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ABSTRACT

We have developed (1) an interactive graph visualization system
that allows users to explore graphs by viewing them as a succession
of spanning trees selected interactively, (2) a radial graph layout al-
gorithm, and (3) an animation algorithm that generates meaningful
visualizations and smooth transitions between graphs while mini-
mizing edge crossings during transitions and in final layouts.

Our system is similar to the radial layout system of Yee et
al. [25], but differs primarily in that each node is positioned on a
coordinate system centered on its own parent rather than on a single
coordinate system for all nodes. Our system is thus easy to define
recursively and lends itself to parallelization. It also guarantees that
layouts have many nice properties.

We compared the layouts and transitions produced by our al-
gorithms to those produced by Yee et al. Results in several ex-
periments indicate that our system produces fewer edge crossings
during transitions between graph drawings, and that the transitions
more often involve changes in local scaling rather than structure.

These findings suggest the system has promise as an interactive
graph exploration tool in a variety of settings.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; H.5.0 [Information Interfaces
and Presentation]: General

Keywords: Graph and network visualization, Interaction, Focus +
Context Techniques, Animation, Hierarchy visualization

1 INTRODUCTION

Visualization can help make graph structures comprehensible [6,
11, 22]. However, edge crossings can challenge human perception
of relationships between nodes [7, 18, 23]. Graphs often come to
us as tangled webs that cannot be displayed in a two-dimensional
viewing plane without edges crossing.

Because trees can be laid out on a plane without edge crossings, a
common approach is to base graph visualizations on spanning trees
extracted from graphs [8, 14, 17, 25]. Although the resulting draw-
ings may discard some potentially significant edge information, a
clearer mental picture of the full graph may nonetheless result if
users can easily and intuitively explore multiple layouts based on
different spanning trees.

Yee et al. [25] describe a tool that draws radial tree lay-
outs [2, 12, 21, 24] of breadth-first spanning trees, given a graph
and a node selected to be the root (see Figure 1(b)). A user may
then select a new root node and the system transitions smoothly to a
new layout based on the new root node. This transition is animated
by a succession of linear interpolations of the polar coordinates (in
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Figure 1: Two drawings for the same tree: Figure 1(a) is drawn by
our algorithm, and Figure 1(b) is drawn by Yee et al.’s algorithm for
Gnutellavision [25].

a coordinate system centered on the root) of positions of the each
node in the old and new layouts. Thus, a user can interactively ex-
plore a graph that would otherwise be too complex to visualize or
comprehend as a single, static drawing.

In drawings generated by Yee et al.’s radial layout method, each
successive generation of nodes lies on a single circle centered on
the root. Such layouts have the nice property that all nodes of a
given generation are equidistant from the root. However, because
each generation shares a single circle, two distantly related nodes
may be positioned close to each other simply because they belong
to the same generation. This can obscure symmetries in the tree.
Furthermore, because the position of any node depends on the po-
sitions of all of its generation-mates, such drawing algorithms are
not easily parallelized.

In this paper, we describe an approach that is similar to Yee et
al.’s in that it bases its drawings on breadth-first rooted spanning
trees extracted from graphs, allows users to interactively change
views of each graph by selecting a new root, and smoothly tran-
sitions between successive layouts by moving nodes along radial
paths.

However, unlike Yee et al., we place every subtree in the graph
in a “parent-centric” circle surrounding its own subroot, instead of
positioning each node on a “generation circle” centered on the root.

Because each node’s position now depends only on its parent and
siblings, not on its entire generation, the dependencies in our layout
are thus very local. The drawings and animations in our system
can be computed in multiple, potentially parallelizable, depth-first
traversals for each subtree.

Other radial layout algorithms also use a parent-centric visual-
ization scheme, but differ from our approach in that a child node’s
circle is placed entirely inside of its parents circle [21] or allow
for any node’s children to be positioned completely around its cir-
cle [12, 16].

In broad strokes, our algorithm works as follows. We place the
root in the center of the display with its children evenly distributed
along a containment circle centered on the root. We then draw cir-
cles around the root’s children and evenly distribute their children
along containment arcs that ensure that neither siblings nor cousins
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Figure 2: A visual overview of how our algorithm constructs a new layout for a graph. In Figure 2(a), the root is first placed at the center
of the drawing surrounded by its children. Next, the root’s children are allocated containment arcs (Figure 2(b)) where their descendants are
positioned within (Figure 2(c)). The final static layout is shown in Figure 2(d).

overlap. This process proceeds recursively so that successively dis-
tant descendants of the root are positioned on successively smaller
containment circles (Figure 2).

Our layouts have several aesthetic virtues: They have a flower-
like, self-similar structure that differs from the “bulls-eye” appear-
ance of Yee et al.’s layouts (compare Figure 1(a) and Figure 1(b)).
And even though the distance between root and nonroot nodes is
less directly represented than in Yee et al.’s system, there are pow-
erful visual cues to compensate: Within a lineage, edge lengths
decrease monotonically with distance from root, and all siblings
within a family are arrayed along visually salient arcs equidistant
from their common parent. With regard to animating transitions, in
our algorithm sibling edges never cross when a new focal node is
selected, and whenever the graph to be drawn is itself a tree.

We experimentally evaluated our animation algorithm, using Yee
et al.’s algorithm as control. In our experiments, our algorithm pro-
duced fewer edge crossings during transitions than Yee et al.’s.

2 DATA MODEL AND ALGORITHMS

We assume that all graphs are connected. We regard any drawing
of a spanning tree of any graph as a drawing of the graph. Since
all edges we draw are straight lines we need only describe how to
map the nodes to points in the drawing plane. We use “node” to
refer to both a vertex in a graph and the point on the drawing plane
where the node is drawn. It is perhaps easiest to explain our algo-
rithms in terms of a particular data model that completely describes
a drawing in this restricted sense. Rather than represent the posi-
tion of all nodes of some graph in terms of a single polar coordinate
system centered at the origin of the drawing plane that all nodes
share, we only use the standard drawing-plane-centered origin to
represent the root node and its children. We represent every other
node position in terms of polar coordinates centered at the node’s
parent [9].

2.1 Parent-centered data model

We now formally define this concept. Given a tree T and a drawing
D of T we recursively define a parent-centered model of (D,T ) as
follows. For any node v of T , the polar coordinates of v are given
in the coordinate system

(basis 1, i.e., if v is the root of T :) sharing the origin with the
drawing plane and zero degrees with the positive direction of
the drawing plane’s x-axis,

(basis 2, i.e., if v is a child of the root of T :) having the root of T
as the origin and the ray from the root having the same direc-

tion as the positive direction of the drawing plane’s x-axis as
zero degrees, or

(recursion, i.e., otherwise:) having v’s parent in T as the origin
and the ray from v’s parent intersecting v’s grandparent as zero
degrees.

Thus nodes having the same parent share the same coordinate sys-
tem and nodes having different parents have different coordinate
systems.

Note that we can (and do) represent any straight-line graph draw-
ing this way, not just those produced by Algorithm 1 below.

2.2 Static layout algorithm

We define our static layout algorithm recursively and in terms of our
static layout model as follows (see also Figure 2). When we say that
a nonroot node lies on a containment circle, we are refering to the
circle centered at the node’s parent that intersects the node. Note
that if two siblings are the same distance from their parent (this is a
property of the drawings Algorithm 1 produces) then they share the
same containment circle.

Algorithm 1 Given a spanning tree T , for each node v of T let the
coordinates of the root node be (0,0) and for each nonleaf node v
let v1, . . . ,vm be v’s children. For each i ∈ {1, . . . ,m} let the coor-
dinates of vi (in the parent-centered model) be

(basis, i.e., if v is the root:) (2πi/m,r), where r is some user-
defined value > 0,

(recursion, i.e., otherwise:) (π−φ/2+φ i/m+φ/(2m),r), where
φ is some user-defined value and r is

• the same as v’s magnitude, if v’s parent has fewer than
three children.

• the radius of the circle centered at v that intersects the
midway point between v and v’s nearest siblings on
their shared containment circle.

Note that the value of r for any nonroot node depends only on the
node’s parent, so as claimed above all sibling nodes share the same
value for r. This means they all lie on the same containment circle,
which we call the containment circle of the parent node.
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Figure 3: Isomorphic Tree Transition – Our visualization scheme transitions between two drawings of the same tree by scaling each parent
node’s containment circle with its children. In this example, the user selects a new root node from the initial drawing in Figure 3(a). The
containment circles highlighted in the transition (Figures 3(b) – 3(d)) grow and shrink as the graph moves to the new drawing in Figure 3(e).
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Figure 4: Spanning-Tree-to-Spanning-Tree Transition – The user’s selection of a new node invokes a new spanning-tree-baseddrawing (edges
that will fade out are highlighted in Figure 4(a); newly introduced edges are highlighted in Figure 4(e);)

2.3 Animation algorithm

Our static layout algorithm leads to a simple and intuitive algorithm
for animating transitions from one layout to another that, for any
graph G, drawing Dold and node v of G, interpolates between the
parent-centered models of Dold and a drawing produced by Algo-
rithm 1 of a spanning tree of G rooted at v (see Figures 4 and 3).

Algorithm 2 1. Compute a breadth-first spanning tree T of G
rooted at v.

2. Let Dnew be a drawing produced by running Algorithm 1 on
G and T .

3. Let Mold be a parent-centered model of (Dold ,T ) and Mnew
be a parent-centered model of (Dnew,T )

4. For each t in an increasing sequence 0,t1, . . . ,tp,1, output a
polar drawing Dt such that the model of (Dt ,T ) is described
recursively as follows.

(basis, i.e., if v is the root of Tnew): (θ ,(1 − t)r), where
(θ ,r) are the polar coordinates of v in model of Mold .

(recursion, i.e., otherwise:) (tθnew + (1 − t)θold ,trnew +
(1 − t)rold) otherwise, where, for x ∈ {old,new},
(θx,rx) are the coordinates of v in Mx.

Thus, the new root node moves in a straight line to the center of
the new drawing, and each nonroot node moves via a finite approx-
imation of a smooth interpolation between its parent-centered polar
coordinates in the new and old drawings. In the resulting animation,
newly-central families expand and fan out as they move toward the
center, while newly-peripheral families shrink as they arc toward
the periphery. Neighboring family circles are guaranteed not to in-
terpenetrate.

In practice, the algorithm is used to produce a succession of
drawings (thus producing a temporal sort of focus+context [6, 20])
of G, each one based on a spanning tree rooted at whatever node the
user chooses. Thus, Dold is typically a drawing produced by Algo-
rithm 1 (though it need not be) and the drawing Dnew produced as
the output of Algorithm 2 is then used as the input drawing (i.e., it
becomes Dold) the next time the algorithm is called.

There are different ways in which one can fix the times t1, . . . ,tp
when generating the intermediate drawings of an animation. We
adopted the slow-in, slow-out technique of Yee et al. in our imple-
mentation so that the values of t1, . . . ,tp are concentrated toward the
boundary values 0 and 1.

2.4 Properties

Our algorithms have two main properties worth noting.

Aesthetics: Our layout algorithm (1) ensures that all siblings are
equally distant from their parent, (2) ensures that contain-
ment arcs of siblings and cousins do not overlap, and (3) pro-
duces layouts that provide clear indications (via edge-length
and family shape) of closeness to the root.

Also, for any graph G, any drawing Dold and a node v of G,
there is a choice for φ such that for any time t ∈ [0,1], the
edges corresponding to the spanning tree upon which Dt is
based do not cross in Dt . This has a number of consequences,
including:

1. if G is a tree then the drawing Dt has no edge crossings.

2. For any node v of G, the edges between v and its chil-
dren do not cross.



Parallelizability: Note that all four steps of Algorithm 2 can be
implemented as single traversal of T (i.e., during the breadth-
first search that produces T ).

Algorithm 2 thus lends itself easily to parallelization, as a new
process can be forked whenever a node of T is traversed. The
only data dependency in the algorithm, other than the ones be-
tween parent and child nodes, is when the algorithm finishes
and each drawing needs to be rendered. This dependency,
however, can be handled by having the algorithm create frame
buffers for each drawing and writing its output directly into
the buffers during the single traversal of T described above.

3 EXPERIMENTS

Our experiments compare our algorithms’ layouts and animations
to those produced by Yee et al.’s algorithms. In each experimental
trial, a random graph was generated, two distinct root nodes within
that graph were randomly selected, and the graph was then oper-
ated upon by both algorithms as they effected transitions from a
spanning tree rooted at the first node to a spanning tree rooted at
the second. Each experiment comprised 710 trials per algorithm, in
which ten random graphs of order 30–100 (inclusive) were gener-
ated using the Erdös-Rényi model [3] with a 10% probability of an
edge connecting any two nodes. In our first two experiments, we
counted edge crossings during transitions by examining all edges
present during the transition (whether derived from the new span-
ning tree or the old); a single crossing was counted during a trial
if two edges crossed at any time during the transition, even if the
edges crossed and uncrossed multiple times. In our last experiment,
we measure the lengths of edges for sets of siblings nodes to their
common parent in static layouts produced by the algorithms.

3.1 Isomorphic Tree Transitions

Because trees are by definition planar, transitional edge crossings
are potentially avoidable in the special case where selection of a
new root node does not change a tree’s edge set. In this experiment,
we first extract a spanning tree from a graph rooted at a randomly
selected root node and construct a new drawing. We then transition
from this drawing to a second drawing of the same tree but with a
different node selected as the focal point.

Figure 5 shows that our algorithms successfully produce zero
crossings while Yee et al.’s algorithms produce many for this par-
ticular transition scenario. As illustrated in Figure 3, our approach
avoids crossings because “family circles” simply expand or contract
as they move without interpenetrating. In contrast, Yee et al.’s algo-
rithms maintain visual continuity by preserving the direction of the
edge from the new root node to its parent in the previous drawing.
This can produce dramatically different drawings of the same tree,
and result in crossings during the transitions.

This visual effect of our animations is similar to that of rigid-
body animation methods [4, 5] as the user can mentally group sub-
graphs as separate objects and follow the movements more easily
[15].

3.2 Spanning-tree-to-spanning-tree transitions

In the second experiment, we counted edge crossings during tran-
sitions between two different spanning-tree-based drawings of the
same graph. We first create a spanning-tree-based drawing for a
graph rooted at a randomly selected node. We then select a second
node for a new drawing based on a completely different spanning
tree extracted from the graph. Unlike in the previous experiment,
the edge sets of the two drawings are not the same in this experi-
ment.
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Figure 5: Isomorphic Tree Transitions
Our visualization scheme produces no edge crossings when transi-
tioning between drawings of the same tree, while Yee et al.’s system
produces many.

Our evaluation distinguishes “transient crossings involving
fading-out edges” from “transient crossings involving final layout
edges”. A crossing is transient but fading if at least one of the
edges fades from the viewing plane during the animation sequence.
A transient and non-fading crossing occurs when both edges are
part of the final drawing.

As shown in Figure 6(a), the two visualization schemes produce
a comparable number of transient but fading crossings. But Fig-
ure 6(b) shows that our algorithms produce fewer transient and non-
fading crossings than Yee et al.’s, and that this difference grows with
graph order.

3.3 Spanning tree sibling edge lengths

Since our approach positions nodes on containment arcs around
their parent whereas Yee et al. positions nodes on concentric circles
around the root node, the two systems produce different patterns of
regularities. In this experiment we quantify those regularities.

Figure 7 shows that as the generational distance increases from
the root to nodes at a given depth in the tree, our system produces
no variance among siblings in within-family distance from node to
parent, whereas Yee et al.’s system produces substantial variance.

Conversely, in our system the distance from the root to nodes of
a given generation can vary, whereas in Yee et al.’s system it does
not. The variance arises in our case because containment arcs are
adjusted to help prevent neighboring family circles from overlap-
ping. Although this reduces the reliability of the length of edges
as an indicator of distance from the root, the self-similar geometric
pattern of family subsystems produces another cue that may well
be more salient [13].

4 DISCUSSION & FUTURE WORK

Behavioral tests will be needed to determine whether these alter-
native layout and transition algorithms are psychologically signifi-
cant. But our statistical experiments indicate that the drawings and
animated transitions generated by our algorithms conform to many
established aesthetics for graph drawings [1, 18].

Taken in the context of the prior research on graph drawing aes-
thetics, these results suggest that our system should reduce a user’s
mental effort and increase a user’s capacity to make reliable judg-
ments and develop useful intuitions about complicated graph struc-
tures [7, 18, 23]. Our research thus lays the groundwork for future
study of the layout and animation algorithms, of the psychologi-
cal significance of our metrics, and of the functional validity of the
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(a) Transient Fading-Out Crossings
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(b) Transient Final Layout Crossings

Figure 6: Spanning-Tree-to-Spanning-Tree Transitions
The results in Figure 6(a) shows that both visualization systems
produced similar amounts of edge crossings during transitions be-
tween two different spanning-tree-based drawings. The results in Fig-
ure 6(a), however, clearly show that our algorithms produced fewer
crossings than Yee et al.’s algorithms.

graph aesthetics themselves.
With regard to our algorithms, two areas are particularly ripe for

further study. First, the drawings produced by both ours and Yee
et al.’s graph drawing algorithm are not guaranteed to be planar;
in our drawings, edge crossings can occur when long subtrees en-
croach on neighboring containment circles. An alternative method
of allocating containment arcs might make it possible to guarantee
planar drawings.

Second, with our approach, remote descendants of the root can
become vanishingly small on the viewing plane. Our system does
give users a natural solution to this problem: selecting a different
root node so as to allocate more space to its descendants [19, 20].
However, future research could explore the algorithmic relation be-
tween our solution with the distortion of the viewing plane in hy-
perbolic visualizations [10, 14]. There are clearly differences: we
position and move siblings by constraining them to circles on a
parent-centered Euclidean plane, whereas hyperbolic layout algo-
rithms position and move siblings through a non-Euclidean space.
The relative computational and psychological merits of these ap-
proaches, however, remain to be determined.

5 CONCLUSION

We have presented a radial graph layout visualization scheme based
on a parent-centered data model for spanning trees extracted from
a graph. We introduced our static layout algorithm that produces
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Figure 7: Spanning Tree Sibling Edge Lengths
This diagram shows the mean length of edges with the standard
deviation for sets of siblings to their common parent. Sibling nodes
are always equidistant to the parent node in the drawings produced
by our algorithms. Yee et al.’s algorithms do not generate drawings
with this property.

drawings of graphs where the root’s children are evenly spaced on
a circle centered at the root and the children of nonroot nodes are
evenly spaced on a semicircle emanating from their parent. We also
introduced an animation algorithm that smoothly transitions a graph
from one spanning-tree-based layout to another. We conducted ex-
periments to compare our experimental system with Yee et al.’s
graph visualization system [25]. The results from these experiments
suggest that our visualization and animation schemes have consid-
erable promise in helping users understand and explore graphs.

REFERENCES

[1] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall, Upper Saddle River, New Jersey, 1999.

[2] Peter Eades. Drawing free trees. Bulletin of the Institute of Combina-
torics and its Applications, 5:10–36, 1992.
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