The NMI Build & Test Laboratory: Continuous Integration Framework for
Distributed Computing Software

Andrew Pavlo, Peter Couvares, Rebekah Gietzel, Anatoly Karp, lan D. Alderman, Miron Livny
University of Wisconsin-Madison
{pavlo,pfc,bgietzel,akarp,alderman, miron}@cs.wisc.edu

Charles Bacon
Argonne National Laboratory
bacon@mcs.anl.gov

Abstract plications. In these types of problem domains, build-
and-test facilities may be comprised of a few comput-
We present a framework for building and testing soft-ing resources in a single location, or a large, heteroge-
ware in a heterogeneous, multi-user, distributed computneous collection of machines in different geographical
ing environment. Unlike other systems for automatedand administrative domains. Our system abstracts the
builds and tests, our framework is not tied to a specifichuild-and-test procedures from the underlying technol-
developer tool, revision control system, or testing frame-ogy needed to execute these procedures on multiple re-
work, and allows access to computing resources acrossources. The logically distinct steps to build or test each
administrative boundaries. Users define complex softapplication may be encapsulated in separate, fully auto-
ware building procedures for multiple platforms with mated tasks in the framework without restricting users
simple semantics. The system balances the need to cofy any specific development tool or testing framework.
tinually integrate software changes while still providing Thus, developers can migrate their existing build-and-
on-demand access for developers. Our key contributiongest procedures easily without compromising the proce-
in this paper are (1) the development of design principlesiures of other applications using the framework.
for distributed build-and-test systems, (2) a description g puild and test any application, users explicitly
of an implemented system that satisfies those principlegjefine the execution workflow of build-and-test proce-
and (3) case studies on how this system is used in pragyyres, along with any external software dependencies
tice at two sites where large, multi-component systemsynq target platforms, using a lightweight declarative syn-
are built and tested. tax. The NMI Build & Test software stores this in-
i formation in a central repository to ensure every build
1 Introduction or test is reproducible. When a build or testitine is
Frequently building and testing software yields manysubmitted to the framework, the procedures are dynam-
benefits [10, 14, 17]. This process, knowncamtinu- ically deployed to the appropriate computing resources
ous integration allows developers to recognize and re- for execution. Users can view the status of their rou-
spond to problems in their applications as they are introtines as they execute on build-and-test resources. The
duced, rather than be inundated with software bugs onljramework captures any artifacts produced during this
when a production release is needed [2]. If the time spagXecution and automatically transfers them to a central
between the last successful build of an application andepository. Authorized users can pause or remove their
latest broken version is short, it is easier to isolate thgoutines from the framework at any time.
source code modifications that caused the application's We implement the NMI framework as a lightweight
compilation or testing to fail [17]. It is important to fix software layer that runs on top of the Condor high-
these software bugs early in the development process, dkroughput distributed batch computing system [15, 25].
the cost of the fix has been shown to be proportional td_everaging a feature-rich batch system like Condor pro-
the age of the bug [3]. vides our framework with the fault-tolerance, scheduling
We developed the NMI Build & Test framework to policies, accounting, and security it requires. The NMI
facilitate automatic builds and tests of distributed com-Build & Test software is not installed persistently on all
puting software in a distributed computing environment.available computing resources; it is deployed dynami-
Itis part of the NSF Middleware Initiative (NMI), whose cally by the batch system at runtime.
mission is to develop an integrated national middleware The framework and software that we present here are
infrastructure in support of science and engineering apjust one component of the NMI Build & Test Laboratory

at the University of Wisconsin-Madison’s Department of Other systems offer more flexibility and control of
Computer Sciences. The Laboratory also provides mainthe build-and-test execution environment. The Electric-
tenance and administration for a diverse collection of re-Cloud commercial distributed build system re-factors an
sources. Itis used as the primary build-and-test environapplication’s Makefiles into parallel workloads executed
ment for the Globus Toolkit [8] and the Condor batch on dedicated clusters [19]. A central manager synchro-
system [25], as well as other products. Managing suchizes the system clocks for the pool to help ensure that a
a production facility presents certain specific system adbuild script’s time stamp-based dependencies work cor-
ministration problems, such as maintaining a standardectly. Another full-featured commercial offering is the
set of software libraries across multiple platforms andBuildForge continuous integration system [7]. It uses
coping with the large amount of data produced daily byan integrated batch system to provide rudimentary op-
our users. portunistic computing capabilities and resource controls
In this document, we discuss not only the design andbased on user and group policies.

architecture of the NMI framework and software, but These systems seldom address the many problems in-
also the tools and practices we developed for managin@erent in managing workloads in a distributed environ-
a heterogeneous build-and-test facility on which it is de-ment, however. For example, a system must ensure that

ployed. a running build or test can be cancelled and completely
removed from a machine. This is often not an easy ac-
2 Related Work complishment; thorough testing of an application often

Continuous integration and automated build-and-tesf€auires additional services, such as a database server,
systems are used by many large software projects [14f° b€ launched along with the application and testing
The benefits of these systems are most often reported FC/iPts may leave a myriad of files scattered about the
discussions of agile software development [2, 12, 22]local disk.
Research literature on the general design of such sys- L
tems, however, is limited. ° ’ y% Motivation
There are numerous commercial and open source conn a distributed computing environment, a build-and-test
tinuous integration and automated build systems availsystem cannot assume central administrative control, or
able [13]. Almost all provide the basic functionality that its resources are dedicated or reliable. Therefore,
of managing build and test execution on one or morewve need a system that can safely execute routines on
computing resources. Three popular systems are theesources outside of one local administrative domain.
Mozilla Project's Tinderbox system [20], the Apache This also means that our system cannot assume that each
Software Foundation’s Maven [16], and the CruiseC-computing resource is installed with software needed by
ontrol toolkit [6]. The Tinderbox system requires au- the framework, or configured identically.
tonomous agents on build machines to continuously re- Because of the arbitrary nature of how routines ex-
trieve source code from a repository, compile the appli-ecute in this environment, non-dedicated remote com-
cation, and send status reports back to a central serveputing resources are often less reliable than local build-
This is different from the approach taken by Maven andand-test machines. But even large pools of dedicated
CruiseControl, where a central manager pushes buildeesources begin to resemble opportunistic pools as their
and tests to computing resources and then retrieves theapacity increases, since hardware failure is inevitable.
results when they are complete. A routine may be evicted from its execution site at any
Many systems make important assumptions about théme. We need a system that can restart a routine on
scope and complexity of the computing environment inanother resource and only execute tasks that have not al-
which they are deployed. For example, some require thateady completed. The build-and-test framework should
all build-and-test resources be dedicated or that all useralso ensure that routines are never “lost” in the system
have equal access to them. Other systems assume thaben failures occur.
prerequisite software is predictably installed and config- Lastly, we need a mechanism for describing the ca-
ured by the system administrator on all machines in theabilities, constraints, and properties of heterogeneous
pool. Users must hard-code paths to these external deesources in the pool. With this information, a system
pendencies in their build-and-test scripts, making it dif-ensures that each build-and-test routine is matched with
ficult to reproduce past routines on platforms that havea machine providing the correct execution environment:
been patched or updated. Although these constrainta user may require that their build routines only execute
may be appropriate for smaller projects with few users,on a computing resource with a specific software con-
they are not realistic for larger organizations with diversefiguration. The system needs to schedule the routine on
administrative controls or projects involving developersan available matching machine or defer execution un-
located throughout the world. til a machine satisfying the user’s requirements becomes

available. If a satisfying resource does not exist, the sysbe installed on submission hosts, where it is deployed
tem needs to notify the user that their requirements candynamically to computing resources. By this we mean

not be met. that a subset of the framework software is transferred to
] o build-and-test resources and automatically deployed at
4 Design Principles runtime.

The NMI framework was designed in response to oury 5 gy jicit well-controlled environments
experiences developing distributed computing software. .
Our first implementation was created to help merge theAll external software dependencies and resource re-
build-and-test procedures of two large software projectgiuirements for each routine must be explicitly defined.
into a unified environment where they could share a sin-This helps to ensure a predictable, reproducible, and re-
gle pool of computing resources and be packaged intdiable execution environment for a build or test, even on
a single grid software distribution. Both projects al- unpredictable and unreliable computing resources.
ready had different established practices for buildingand When a routine’s procedures are sent to a build-and-
testing their applications using a menagerie of custontest resource for execution in the NMI system, the frame-
scripts and build tools. Thus, our goal was to developwork creates and isolates the proper execution environ-
a unified framework incorporating these application-ment on demand. The framework ensures that only the
specific scripts and processes. software required by the routine is available at run time.
We developed a set of design principles for distributedThis may be accomplished in two ways: (1) the devel-
build-and-test systems to solve the problems that weper must declare all the external software that their ap-
encountered in this merging process. We incorporatedlication requires other than what exists in the default
these principles into our implementation of the NMI vendor installation of the operating system, or (2) the
Build & Test system. They are applicable to other con-developer may use the framework interface to automati-

tinuous integration frameworks, both large and small. cally retrieve, configure, and temporarily install external
. software in their routine’s runtime environment.
4.1 Tool independent

The framework should not require a software project to4'4 Central results repository

use a particular set of development or testing tools. IfA build-and-test system should capture all information

the build-and-test procedures for an application are enand data generated by routines and store it in a central
capsulated in well-defined building blocks, then a clearrepository. It is important that system allows users to

separation of the blocks and the tools used to manipeasily retrieve the latest version of applications and view
ulate them permits diversity. In our system, users ardhe state of their builds and tests [10]. The repository

provided with a general interface to the framework thatmaintains routine’s provenance information and histor-

is compatible with arbitrary build-and-test utilities. The ical data, which can be used for statistical analysis of
abstraction afforded by this interface ensures that nevipuilds and tests.

application-specific scripts can be integrated without re- The NMI framework stores the execution results, log

quiring modifications to, and thereby affecting the sta-files, and output created by routines, as well as all in-

bility of, the framework or other applications. put data, environment information, and dependencies
. i needed to reproduce the build or test. While a routine
4.2 Lightweight executes, the NMI Build & Test software continuously

The software should be small and portable. This apupdates the central repository with the results of each
proach has three advantages: (1) it is easier for systemrocedure; users do not need to wait for a routine to fin-
administrators to add new resources to a build-and-tedsh before viewing its results. Any output files produced
pool, (2) users are able to access resources outside bf builds or tests are automatically transferred back to
their local administrative domain where they may bethe central repository.
prohibited from installing persistent software, and (3)
framework software upgrades are easier as only the subAf'5 Fault tolerance
mission hosts need to be updated. The framework must be resilient to errors and faults
The NMI Build & Test framework uses existing, from arbitrary components in the system. This allows
proven tools to solve many difficult problems in au- builds and tests to continue to execute even when a
tomating a distributed computing workflow. Because itdatabase server goes down or network connectivity is
is designed to be lightweight, it is able to run on top severed. If the NMI Build & Test software deployed on
of the Condor batch system and take advantage of tha computing resource is unable to communicate with the
workload management and distributed computing feasubmission host, the routine executing on that resource
tures Condor offers. The NMI software only needs tocontinues unperturbed. When the submission host is

available again, all queued information is sent back; rou- A build-and-test routine is composed of a segafe
tines never stop making forward progress because thscripts and aspecification filecontaining information
framework was unable to store the results. about how an application is built or tested. The glue
The framework also uses leases to track an active rouscripts are user-provided, application-specific tasks that
tine in the system. If the framework software is unableautomate parts of the build-and-test process. These
to communicate with a resource executing a routine, thescripts together contain the steps needed to configure,
routine is not restarted on another machine until its leaseompile, or deploy an application inside of the frame-
expires. Thus, there are never duplicate routines executvork. The specification file tells the framework when
ing at the same time. to execute these glue scripts, which platforms to execute
. - them on, how to retrieve input data, and what external
4.6 Platform-independent vs. specific software dependencies exist.
For multi-platform applications, users should be able to
define platform-independent tasks that are only executeé'l Workflow stages
once per routine submission. This improves the over-The execution steps of a framework submission are di-
all throughput of a build-and-test pool. For example, anvided into four stages: fetch, pre-processing, platform,
application’s documentation only needs to be generatednd post-processing (see Figure 1). The tasks in the pre-

once for all platforms.

4.7 Build/test separation

and post-processing stages can be distributed on mul-
tiple machines to balance the workload. A routine’s
results and output are automatically transferred to and

The output of a successful build can be used as the instored on the machine that it was submitted from.
put to another build, or to a future test. Thus, users argetch: In this stage, the framework retrieves all the in-

be able to break distinct operations into smaller steps
and decouple build products from testing targets. As de-
scribed above, the framework archives the results of ev-

put data needed to build or test an application. In-
stead of writing custom scripts, users declare where
and how files are retrieved using templates pro-

ery build and test. When these cached results are needed yjged by the framework. Input data may come from

by another routine as an input, the framework automati-
cally transfers the results and deploys it on the comput-
ing resource at run time.

5 NMI Software

multiple sources, including source code reposito-
ries (cvs, svn), file servers (http, ftp), and the output
results from previous builds. Thus, input templates
document the provenance of all inputs and help en-
sure the repeatability of routines.

We developed the NMI Build & Test Laboratory’s con- Pre-processing: This optional stage prepares the build-

tinuous integration framework software based on the de-
sign principles described in Section 4. The primary fo-
cus of our framework is to enable software to be built
and tested in a distributed batch computing environment.
Our software provides a command-line execution mech-
anism that can be triggered by any arbitrary entity, such
as the Unix cron daemon or a source code repository
monitor, or by users when they need to quickly build
their software before committing changes [10]. We be-
lieve that it is important for the framework to accom-
modate diverse projects’ existing development practices,

and-test routine for execution on computing re-
sources. These tasks are often used to process the
input data collected in the previous stage. The
platform-independent tasks execute first and may
modify the input data for all platforms. The frame-
work then makes separate copies of the poten-
tially modified input data for each platform and
executes the platform-specific tasks. Any modi-
fications made to the input data by the platform-
specific tasks are only reflected in that platform’s

copy.

rather than force the adoption of a small set of softwareRemote platform: After the input data is retrieved and

The NMI framework allows users to submit builds and
tests for an application on multiple resources from a sin-
gle location. We use a batch system to provide all the
network and workload management functionality. The
batch system is installed on every machine in a build-
and-test pool, but the NMI software is only installed on
the submission hosts. The framework stores all informa-
tion about executing routines in a central database. The
output from routines is returned to the submission hosts,
which can store them on either a shared network storage
system or an independent file system.

processed, the framework submits one job for each
target platform to the batch system. These jobs
spawn the remote platform tasks to build or test
an application on an appropriate compute resource.
The NMI framework tells the batch system which
input files to transfer to the resource along with a
copy of the remote NMI framework software and
the platform task glue scripts. Before these scripts
begin to execute, the NMI software prepares the
working directory for the routine and binds the exe-
cution environment paths to the local configuration

Pre-Processing Remote Platform

1
1
platform o ! platform
specificO . task0 ! '~ | specificO
P — 1 .
\ / . \
1

1
1
:
1
1
Iplatform | pIatfgrm R ‘| platform | platform
independent specifici ! ‘ specifict independent
_I
1
1
1
1
1

Post-Processing

platform (latf
o »| taskn platiorm
| Specien | é_ﬁ’ sbeciicn
T

Figure 1:Workflow Stages — The steps to build or test an application in the NMI framework are divided into four stages. The
fetch stage is executed on the machine that the user submitted the routine. The pre- and post-processing stages execute on any
resource. The remote platform tasks each execute on the appropriate platform.

of the machine. When each task finishes, any outworkflow much like a batch system is able to checkpoint

put produced can be sent back to the submissiom job. If the batch system fails and must be restarted, the

host for storage. workflow is restarted automatically and DAGMan only
Post-processing:This stage contains tasks that pro- executes tasks that have not already completed.

cess the output data produced by routines exe- .

cuting on build-and-test resources. As the plat—5'3 Glue scripts

form tasks complete for each platform, the frame-A routine’s glue scripts contain the procedures needed

work executes the platform-specific scripts for the to build or test an application using the NMI framework.

corresponding set of results. Once these taskJhese scripts automate the typical human-operated steps

are completed for all the platforms, the platform- so that builds and tests require no human intervention.

independent scripts are then executed. Build glue scripts typically include configure, compile,
and package steps. Test glue scripts can deploy addi-
5.2 Workflow manager tional services or sub-systems at runtime for thorough

Using a distributed batch system to coordinate the extesting and can use any testing harness or framework.
ecution of jobs running on the build-and-test machines The framework provides a glue script with informa-
provides the NMI framework with the robustness and re-tion about the progress of its routine through pre-defined
liability needed in a distributed computing environment. environment variables. Thus, the scripts can control a
We use the Directed Acyclic Graph Manager (DAG- routine’s execution workflow while they are running on a
Man) to automate and control jobs submitted to the batchbuild-and-test resource. For example, a build glue script
system by the NMI Build & Test software [5, 25]. DAG- might halt execution if a dependency failed to compile in
Man is a meta-scheduler service for executing multiplea previous step. Optionally, a test glue script may choose
jobs in a batch system with dependencies in a declarativo continue even if the previous test case failed.
form; it monitors and schedules the jobs in a workflow. T
These workflows are expressed as directed graphs wheér4 Application interfaces
each node of the graph denotes an atomic task and the dihe NMI framework provides a standard interface for
rected edge indicates a dependency relationship betweetbmitting and managing routines in a build-and-test
two adjacent nodes. system. This interface can easily be augmented by
When a routine is submitted to the framework, its other clients or notification paradigms. For example, our
specification file is transformed into an execution graph framework distribution includes a web interface that pro-
A single instance of DAGMan with this graph as its in- vides an up-to-date overview of the system (Figure 2).
put is submitted to the batch system. DAGMan can then
submit new jobs to the batch system using a standaré5 Batch System
application interface. As each of its spawned jobs comWe designed the NMI framework to run on top of
plete, DAGMan is notified and can deploy additional the Condor high-throughput distributed computing batch
jobs based on the dependencies in the graph. system [15, 25]. When a user submits a build-and-test
DAGMan also provides the NMI Build & Test soft- routine, the framework software deploys a single DAG-
ware with fault-tolerance. It is able to checkpoint a Man job into Condor (Figure 3). This DAGMan job then

+ Home > Runs Overview > Run Details « Home > Pool Overview > Host Information

Run ID: 2% GiD: crdrauto_nmiS001.ca.wiss sdu_i 1 Operating System: SOLARISZS Architecture: SUNAU
. User: cndrauto Run Type: BUILD . NNIPlatiorm: sundu_sol_58 LastRuniD: 221
NMI Build & Test System Project: condor Project Version: 6.7.x NMI Build & Test System Condor Version: _6.7.18 Mar 22 2006 Condor Platform: SUN4X.SOLARISZE
Component: condor Component Version: 6.7, Uptime: 7514220 Last Updated: May04-2006 20:41
start: Viay-22.2006 08:05 Finish: £ FilTrnsier PerFileEnoryplion Reconnect
Total Tasks: 15 Submission Host: nmi.001 cs wisc.edu Duration: In Progress. Vmi@nmi-build29cs wiscedu starter Apities: M Top JobDetermal
Completed 17 snas Resut: [Runnlng State Ciaimea JiCLocalConfig JiCLozmiStdin m
R ST iy e RemoieSyscalls Checkpointing
ID Result Output Platform Name Host start Duration Run 10 o — Lotion Syetem
== == ST D 2 apache_ant_1_6_5: /prereg/apache-ant-1.6.5 NMI Default
Run Directory: 7 View| May-22-2006 08:28 | 01:49:31 S G autecont_2_59: /prereg/autocont2.59 NMI Dsfault
Archived: Yes| May-22-20060831 014820 [ty Gl bison_1_25: Iprerea/bison-1.25 NMI Dsfauit
Disk Used: 4GB) May-22-2006 10:12 00:04:37 [] e WD) cmake_2_0_2 Iprereaiomake2.02 NMI Dsfauit
Pinned Unill i May-22-2006 10:17 00:00:03 U= paviogcs. wisc.edu| ‘condor_6_7_18: Iprereaiondors.7. 18 NMI Dsfault
May-22.2006 10:17 00:00:02 [7 220m) corcutils_52_1 Iustioal Goreutiis52.1 SaftEny
May-22.2006 10:1700:00:08 ourl 7_15_t Iproreaicuri7. 15,1 NI Defauit
e er Miay-22.2008 0805 00:00:41 flox_2_5_ta Ipromaiiex2.5.4a NI Defauit
aloha of V31 May-22.2008 0805 00:0320 forte_7: Ioreregrte-7 NI Defauit
¥ 64 chos 3 97047 ME Viay-22.2006 0808 00:08:22 gcc_3.4_3 Jprereaiges a4 NI Defauit
¥ ppc macos 10.3 2972 M8 May-22-2006 08:22 | 06:1501 #ava_1.4.2. 0% Iprereq/iava-1 4.2 05 NI Default
¥ 8 winnt 5.1 71.07 MB| May-22-2006 08:23 09:35:55 junit_3 8_1: Iprereq/junit38.1 NI Default
May-22.2006 0824 00.3:04 perl 535 Iorereaipert 585 NI Defauit
pE— T hppa_hpux_ lclare 0047, May-22-2006 0825 0000:00 python 2.2_5 Iprereaipython2:2.3 NI Defauit
16854 Complete & & hppa_hpus 11 Omi0047 May22.2006 0825 00:00:35 ruby_1.4.4, Jproregiruby-1 34 NI Defauit
Tests For This Buikd #12) 16805 Complete - - ppeax 52 platrm_iob May-222006 0825 034814, tep_wrappers_7_6 Jprreqicp_wrappers7.6 NI Defait
Page (12345678910 .. 1of 11 [> [> Rows per page | 15 | co 2sh 4.2 6 Iprereqizsh4.26 NMI Default
(a) Routine status (b) Computing resource information

Figure 2:NMI Framework Web Interface — The NMI Build & Test software provides a web client for users to view information
about their build-and-test system. The screenshot in Figure 2(a) shows status information about a routine submitted to the frame-
work; users can monitor the progress of tasks, download output files, and view log files. The screenshot in Figure 2(b) shows the
capabilities of a machine, lists all prerequisite software installed, and provides information about the routines currently executing
onit.

spawns multiple Condor jobs for each platform targeted can either migrate the job to another machine or
by the routine. Condor ensures that these jobs are re- restart it when the resource returns. Condor uses a
liably executed on computing resources that satisfy the transient lease mechanism to ensure only a single

explicit requirements of the routine. instance of a job exists in a pool at any one time.

If a computing resource is unable to communicate
6.1 Features with the central negotiator when a job finishes ex-
Condor provides many features that are necessary for a ecution, Condor transfers back the retained results
distributed continuous integration system like the NMI once network connectivity is restored.

framework [24]. It would be possible to deploy the Grid resource accessCondor enables users to access
framework using a different batch system if the system computing resources in other pools outside of their

implemented capabilities similar to the following found local domain. Condor can submit jobs to grid
in Condor. resource middleware systems to allow builds and

tests to execute on remote machines that may or

may not be running Condor [11].
Resource control A long-standing philosophy of the
Condor system is that the resource owner must al-
ways be in control of their resource, and set the
terms of its use. Owners that are inconvenienced
by sharing their resources are less likely to continue
participation in a distributed build-and-test pool.
Condor provides flexible policy expressions that al-
low administrators to control which users can ac-
cess resources, set preferences for certain routines

Matchmaking Condor uses a central negotiator for
planning and scheduling jobs for execution in a
pool. Each machine provides the negotiator with
a list of its capabilities, system properties, pre-
installed software, and current activity. Jobs wait-
ing for execution also advertise their requirements
that correspond to the information provided by the
machines. After Condor collects this information
from both parties, the negotiator pairs jobs with re-
sources that mutually satisfy each other’s require-
ments. The matched job and resource communicate L

. . . over others, and limit when users are allowed to ex-
directly with each other to negotiate further terms, ;
S ecute builds and tests.
and then the job is transferred by Condor to the ma- - _
) : : Authentication Condor supports several authentication
chine for execution. The framework will warn users .
) i . . . methods for controlling access to remote comput-
if they submit a build or test with a requirement that . : ;
o o ing resources, including GSI [9], Kerberos [23],
cannot be satisfied by any machine in the pool.

Fault tolerance The failure of a single component in a and Microsoft's SSPI [1].
9 P File transfer The NMI framework uses Condor’s built-

ndor | only aff h r h |
Condor pool only affects those processes that dea in file transfer protocol to send data between sub-

dlre_zctly with It It computing resource crashes mission hosts and build-and-test resources. This ro-
while executing a build-and-test routine, Condor

Specification

Condor

DAGMan

Central
Repository

Figure 3:NMI Framework Architecture — The user submits a new routine comprised of glue scripts, input data, and a workflow
specification file. The NMI software uses this information to create a dependency execution graph and submits a DAGMan job
to the Condor batch system. When the DAGMan job begins to execute, it deploys multiple Condor jobs to the build-and-test
computing resources. All output data produced by the routine’s jobs are stored in a central repository and retrieved through
ancillary clients.

bust mechanism ensures that files are reliably transare no new routines available for execution. If a com-
ferred; transfers are automatically restarted uporputing resource is idle for certain length of time, Condor
connection failure or file corruption. Condor can can trigger a special task in the framework that performs
also use a number of encryption methods to se-continuous tests against an applicatiorbaskfill. This
curely transfer files without a shared file system. is useful to perform long-term stress and random input
tests on an application [18]. The results from these tests
6.2 Pool configuration are reported back to the central repository periodically or

. . . whenever Condor evicts the backfill job to run a regular
Condor is designed to balance the needs and interesis i or test routine

of resource owners, users wanting to execute jobs, and
sy_st_em administrators. In this spirit, andor enables ad7 Pool & Resources Management
ministrators to deploy and manage build-and-test pools
that respect the wishes of resource owners but can stilVe now discuss our experiences in managing the NMI
provide access for users. Priority schemes for both dedBuild & Test laboratory at the University of Wisconsin-
icated and non-dedicated resources can be created usiMgadison. The NMI framework is also currently de-
Condor’s flexible resource policy expressions. For ex-ployed and running in production at other locations, in-
ample, the dedicated resources in a pool may prefer t6luding multi-national corporations and other academic
execute processor-intensive builds and high-load streggstitutions.
tests so that shorter tests can be scheduled on idle work- Our facility currently maintains over 60 machines run-
stations. Preferential job priority may also be grantedning a variety of operating systems (see Table 1). Over
to specific users and groups at different times based oa dozen projects, representing many developers and in-
deadlines and release schedules. stitutions, use the NMI laboratory for building and test-
Condor can also further divide the resources of in-ing grid and distributed computing software. In order to
dividual build-and-test machines, similar to the poli- fully support the scientific community, we maintain mul-
cies for the entire pool. Condor can allocate a multi-tiple versions of operating systems on different architec-
processor machine’s resources disproportionately fofures. Machines are not merely upgraded as newer ver-
each processor. For example, in one configuration &ions of our supported platforms are released. We must
processor can be dedicated for build routines and therdnstead install new hardware and maintain support for
fore is allocated a larger portion of the system’s memoryolder platform combinations for as long they are needed
Test routines are only allowed to execute on the procesbY USers.
sor with more memory when no other jobs are waiting . .
for execution. If a build is submitted while a test job is 7.1 Resource configuration
executing on this processor, Condor automatically evicts\le automate all persistent software installations and
the test job and restarts it at a later time. system configuration changes on every machine in our
Build-and-test pools often have periods where therebuild-and-test pool. Anything that must be installed,

Operating System Versions _ Archs CPUs can be deployed as a submission host in a build-
Debian Linux 1 1 2 and-test pool. By default, the output of a routine

Fedora Core Linux 4 2 11 submitted from a host is archived there. The frame-
:;T\AHA'Tg X 22 11 43 v_vork provide_zs a built-in mechan_ism to make fchese
Linux (Other) 3 5 6 files _a_ccessmle from any ;ubmsspn host wnhput
Macintosh OS X 3 2 6 requiring users to know which |_”nach|ne they re_S|de
Microsoft Windows 1 2 3 on. If a user requests output files from a previous
OSF1 1 1 2 build on a different submission host, the framework
Red Hat Linux 3 2 8 automatically transfers the files from the correct lo-
Red Hat Enterprise Linux 2 3 16 cation.
Scientific Linux 2 3 6 Repository pruning The framework provides mecha-
SGl Irix 1 1 4 nisms for removing older build and test results from
Sun Solaris 3 1 11 the repository based on flexible policies defined by
SuSE Enterprise Linux 3 3 16 the lab administrator. When the framework is in-
Table 1:NMI Build & Test Laboratory Hardware — The lab- stalled on a submission host it deploys a special job
oratory supports multiple versions of operating systems on a INto the batch system that periodically removes files
wide variety of processor architectures. based on the administrator’'s policy. Routines may

be pruned based on file size, submission date, or
other more complicated properties, such as dupli-
cate failures. This process will only remove user-
specified results; task output log files, error log
files, and input data are retained so that builds and
tests are reproducible. Users can set a routine’s
preservation time stamp to prevent their files from
being removed before a certain date.

configured, or changed after the default vendor instal-
lation of the operating system is completely scripted,

and then performed using cfengine [4]. This includes

installing vendor patches and updates. Thus, new ma-
chines installations can be added to the facility without

requiring staff to rediscover or repeat modifications that

were made to previous instances of the platform.

7.2 Prerequisite software 8 Case Studies
The NMI Laboratory is used as a build and test facil-

In a multi-user build-and-test environment, projects of-. ‘ : distributed i h broi _
ten require overlapping sets of external software and [i\Y fOf two large distributed computing research projects:

braries for compilation and testing. The NMI framework the Globus Toolkit from the Globus Alliance [8], and the

lets administrators offer prerequisite software for rou-Condor batch system from the University of Wisconsin-

tines in two ways: (1) the external software can be pre_Madlson’s Department of Computer Sciences [15]. We

installed on each computing resource and published tgresent two brief case studies on how the NMI frame-

the NMI system, or (2) the system can maintain a CaChgvork has improved each of these projects software de-
of pre-compiled software to be deployed dynamicallyvempment process.

when requested by a user. Dynamic deploymentis adg 1 Globus Toolkit

vantageous in environments where routines may execute

on resources outside of one administrative domain and N€ Globus Toolkitis an open source software distribu-

are unable to expect predictable prerequisite software. tion that provides components for constructing large grid
At the NMI Laboratory, we use cfengine to install a system§ and applications [8]. It enables users to shgre

large set of prerequisite software on each of our comSOmputing power and other resources across adminis-

puting resources. This eases the burden on new uselative boundaries without sacrificing local autonomy.

whose builds expect a precise set of non-standard tool@lobus-based systems are deployed all across the world

but are not prepared to bring them along themselves;‘?md are the backbone of many large academic projects

The trade-off, however, is that these builds and tests ar@nd gollabora}tlons.
less portable across administrative domains. Prior to switching to the NMI framework, the Globus

system was built and tested using a combination of cus-

7.3 Data management tom scripts and the Tinderbox open-source continuous

h i | integration system [20]. Each build machine contained a

Tf e NMI Laboratok:y ?roduceskappro.mmate){ 150 GB (e _defined source file that mapped all the external soft-

of data per day. The framework provides tools and 0pyyare needed by the build process to paths on the local
tions for managing this large amount of data generatedis - Thjs file contained the only record in the system
by builds and tests. of what external software was used to execute a build
Multiple submission points More than one machine or test, and did not contain full information about the

1800
1600
1400
1200
1000
800
600
400
200

platform jobs

11/05 [*emeides

.
0 . P TP MR . . 0
= =+ wi W iia) wy wvi o o o = = Wi Wl Wi Wi Wi Wi O o o
2 8 £ £ 2 2 2 2 2 £ S 2 =2 g £ 2 2 2 2 g g
X — — [aa) i [*x — o i a — — a2} i [X — — o2} i
< — < (=) (=) < (=) < (=) < (=) — < < < < < — < < <
month/year month/year

Figure 4:Globus Builds & Tests — The large spike in the num- Figure 5: Condor Builds & Tests — Each platform job is a
ber of jobs in the graph indicates when a new version of Globussingle build or test execution cycle on a computing resource;
was released and required many new build and test routineshere may be multiple platform jobs for a single framework
Initially, the toolkit’s build-and-test procedures were contained build-and-test routine. Sharp increases in the number of builds
in a monolithic batch script. The tests were then later brokenin correspond to release deadlines for developers.

out of the build scripts into separate tasks. Thus, no data ex-

ists on these tests that were executed in the first months aft

Yeveloper was assigned a platform to manually execute
switching to the NMI system. P 9 P y

builds and given a paper checklist of tests to perform
whenever a new production release was needed. All of
specific version used. If the computing resource was upCondor’s build scripts contained hard-coded path infor-
dated to use a newer version of the software, there wagation for each machine that it was built on. If one of
no record in the build system to reflect that fact. these machines needed to be rebuilt or replaced, the ad-
As the project grew, developers received an increasechinistrator would have to construct the system to exactly
amount of bug reports from users. Many of these reportsnatch the expected specification.
were for esoteric platforms that were not readily avail- Like Globus, the Condor development team also de-
able to the Globus developers. Fewer builds and testployed a Tinderbox system to automate builds and tests
were submitted to these machines, which in turn causedn all the platforms that were supported. Due to hard-
bugs and errors to be discovered much later after it wagvare and storage limitations, however, this system could
introduced into the source code. only build either the stable branch or the development
Now the Globus Toolkit is built and thoroughly tested branch of Condor each day; developers had to make a
every night by the NMI Build & Test software on 10 dif- decision on which branch the system should build next.
ferent platforms (Figure 4). The component glue scriptsThis also meant that the system could not easily build
for Globus contain the same build procedures that arcustom branches or on-demand builds of developer’s
end-user follows in order to compile the toolkit. These workspaces.
procedures also include integrity checks that warn de- Since transitioning to the NMI framework, the Condor
velopers when the build process generates files that angroject has experienced a steady increase in the number
different from what the system expected. All other re-of builds and tests (Figure 5). The development team
gression and unit tests are preformed immediately aftesubmits an automatic build and test to the framework ev-
compilation. Globus’ developers have benefited fromery night for both the stable and development releases;
the NMI framework’s strict attention to the set of soft- Condor is built on 15 platforms with 107 unit and re-
ware installed on computing resources and its ability togression tests per platform. In addition, the framework
maintain a consistent execution environment for eachs used for numerous on-demand builds of Condor sub-
build-and-test run. This allows them to test backwardsmitted by individual developers and researchers to test
compatibility of their build procedures with older ver- and debug experimental features and new platforms.
sions of development tools, which they were unable to
do before. 9 Future work

82 Condor ;\/Iany fgcets of t_he NMI frqr_nework can be expanded to
urther improve its capabilities.

Before the advent of Linux’s popularity, Condor sup- Currently, the NMI framework coordinates builds and

ported a modest number of operating systems used bests on multiple platforms independently. Each rou-

the academic and corporate communities. Initially, eachiine executes on a single computing resource for each

specified platform. We are developing a mechanismnity and showed how the NMI framework functions as
whereby a build-and-test routine can execute on multithe primary build-and-test system for two large software
ple machines in parallel and allow them to communicateprojects. From this, we believe that our system can be
with one another. Users specify an arbitrary number ofused to improve the development process of software in
machines and the batch system deploys the routine onlg distributed computing environment.

when it has simultaneous access to all of the resources

it requires. The framework passes information to thell Availability

glue scripts about which machines are running the othefrhe NM| Build & Test Laboratory continuous integra-

parallel instances of the routine. Such dynamic crossyjon framework is available for download at our website
machine testing will allow users to easily test platform ,nder a BSD-like license:

and version interoperability without maintaining perma-

nent “target” machines for testing. http:/Amww.cs.wisc.edu/condor/nmi
We are also extending our test network into the

Schooner [21] system, based on Emulab [26], to expand 2 Acknowledgments

these distributed tests to cover a variety of network sce-_) .
narios. Schooner permits users to perform tests whicH NiS research is supported in part by NSF Grants

include explicit network configurations. For example, NO: ANI-0330634, No. ANI-0330685, and No. ANI-
the NMI framework will be able to include automated 9330670.

tests of how a distributed application performs in the

presence of loss or delay in the network. This systenRReferences

will also allow administrators to rapidly deploy a vari- [1] The security support provider interface. White paper, Microsoft
ety of different operating system configurations both on ~ Corp., Redmond, WA, 1999.

bare hardware and in virtual machines. [2] BEck, K. Extreme programming explained: embrace change
. . Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
A major boon to the NMI framework will be the pro- USA. 2000. y -ond 9

liferation of virtualization technology in more systems. (3 goepu, B. W., AND Papaccio, P. N. Understanding and con-
Instead of deploying and maintaining a specific comput- trolling software costsIEEE Trans. Softw. Eng. 140 (1988),
ing resource for every supported platform, the frame- 1462-1477.

work would keep a cache of virtual machine images that [4] BURGEss M. Assite configuration engindJSENIX Computing
would be dynamically deployed at a user’s request. Be- Systems & (1995), 309-337.

cause administrators will only need to configure a single [°) COUVARES, P., KOSAR, T., Rov, A., WEBER J., AND

. WENGER, K. Workflows for e-ScienceSpringer-Verlag, 2006,
virtual machine image for each operating system inthe ¢y workflow Management in Condor.

entire pool, thiS_ Wi”_Simp”fy build-and-test pool man- (g} cruiseControl. http://cruisecontrol.sourceforge.net.
agement and Ut|||zat|0n-_ Th.e framework would then al_so [7] FIERRO, D. Process automation solutions for software develop-
be able to support application testing that requires priv- ment: The BuildForge solution. White paper, BuildForge, Inc.,
ileged system access or which makes irreversible alter- ~ Austin, TX, March 2006.
ations to the system configuration; these changes would®l FOSTER I., AND KESSELMAN, C. Globus: A metacomput-

. . . . ing infrastructure toolkit. The International Journal of Super-
be localized to that instance of the virtual operating sys-

. computer Applications and High Performance Computing2l1
tem and not the cached image. (Summer 1997), 115-128.

[9] FOSTER I. T., KESSELMAN, C., TSUDIK, G., AND TUECKE,

10 Conclusion S. A security architecture for computational grids. ACM

. Conference on Computer and Communications Sec(ir§98),
We have presented the NMI Build & Test Laboratory pp. 83-92.

continuous integration framework software. Our im-[10] FowLer, M. Continuous _ integration. http:
plementation is predicated on design principles that we //www.martinfowler.com/articles/
have established for distributed build-and-test systems. ~ continuousintegration.html » May 2006.

The key features that distinguish our system are (1Ji1l FREY, J., TANNENBAUM, T., FOSTER I., LIVNY, M., AND
its ability to execute builds and tests on computing re- TUECKE, S. Condor-G: A computation management agent for
' Yy ; o . ; p . g multi-institutional grids.Cluster Computing $2002), 237-246.
sources spanr)lng administrative boundaries, (2) itis deng] GRENNING, J. Launching extreme programming at a process-
ployed dynamically on heterogeneous resources, and (3) intensive companylEEE Software 186 (2001), 27-33.
it maintains a balance between continuous integratiom3] HeLLEsoy, A. Continuous integration server feature ma-
practices and on-demand access to builds and tests. Our trix. http://damagecontrol.codehaus.org/
. i i 0,

software uses the Condor batch system to provide the f,\‘jl;tt'r?;’0“5,\;';3‘3%?6“0”*5”"5”Feat“reA’
capabilities necessary to operate in a distributed com- ’ ' . . .

. . . . ,r['14] HoLck, J.,AND JBRGENSEN N. Continuous integration and
puting environment. We discussed our experiences i quality assurance: A case study of two open source projeots.

managing a diverse, heterogeneous build-and-test facil- tralian Journal of Information Systems 11/(2004), 40-53.

[15] Litzkow, M., LIVNY, M., AND MUTKA, M. Condor - a hunter
of idle workstations. InProceedings of the 8th International
Conference of Distributed Computing Systdhse 1988).

[16] Apache Maven. http://maven.apache.org.

[17] McCCONNELL, S. Daily build and smoke testEEE Software
13,4 (1996), 144.

[18] MILLER, B. P., RREDRIKSEN, L., AND SO, B. An empirical
study of the reliability of UNIX utilities.Communications of the
Association for Computing Machinery 38 (1990), 32—44.

[19] OuSTERHOUT J.,AND GRAHAM-CUMMING, J. Scalable soft-
ware build accelerator: Faster, more accurate builds. White pa-
per, Electric Cloud, Inc., Mountain View, CA, February 2006.

[20] REIs, C. R.,AND DE MATTOS FORTES R. P. An overview of
the software engineering process and tools in the Mozilla Project.
In Workshop on Open Source Software Developr{ié¢etvcastle
UK, 2002), pp. 162-182.

[21] Schooner. http://www.schooner.wail.wisc.edu.

[22] ScHuUH, P. Recovery, redemption, and extreme programming.
IEEE Software 186 (2001), 34—41.

[23] STEINER, J. G., NEUMAN, B. C.,AND SCHILLER, J. |. Ker-
beros: An authentication service for open network systems. In
Proceedings of the USENIX Winter 1988 Technical Conference
(Berkeley, CA, 1988), USENIX Association, pp. 191-202.

[24] TANNENBAUM, T., WRIGHT, D., MILLER, K., AND LIVNY,
M. Condor — a distributed job scheduler. Beowulf Cluster
Computing with LinuxT. Sterling, Ed. MIT Press, October 2001.

[25] THAIN, D., TANNENBAUM, T., AND LIVNY, M. Distributed
computing in practice: the condor experienc€oncurrency -
Practice and Experience 12-4 (2005), 323—-356.

[26] WHITE, B., LEPREAU, J., STOLLER, L., Riccl, R., Gu-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C.,AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. Broc. of the Fifth Symposium
on Operating Systems Design and Implementgioston, MA,
Dec. 2002), USENIX Association, pp. 255-270.

