed a tool to help ana-
lysts generate such rules, using labeled data (i.e., (product,
type) pairs). We now briefly describe this tool. We start by
observing that the analysts often write rules of the form

R4 : al.*ag.*. L An — t,

which states that if a title of a product contains the word
sequence a1as . . . an (not necessarily consecutively), then the
product belongs to type t.

As a result, we seek to help analysts quickly generate rules
of this form, one set of rules for each product type t that
occurs in the training data. To do so, we use frequent se-
quence mining [4] to generate rule candidates, then select
only those rules that together provide good coverage and
high accuracy. We now elaborate on these steps.

Generating Rule Candidates: Let D be the set of
all product titles in the training data that have been labeled
with type t. We say a token sequence appears in a title if the
tokens in the sequence appear in that order (not necessar-
ily consecutively) in the title (after some preprocessing such
as lowercasing and removing certain stop words and charac-
ters that we have manually compiled in a dictionary). For
instance, given the title “dickies 38in. z 30in. indigo blue
relazed fit denim jeans 13-293snb 38x30”, examples of token
sequences of length two are {dickies, jeans}, {fit, jeans},
{denim, jeans}, and {indigo, fit}.

We then apply the AprioriAll algorithm in [4] to find all
frequent token sequences in D, where a token sequence s
is frequent if its support (i.e., the percentage of titles in D
that contain s) exceeds or is equal to a minimum support
threshold. We retain only token sequences of length 2-4, as
our analysts indicated that based on their experience, rules
that have just one token are too general, and rules that have
more than four tokens are too specific. Then for each token
sequence, we generate a rule in the form of Rule R4 described
earlier.

Selecting a Good Set of Rules: The above process
often generates too many rules. For manageability and per-
formance reasons, we want to select just a subset S of these
rules. Intuitively, we want S to have high coverage, i.e.,
“touching” many product titles. At the same time, we want
to retain only rules judged to have high accuracy.



Algorithm 1 Greedy(R, D, q)

Algorithm 2 Greedy-Biased(R, D, q)

1: S=0

2: while |S| < ¢ do

3: k = maxier (|Cov(R;i, D) — Cov(S, D)| * conf(R:))
4 if |Cov(SU Ry, D)| > |Cov(S, D)| then

5: S=SURy

6 else

7 return S

8 end if

9: R =R — Ry
10: end while
11: return S

1: S=0

2: Divide the rules in R into two subsets R1 and R
3: Ri={Ri € R|conf(Ri) > a}

4: Ry ={Ri € R | conf(R:i) < a}

5: 81 = Greedy(R1, D, q)

6: 82 = @

7: if |Si| < ¢ then

8: S2 = Greedy(Ra2, D — Cov(S1, D), q — |S1])
9: end if

10: S=85US8>

11: return S

Toward this goal, we start by defining a confidence score
for each rule. This score is a linear combination of multiple
factors, including whether the regex (of the rule) contains
the product type name, the number of tokens from the prod-
uct type name that appear in the regex, and the support of
the rule in the training data. Intuitively, the higher this
score, the more confident we are that the rule is likely to be
accurate.

Given a set R of rules, if a product title p is “touched”
by rules from R, then we can compute maxzconf(p) to be
the highest confidence that is associated with these rules.
Then, given a pre-specified number g (currently set to 500),
we seek to find a set S of up to ¢ rules that maximizes the
sum of mazcon f(p) over all product titles that S touches. It
is not difficult to prove that this problem is NP hard. Con-
sequently, we seek to develop a greedy algorithm to find a
good set S. A baseline greedy algorithm is shown in Algo-
rithm 1, where R is the input set of rules, and Cov(R;, D)
is the coverage of rule R; on data set D, i.e., the set of all
product titles “touched” by R;. Briefly, at each step this
algorithm selects the rule with the largest product of new
coverage and confidence score. The algorithm stops when
either ¢ rules have been selected, or none of the remaining
rules covers new titles.

A problem with the above algorithm is that rules with low
confidence scores may be selected if they have wide cover-
age. In practice, the analysts prefer to select rules with high
confidence score. As a result, we settled on the new greedy
algorithm shown in Algorithm 2 (that calls the previous al-
gorithm). In this algorithm, we divide the original set of
rules R into R1 and Rz, those with confidence scores above
or below a given a threshold, referred to as “high confidence”
and “low confidence” rules, respectively. We then try to se-
lect rules from R first, selecting from R2 only after we have
exhausted the choices in R;. At the end, we return the set
S of selected rules, where “low confidence” rules will receive
extra scrutiny from the analysts, as detailed below.

Empirical Evaluation: We have evaluated the above rule
generation method on a set of training data that consists of
roughly 885K labeled products, covering 3707 types. Our
method generated 874K rules after the sequential pattern
mining step (using minimum support of 0.001), then 63K
high-confidence rules and 37K low-confidence rules after the
rule selection step (using a = 0.7).

Next, we used a combination of crowdsourcing and an-
alysts to estimate the precision of the entire set of high-
confidence rules and low-confidence rules to be 95% and
92%, respectively. Since both of these numbers exceed or

equal the required precision threshold of 92%, we added both
sets of rules to the system (as a new rule-based module).
The new system has been operational since June 2014, and
the addition of these rules has resulted in an 18% reduction
in the number of items that the system declines to classify,
while maintaining precision at 92% or above. Whenever
they have time, the analysts try to “clean up” further the
new rule-based module, by examining low-confidence rules
and removing those judged to be insufficiently accurate.

5.3 Other Rule Management Projects

In addition to the above two projects, we are working
on several other projects in rule generation, evaluation, and
execution, not just for classification, but also for IE and EM.
We now touch on these projects (which will be described in
detail in forthcoming reports).

Rule Generation: In entity matching, an analyst can
write a wide variety of rules (e.g., [12, 18]). But what should
be their semantics? And how should we combine them?
Would it be the case that executing these rules in any order
will give us the same matching result? We are currently ex-
ploring these questions. In addition, we are also developing
solutions to help analysts debug and refine EM rules. In
yet another project, we are examining how to help analysts
quickly write dictionary-based rules for IE.

Rule Evaluation: Recently we have developed a solu-
tion to use crowdsourcing to evaluate rules [18]. When the
number of rules is very large, however, crowdsourcing be-
comes too expensive. We are currently exploring solutions
to this problem. A possible direction is to use the limited
crowdsourcing budget to evaluate only the most impactful
rules (i.e., those that apply to most data items). We then
track all rules, and if an un-evaluated non-impactful rule be-
comes impactful, then we alert the analyst, who can decide
whether that rule should now be evaluated.

Rule Execution: We have developed a solution to in-
dex data items so that given a classification or IE rule, we
can quickly locate those data items on which the rule is
likely to match. We have also developed a solution to in-
dex these rules, so that given a particular data item (e.g.,
product title), we can quickly locate those rules that are
likely to match this item. Regarding entity matching, we
are currently developing a solution that can execute a set
of matching rules efficiently on a cluster of machines, over a
large amount of data.



6. RULES IN OTHER TYPES OF
BIG DATA INDUSTRIAL SYSTEMS

So far we have discussed rules in classification systems
such as Chimera. We now briefly discuss rules in other types
of Big Data systems, focusing on those we have worked with
in the past few years. Our goal is to show that (1) a variety
of these systems also use rules quite extensively, for many
of the same reasons underlying Chimera, and (2) similar re-
search challenges regarding rule management also arise in
these types of systems. Of course, the notion of rules (e.g.,
syntax and semantics) can be very different depending on
the system type, necessitating potentially different solutions
to the same challenge.

Information Extraction: A recent paper [8] shows that
67% (27 out of 41) of the surveyed commercial IE systems
use rules exclusively. The reasons listed are the declarative
nature of the rules, maintainability, ability to trace and fix
errors, and ease of incorporating domain knowledge.

Our experience at WalmartLabs supports these findings.
Currently, we are building IE systems to extract attribute-
value pairs from product descriptions. Our systems use a
combination of learning techniques (e.g., CRF, structural
perceptron) and rules. For example, given a product title
t, a rule extracts a substring s of ¢ as the brand name of
this product (e.g., Apple, Sander, Fisher-Price) if (a) s ap-
proximately matches a string in a large given dictionary of
brand names, and (b) the text surrounding s conforms to a
pre-specified pattern (these patterns are observed and spec-
ified by the analysts). Another set of rules normalizes the
extracted brand names (e.g., converting “IBM”, “IBM Inc.”,
and “the Big Blue” all into “IBM Corporation”). Yet another
set of rules apply regular expressions to extract weights,
sizes, and colors (we found that instead of learning, it was
easier to use regular expressions to capture the appearance
patterns of such attributes).

Entity Matching: As another example of Big Data sys-
tems that use rules, consider entity matching (EM), the
problem of finding data records that refer to the same real-
world entity. Many EM systems in industry use rules exten-
sively. For example, our current product matching systems
at WalmartLabs use a combination of learning and rules,
where rules can be manually created by domain analysts,
CS developers, and the crowd [18]. An example of such
rules is

[a.isbn = b.isbn]A [jaccard.3g(a.title, b.title) > 0.8] = a =~ b,

which states that if the ISBNs match and the Jaccard sim-
ilarity score between the two book titles (tokenized into 3-
grams) is at least 0.8, then the two books match (two dif-
ferent books can still match on ISBNs). An EM system at
IBM Almaden employs similar entity matching and integra-
tion rules [19].

Building Knowledge Bases: Knowledge bases (KBs)
are becoming increasingly popular as a way to capture and
use a lot of domain knowledge. In a recent work [27] we de-
scribe how we built Kosmix KB, the large KB at the heart
of Kosmix, from Wikipedia and a set of other data sources.
The KB construction pipeline uses rules extensively. As a
more interesting example, once the KB has been built, an-
alysts often examine and curate the KB, e.g., by removing
an edge in the taxonomy and adding another edge. Such cu-

rating actions are not being performed directly on the KB,
but rather being captured as rules (see [27]). Then the next
day after the construction pipeline has been refreshed (e.g.,
because Wikipedia has changed), these curation rules are
being applied again. Over a period of 3-4 years, analysts
have written several thousands of such rules.

Entity Linking and Tagging: Given a text document
(e.g., search query, tweet, news article, etc.) and a KB, a
fundamental problem is to tag and link entities being men-
tioned in the document into those in the KB. The paper [3]
describes a 10-step pipeline developed at Kosmix to perform
this process. Many of these steps use rules extensively, e.g.,
to remove overlapping mentions (if both “Barack Obama”
and “Obama” are detected, drop “Obama”), to blacklist pro-
fanities, slangs, to drop mentions that straddle sentence
boundaries, and to exert editorial controls. See [3] for many
examples of such rules.

Event Detection and Monitoring in Social Media:
At Kosmix we built Tweetbeat, a system to detect interest-
ing events in the Twittersphere, then displays tweets related
to the events, in real time [37]. This system uses a combi-
nation of learning and rules. In particular, since it displays
tweets in real time, if something goes wrong (e.g., for a par-
ticular event the system shows many unrelated tweets), the
analysts needed to be able to react very quickly. To do
so, the analysts use a set of rules to correct the system’s
performance and to scale it down (e.g., making it more con-
servative in deciding which tweets truly belong to an event).

7. RELATED WORK

Much work has addressed the problem of learning rules for
specific tasks such as classification [10, 13, 35], information
extraction [7, 9, 32], and entity matching [18]. However, as
far as we can tell, no work has discussed the importance of
rules and why rules are used in industrial systems, with the
lone exception of [8]. That work surveys the usage of rules
in commercial IE systems, and identifies a major disconnect
between industry and academia, with rule-based IE domi-
nating industry while being regarded as a dead-end technol-
ogy by academia.

Classification is a fundamental problem in learning and
Big Data classification has received increasing attention [25,
38, 30, 6, 33]. In terms of industrial classification systems,
[30] describes the product categorization system at eBay,
[6] describes LinkedIn’s job title classification system, and
Chimera [33] describes the product classification system at
WalmartLabs. The first two works do not describe using
rules, whereas the work [33] describes using both learning
and rules. Entity matching is a fundamental problem in
data integration, and many rule-based approaches to EM
have been considered [36, 12].

Several works have addressed the problem of finding syn-
onyms or similar phrases [17, 23]. But our problem is dif-
ferent in that we focus on finding “synonyms” that can be
used to extend a regex. Thus the notion of synonym here
is defined by the regex. Many interactive regex develop-
ment tools exist (e.g., [1, 2]). But they focus on helping
users interactively test a regex, rather than extending it with
“synonyms”. Li et al. [22] address the problem of trans-
forming an input regex into a regex with better extraction
quality. They use a greedy hill climbing search procedure
that chooses at each iteration the regex with the highest



F-measure. But this approach again focuses on refining a
given regex, rather than extending it with new phrases.

Building classifiers using association rules has been ex-
plored in [24, 21, 14]. Our problem however is different
in that we mine frequent sequences [4, 26] then use them to
generate regex-based rules. The problem of inducing regexes
from positive and negative examples has been studied in the
past [15, 16, 11]. But those approaches do not focus on find-
ing an optimal abstraction level for the regexes, which may
result in overfitting the training data. Further, they often
generate long regexes, not necessarily at the level of tokens.
In contrast, we prefer token-level rules, which is easier for
analysts to understand and modify.

As for selecting an optimal set of rules, a line of work fo-
cuses on pruning certain rules during the mining process [5,
39]. Another line of work selects the rules after all candidate
rules have been generated [20, 34], similar to our setting.
These approaches filter rules based on their incorrect pre-
dictions on training data. We however only consider those
rules that do not make any incorrect predictions on training
data. Further, due to the notion of confidence score for rules,
the combinatorial problem that arises from our formulation
is significantly different.

8. CONCLUSIONS

In this paper we have shown that semantics intensive Big
Data industrial systems often use a lot of rules. Fundamen-
tally, we believe this is the case because to maintain high
accuracy, such systems must utilize a lot of domain knowl-
edge, in whatever way judged most efficient, using a limited
team of people with varying technical expertise. As a result,
the systems typically need to utilize a broad range of tech-
niques, including rules, learning, and crowdsourcing. Rules
thus are not used in isolation, but in conjunction with other
techniques.

We have also shown that there is a rich set of research
challenges on rule management, including many that we are
currently working on at WalmartLabs and UW-Madison. As
industrial systems accumulate tens of thousands of rules,
the topic of rule management will become increasingly im-
portant, and deserves significantly more attention from the
research community.
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