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_ Abstract—The diversity, sophistication and availability of mali- ~available to the community through its web site [#7The
cious software (malcode/malware) pose enormous challersyor ~ metadata used in our study was compiled over a period of 19

securing networks and end hosts from attacks. In this paper, years The malware described in the data set is highly divers
we analyze a large corpus of malcode meta data compiled :

over a period of 19 years. Our aim is to understand how N terms of sophistication of design, level of potency, noeith

malcode has evolved over the years, and in particular, how Of spreading, and vulnerability targets. For instance, sah
different instances of malcode relate to one another. We delop the malware we study are documented as having spread via
a novel graph pruning technique to establish the inheritane floppy diskettes!

relationships between different instances of malcode badeon To understand the trends in malware design, we mine

temporal information and key common phrases identified in u . - . .
the malcode descriptions. Our algorithm enables a range of (e metadata for “relationships” between different insem

possible inheritance structures. We study the resulting ‘fkely” of malcode and study how these relationships evolved over
malcode families, which we identify through extensive manal time. We consider two malware instances to be related when
investigation. We present an evalgation of gross charfict'estics they share important characteristics. Examples of malware
of malcode evolution and also drill down on the details of the .55 teristics that can reflect relationships includgeting a
most interesting and potentially dangerous malcode famiés. . . .
common vulnerability, using a common method for scanning
or denial of service and, especially, sharing specific Fexfe
I, INTRODUCTION code — a practice that is widely assumed to be common in
malcode development. We refer to a group of malware that
share many important characteristics as belonging to desing
$halware family
We evaluate malware relationships in several differentsvay
e ask, for example, what is the lifetime and size of a typical
alware family? What features are common to the malware
E]elonging to long-lived families? How many instances of
malware arise from a single potent “parent” (or a small set of
f’;\rents) and what features do the “children” differ in? Te th
est of our knowledge, these aspects of malware relatipashi

“malware”, that enables attacks to be carried out from o ) . . .
or more hosts distributed throughout the Internet and evolution have not been systematically explored inrprio
' work

Creating effective countermeasures for these threats-is ex o s .
o . : . . We face a key challenge in identifying malware relation-
tremely difficult. First, the ever increasing complexity of_, . . : i ;
hips, grouping malware into families, and extracting the

networked systems and software means that it is difficult gcfstinguishing features. Our study is based on metadata tha

build them to be inherently free from vulnerabilities. Sedp : .
. . . describes specific instances of malcode and not on the n&lcod
network and end-host security today is realized as a patdhw . .
. itself (we know of no openly available malcode repository
of add-on software, features and capabilities that arekeiyli L o ; . .
maintained over a similar period of time). Most of the dgscri

to ever close all opportunities for intelligent and detered .. . ) :
. LI tions are entered in plain English sentences by human expert
attackers. Third, and perhaps most significantly, the asth ) 7 . .
ence we are faced with the challenge of mining relationship

of malcode are well aware of the details of network and end .
. . S —Information fromunstructured text
host security mechanisms, and are developing increasing . .
0 address this challenge, we develop a novel analysis

sophisticated and effective methods for subverting them. L

. ._method that has two components: text mining and graph

In this paper, we present a study of malware CharaﬁCter'St'ﬁﬁming. The first component identifies tfrequent significant

o ; malw_%ﬁrases'n the textual descriptions of all instances of malware
fam|l|e_s and on the evolution of ke_y malvv_are_ charactemlst_| in our data set. This process enables suppression of common
over time. The goal of our work is to highlight tr_ends : hrases€.g.,“The following entry”) that may cause us to infer
malwgre design thgt_can broaden our L_mderstandmg of rious relationships between malware. More importantly
effectiveness of existing defenses, and inform the desfgn 0o, ) ses the key features of malware behavior expressed

sound malwgre defense mechanisms in the future. in specific sequences of text. After identifying the frequen
Our study is based on a large corpus of malware metadata

qerived from McAfee’s- threat Iibrary datab.ase' Thi§ meta_da 10ther anti-virus vendors have similar malware metadatalabla online
is used by McAfee for internal documentation, and is pdytial (e.g.,[24], [25]).

Malicious activity in the Internet is growing at an alarmin
rate. There are daily reports in the technical and populesgpr
about new vulnerabilities and new types of attacks, and t|
rapidly increasing economic incentives are sure to cataly
this activity for a long time to come. Well known examples o
malicious activity include denial of service, spam, infation
gathering, and resource gathering. In all cases, this igctiv
is based on the use of software, also called “malcode”



significant phrases across all malware instances, we emtstrchallenging because malcode authors are increasinghyg usin
a “feature vector” for each instance based on the occurrehcaechniques to confound this kind of analysis. Disassermabpler
specific significant phrases their textual descriptions. & debuggers and system monitors are common tools used by AV
the feature vectors to estimate the “similarity” or the extef companies in the process of generating signatures andrigeat
the relationship between two malware instances. The dali¢he metadata used in our study [4], [5], [8]. An alternatiséd
feature of our text pruning and similarity inference apmioa evaluate malware source code which can sometimes be found
is that we can draw useful observations on malware simylarion the Web or in Usenet newsgroups (See [10] for a recent
without leveraging any domain-specific information. study of this kind).

The second component of our methodology, graph pruning,Evolutionary properties of malware has also been studied
begins by considering all instances of malware as a fully-cote.g., [11], [12], [14]). Excellent, comprehensive reference
nected graph. Edges Between malware instances are labefederial on malware can be found in [26]. M&aal. present a
with the extent of similarity, and are oriented temporaligmh  study more closely related to our own that infers the phytgge
the older instances to the more recent one. We prune the ed@&s, behavior characteristics) of malware shellcode [16]. Our
using two different pruning parameters and decompose thverk is most similar to these studies in that we too aim
graph intolikely malware familiesThe graph that results afterto establish evolutionary relationships between malwéne.
the pruning process is a “forest” of malware family treeseThcontrast with past studies, however, our work focuses on
edges in this forest reflect both the temporal and featusedba malware metadata spanning many years, which enables us
relationships between instances of malcode. We explore toeprovide a long-term view into the evolution of malware
sensitivity of the pruning parameters and we also compdeatures. We also evaluate the key properties of potent arelw
the resultant malware families with thealware namege.g., families.

W32/Bagle.n@MM), that are included in the metadata. TheseFrom an algorithmic stand-point, our study is informed
labels provide a means for validating the malware familieg t by prior work in data and text mining. Zaki describes an
result from our analysis. efficient algorithm for identifying frequent sequences angle

Our analysis identifies many different intriguing charactedata sets in [29]. While efficiency is less of an issue in our
istics of malware families and how they have evolved. Resulivork, methods for finding all frequent sequences such agthos
with tuned parameters show that there are 669 distinct fasil described in [9] are important.
in the metadata. Among these are well known families such as
Mytob, Adware, W32/Bagle and lesser known such as Acid [1l. M ALWARE FAMILIES
and Coco. We find instances of families that are very short

lived (e.g.,a Loveletter family which lasts just 18 days), and Ol;)r da:casetl conta_uns{ a wea'I;[\rI] of ;nfﬁrrr;zitrzgn_c?n a I?rge
others that persist for years. We find families that have@elar_num er of maiware nstances. Aimost ail of this information
s entered by hand, after capturing and deconstructing tite m

fanouti.e., many children after the root (frequently the cas{a

for well known malware such as Downloader) and others thé?'outs co(;lle ina Cﬁntr.(t)l.led enV|r(i_nm”ent: Sr:ncedthe Tf?;gg
are quite narrow (indicating a lack of viability of a partlau IS entered manuaily, 1t 1S semantically rich and quite dedal
family). One of the most interesting aspects of our analys'i_éowe.ver’ not all maI|C|01_Js code is described in the sameildeta
is how new malware families evolve from old families — we" YSIN9 the same Engh;h constrggts. .
provide several examples of this phenomenon as well. In this section, we begin by providing details on the malware
dataset. We then describe the first component of our analysis
1. RELATED WORK which creates a uniform schema for malware descriptions
pbased ortext mining The schema provides a baseline from
which we can establish relationships between malware in-
stances. Then, we describe our graph pruning algorithm that

we use to generate “likely” malware families.

There are many empirical studies of malicious activity ia t
Internet. Well known examples of these include [15], [18]
[22], [28]. These studies are often focused on a particul
segment of malicious activity such as denial of servicechtta
or worm outbreaks, and the reports frequently coincide wi
the emergence of new threats. More recently, Freilgtg
al. [13] and Rajabet al. [23] provided empirical details on The malware meta data that we evaluate is the McAfee Avert
the escalation of botnet activity — one of the most potehtbs Threat Library [17]. There are 44,504 malware instance
threats in the Internet today. Similar to our work, thesel®s in the database, spanning a period of 19 years from 1987 to
take advantage of a particular measurement infrastruct®@06. The database schema provides a variety of information
such as Dshield.org [27] or distributed honeypots [2] as -ae.g., the malware name, discovery date of the malware,
means for gathering data, and typically provide statisticaize of the malware (in bytes), malware type, “danger” of
characterizations of the data. The key difference is that vpayload, prevalence, etc. However, from the point of view of
only rely on meta-data, not actual malcode (source or kesari inferring relationships between malware, the most useéldi$
or measured behavior. are those with semantically rich textual descriptions. rEhe

Evaluating the details of malcode binaries once they hawee three such fields in the database: malware charaateristi
been captured can provide interesting insights. Howetés, i methods of infection, and indications of infection. A total

t o
R. Description of the Dataset



of 8,182 malware instances include sufficiently detailed te
descriptions and our analysis focuses on these.

B. Challenges in Mining the Data

While the textual descriptions in the three key fields of
the database provide fascinating information, they camy n
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as little human input as possible, and uncovering the mas. 1. scatter plot of frequent phrases in the malware rdeta-based on

informative properties of malware. This is crucial in ordefrequency of occurrence in Google search results.

for us to infer the relationships between malware with high

confidence. Our first insight is that we can use techniques frdrequent phrases. However, some of these were common En-

Information Retrieval to mine the most defining propertiés @lish phrases that were clearly not specific malware progert

the malware. We elaborate on this in Section IlI-C. To eliminate these phrases, we developed an approach for
A second insight we use is that the information obtainegutomatically determining if a phrase is an ordinary Erglis

from unstructured data when combined with other structurgdirase or something relevant to malware and security. To do

information can provided interesting views into the evinnt this, we use the Google search engine, which is likely to lee on

of malware. As an example, we use the discovery date @ the world’s largest on-line repositories of English pdesa.

“orient” the edges in our malware relationship graph and t¢/e submitted each of the 6500 common phrases as a Google

indicate the possibility that the newer of the two malwargearch query. Intuitively, we expect common English plsase

was spawned from the older one. We describe this in Séo-have a significantly higher number of Google results than

tion 111-D.?2 the malware-specific phrases. The scatter plot of the phrase
] o frequencies is given in Figure 1. The common English phrases
C. Schema Discovery Via Text Mining are typically found in hundreds of millions of documents.

In order to make the unstructured textual descriptions moBased on the scatter plot, we chose 10 million as a cutoff
useful toward the goal of establishing malware relatiopshi to retain most of the technical information while elimimagi
we create a suitable schema and convert the textual descnst of the common English phrases. After this filtering, we
tions into a set of informative tuples. Each malware instanaevere left witha: 4500 phrases. A few examples of the phrases
is mapped onto a tuple containing fields that describe kéyat were used in our schema follow: (1) “This virus consisuc
properties. messages using its own SMTP engine. Target email addresses
To obtain the appropriate schema from the textual descrigre harvested from files”. (2) “memory resident at the top of
tions, we usdrequent phrase extractioWe consider phrases system memory but below the 640k dos boundary, hooking
which occur frequently throughout textual descriptionsadif interrupt 21.”. (3) “Its spreading activity remains only ihe
instances of malware in the database, and make each sgelman language version of microsoft word. However, the
phrase a column in the schema. Then, each malware instamicas may be able to execute its payload in another language
is represented by a tuple in the schema and the columresion.”
take boolean values indicating the presence or absences of thUsing the resultant schema, we create and populate a table
corresponding phrases in the description of a given instanthat contains the most significant defining features for each
Since our goal is to use the schema to identify relationshipsalware instance.
(based on similar properties) between malware instances,
frequent phrases is a better choice than a standard bagldf-Establishing Malware Families

words schema. Our goal is to identify malware families based on shared
We used a frequent phrase extraction tool from the IRey properties. In general, we say that two malware inst&nce
community, Extrphr32 [3], which extracts thmaximalfre- are related when they share several important charadtstist
quent phrases: a maximal frequent phrase is not a substings@ch as method of infection, method of spreading, and the
any other frequent phrase. The tool also considers onlyethagmptoms exhibited by infected hosts. Based on anecdotal
phrases which do not start or stop with “stop words”, whicByidence [7], we speculate that such similarities arise for
are common English words like “the”, “but”, etc. To deter@in gne or both of the following reasons: (1) The authors of
if a phrase is frequent, we use a parameter the malicious code share some routines with each other. This
Frequent phrase extraction was applied to the “virus cha@jractice of code sharing is known to be common in the black
acteristics”, “methods of infection”, and “indications @f- pat community. Or, (2) The authors of the malware create
fection” text fields in the database. We experimented with @de that has similar observed behavieg(,exploit the same
range of values and selected= 30 which yielded~ 6500 set of vulnerabilities), but there is no explicit code shgri
) o _ While there could be other reasons, we argue that idengfyin
Our analysis ignores other structured fields, such as thenpptand . . . . . e
the prevalence of malware. This is because we want to focinsagly on reIatlonshlps on the basis of shared properties Is of isitrin
understanding how the different malware families evolveraime. value in understanding malware and its characteristias can



be valuable in the design of defense mechanisms. other, and thaB has an earlier time stamp th&h With just

Our goal is to derive a grap&’, whose vertices representthe §; parameter, we will have two incoming edges: one from
the unique malware instances in our dataset, and whose eddesnd one fromB into C. Likewise if A spawns a number
imply that the corresponding malware instances are styonglf children, we will have many spurious edges among the
related. Also, we wish to make the edges of the graph directeldildren of A. We need to remove these spurious edges from
in order to indicate an evolutionary relationship betweethe graph.
malware instances. We introduce a second pruning parameigto address the

The graphG’ is actually a collection of multiple different spurious edge problem. If an edge doesuntitjuelycontribute
malware families The graphG’ should satisfy the following more thand,, we prune the edge. Specifically, say a ndde
properties: (1) A node: should only have incoming edgeshas a pair of incoming edge$ — C and B — C. We check
from a setS of previously seen malware only if is “strongly  if ‘S(Aécials(B_’c)l < 62 (the numerator in the inequality
related” toS. (2) There should be no spurious or unnecessatpmputes the set difference). If this inequality is satisfige
edges. delete the incoming edge with the lesser weight.

We begin with a completely connected graghwith di- Thus, the complete graph pruning algorithm is as follows.
rected, weighted edges: each vertex in this graph is a malw#@or each node, incoming edges that do not have a sufficient
instance, and the weight of an edge is the similarity betweeanique contribution are pruned using tfig parameter. Next,
the sets of frequent phrases associated with the malwaikof the remaining incoming edges are pruned if they togeth
instance. Edges irG point from the older instance to thedo not contribute at least fraction of the node’s properties.
more recent instance based on the “time of discovery” fiell formal description of our graph construction algorithm is
for each. The similarity metric ranges between 0 and 1 andg#en in Figure 1lI-D.
defined as follows: For an edgé — B between two malware |t should be noted that the algorithm allows for the possi-
instancedA and B, let S(A — B) be the set of properties in bility of a given malware instance being related to or having
the frequent phrase database which are common betweerwlved from multiple parents. This kind of “bundling of
and B. The weight of the edge M where|B| is the threats” has, in fact, been observed in the wild. Note t}iat
number of defined properties in B alhﬂ( )| is the cardinality is the maximum number of incoming edges on any malware
of setS(x). Thus, the similarity metric captures the fractionnstance. Thus, captures the maximum number of parents

of B’s properties which are also shared with A. allowed for any node in the graph.

Note that if| B| is very small, then we do not have sufficient
information to relate it to other malware. To prevent instes ObtainingG" _ _
. . . . . 1. Each malware instance is a vertex. Start with a completelynected
like these from Corruptlng our relatlonshlp _graph_, we udtqoe graph. The direction of each edge is from the older malwaréhéomore
a parameten. If |B| < ~, we do not consideB in creating recent one.
the final graphG’. We experimented with a range of values o o

2. For a nodei with k£ = the set of incoming edges

and settled On? = 10 for our St.uq)’- The result WéllS tha.t Consider all* C'; combination pairs of incoming edges.
2700 malware instances were eliminated from consideration For every incoming edge paz, y),

.. . if weightminus(z,y) < d2
We concluded that this is was reasonable since manual exam Delete either X or y

ination of these instances showed that their descripticere w (delete the one that has a lesser weight).
in fact, quite minimal.
Next, we describe our teChnique for SyStematica"y de@tin 3. For a nodei with » = the remaining set of incoming edge
edges from the grapty to obtain the graph¢:’ that exposes It weightunion(r) < 61, delete all the edges in.
significant sharing between malware instances.
To achieve the desired property that edges are incident on 4. Repeat steps 2 and 3 for all nodes.
a node only if it shares a significant number of features W|th
some previously seen set of malware, we introduce a prum
parameterd;. Consider a malware instancé. Assume|A|
(the number of features for A) is sufficiently high and a large
fraction (> &) of its properties are in common with a s6t  The final graphG’ should contain several directed acyclic
of malware instances with earlier timestamps. This meaas tisub-graphs. In each component sub-graph, there will be one
A shares several key features with the malwaréjrmand it is or more malware instances with zero edges incident on them.
therefore likely to be closely related to or even derivedriro We refer to these instances amots
the malware inS. If, on the other hand, the total contribution Sub-graphs with more than one root are caused by nodes
of these incoming edges is less than then we can consider with multiple parents at the lower levels. We split these
the malware to have evolved independently. components into as many families as the number of roots. In
However,d, by itself is not sufficient since spurious edgesloing this, we assign nodes with multiple parents to the ffami
are still possible. For instance, consider the case whette mahich contributes the “heaviest” edge incident on the madwa
ware instances3 and C' both evolve independently from. instance. We perform this decomposition of our relatiopshi
Assume bothB and C' are similar toA, and similar to each graphG’ into malware families only because it allows us to

. 2. Constructing the malware relationship graph. If de@' has a pair
ncoming edges x and y, defineeightunion(z,y) as W and

Welghtmmus(x y) asw



simplify our analysis and speak of “likely” malware famsie F. Robustness and Validation

With th|_s decom_posmon, we can now study key properties It is important that the parameter choice be robust to the
of the likely families, such as the total number of malwar%m

instancgs, the life-span of the family, the total number atabase into 3 random parts, each of size 2727 nodes. We
generatlorjs, etc. ] ) ] ran the algorithm independently over these three subsets,
~ Evaluation of the malware family trees in Section IlI-Fynq generated the statistics in Table | for the number of
indicates that our algorithm works well. However, it is POSsingle-parent nodes, multiple-parent nodes, roots, tissj@and
sible that malware instances that are classified into differ entropy (defined below). In each subset, the statisticewoll
families by our algorithm are actually related. Indeed, Whesggengially the same trend as in Table I. For instance, the
we examine the resulting families closely (see Section Vjymper of single-parent nodes decreases with the increase i
we noticed that several well-known malware instana@8.( 5, There are almost no multiple-parent nodes in all threescase
instances ofBagl e malware) are spread across multiplgynen s, - (.3. Likewise, the number of roots follows a very
families. However, our classification ensures that membel,ijar trend to the above table, increasing up to certalnes
within a family are much more likely to bg_strongly related tQyf &, andd,, and then falling. The number of isolated nodes
each other than to members across families. in all three tables increase sharply with the increasé; in

_ A complete validation of all of the malware families that
E. Parameter Selection are generated by our algorithm is not possible. Furthermore
even the task of quantifying the accuracy of the relatiopshi

The characteristics of the resultant malware families &ing*Ve infer is challenging. Both of these limitations arise dese
crucially on how these parameters are chosen. An ovellf Only have access to the malware meta-data. We focus on
permissive setting for these parameters (low values fonbot/'€ 1atter issue in this paper because it is more tractable.
could cause us to infer relationships where there are none. A ON€ approach we considered was to verify that malware

overly conservative choice may cause us to miss importdﬂ?tances identified as being related also share similaesam
relationships. The experts who generate the malware metadata attempt to

qame malware instances according to a group that they leeliev
5s. A very low value of, will lead to a completely (or almost it belongs to. For example, most variants of W32/Gaobot are
* % 1 fi
completely) connected graph, while a very high high value &pmed W32/Gaobot._ . 10 yerlfy that the malware cla_ss+f|ca
5, will result in a graph with no edges. A very low value ofiion due to our algorithm aligns with the. names prowded by
5, can result in a huge number of parents, while a very hid\chfee, we develop_ed an “entropy me.tr|c”, described below.
value ofd, will result in no node having more than one parent. ASSUme our algorithm generatéstamilies 71, .., 7. Also -
In Table | we illustrate the effect of 20 different parametefSSume there a¥ families of malware according to names in
choices on the entire relationship graph (more instancee w&'€ MCcAfee database. If a McAfee familyhasn; members,

considered but these are representative). The candidaieesh @nd these are distributed across thfamilies output by our al-
for 6, andd, lie on the more conservative side in order to t§orithm. If, for the McAfee family, the fractions of its mem-

identify several “good” relationships accurately. bers across ouk families arefi, .., f, then the entropy of

We analyzed four features of the relationship graph: taat family in our classification is; = Eﬁ:l(_fjlogfj)' The
overall number of single-parent and multiple-parent node®ean entropy of all the McAfee families will bg‘;in—n*e
the number of roots and the total number of nodes that doThe entropy value lies between O ahg.k. Thé’féntropy
not belong in any familyi(e. isolated nodes - neither havevalue will be smaller if members of the same McAfee family
incoming nor outgoing edges). First, as expected, the numiage assigned to a single family generated by our algorithm.
of single-parent nodes decreases with higher valueg ahd Note that this metric is based only on the malware instances
is unaffected byd,. The number of multiple-parent nodeshat have been classified into named families by McAfee.
drops drastically withd, and becomes insignificant whenNote also that this metric does not quantify the evolutignar
02 > 0.3. The total number of roots does not show a clegratterns. Nonetheless, it provides a reasonable sanitgkche
monotonic trend as it has a complex dependence on &oth  For (41, d2) = (0.7,0.3) we obtaink = 669 families. Our
andds. On the other hand, the total number of isolated nodatgorithm has an entropy of 1.19 in this case (see Table II).
increases withy; (andds), with the total number at; = 0.9 Drawing a simple analogy, the entropy metric can be inter-
almost 50% higher than the numberdt= 0.7. preted as the mean number of binary questions to ask in order

Since we would like to have as few isolated nodes dg decide which family a malware instance is placed in. Thus,
possible (to prevent the families from becoming degengratéor the members of a McAfee-named family, we need to ask
while keeping our parameter choice as conservative aslgessonly ~ 1 question (equivalent to deciding between 2 families)
(to eliminate spurious edges), we chdse= 0.7 andd, = 0.3 which we believe is fairly reasonable. (A bad algorithm can
to establish the family trees evaluated in Sections IV and ¥nd up with an entropy value @6¢,669 =~ 9).
We note that a few different parameter choicegy((61, d2) = We used the McAfee names only during the entropy vali-
(0.6, 0.3), (0.7,0.3)) provide roughly similar trade-offs dation and do not use them anywhere in our algorithm since

ount of data in the database. To verify this, we split our

Our algorithm uses two pruning parameters and J,.

We systematically consider the impact of the values for t



6, —| 06 [ 07| 08] 09 4y —| 06 [ 07| 08] 09 4, —|06]|07| 08| 0.9 5, —| 06 ] 07| 08| 0.9
02 | o2 | o2 | 02 |
0.1 |[3767]|2962| 2015|1170 0.1 |[1362]|1748| 1832|1174 0.1 [282|565|1061| 1495 0.1 |[2771] 2907|3274 4343
0.2 |3767]|2962| 2015|1170 0.2 463 | 419 | 304 | 134 0.2 [600|791| 794 | 622 0.2 |3352]|4010| 5069| 6256
0.3 | 3767|2962|2015| 1170 0.3 66 65 42 14 0.3 |513|669| 612 | 474 0.3 |3836(4486|5513| 6524

0.4 | 3767|2962| 2015| 1170 0.4 6 6 6 2 0.4 |474|620| 578 | 460 0.4 | 3935|4594| 5583| 6550

0.5 |3767|2962| 2015| 1170 0.5 0 0 0 0 0.5 |476|620| 575 | 458 0.5 |3939|4600| 5592| 6554

(a) Num. single-parent nodes (b) Num. multiple-parent sode (c) Num. roots (d) Num. isolated nodes
TABLE |

THE EFFECT OF§1 AND J2 ON THE RELATIONSHIP GRAPH

61 — [ 0607|0809 . . .
5 1 analysis focuses on this subset. After employing the parame
0.1 [056]0.97[1.44| 1.97 ters described in Section Il and applying the tree decornpos
0.2 |1.26]1.31|1.34|1.48 . : . Y .
03 | 093119 122|136 tion process, we identified 669 distinct malware family sree
04 10.9111.15/1.19| 1.45 Overall, 4486 malware instances were not classified into any
0.5 |0.91|1.14|1.20|1.45 . . .
TABLE ] family because of our choice of pruning parameters. Thestree
THE ENTROPY IN THE NAMES ASSIGNED BYM CAFEE. included 2962 “single-parent” nodes and 65 “multiple-pdie

we do not want our family trees to be biased by the McAfegodes. The analysis in this section is focused on examihiag t
names. It is important to note that simply using the McAfegey properties of the 669 families, with particular empbasi
names to construct families is not very helpful. There ige larger families.
no clear way of deciding the edges within members of . .
single McAfee name-based family. Furthermore, having é% Family Tree Size and Fanout
algorithm independent of the names helps us use the namekigure 3(a) shows the cumulative distribution of the number
for validating the algorithm. More importantly, a signifita Of malware instances in each family tree. A large number of
portion of the malware instances do not fall imay McAfee trees are quite smalt> 90% of the trees have less than 12
named family. For instance, among the 3092 edges (in tA@des and0% of the trees have just two nodes (a single edge).
81 = 0.7,0, = 0.3 case), 469 edges are between membédisis interesting to note that a handful of the families among
of the same McAfee named family, 611 edges are betweklpse identified are very large: 8 of the families have more
members of different McAfee named families. The remainingien 50 malware instances each and the maximum number of
2012 edges are incident on malware neither of which fall imalware instances in a family is 119! Later in this sectioe, w
any McAfee named family. So, these 611 + 2012 edges 4lglve deeper into some of the properties of 2 large trees. In
completely new in the sense they cannot be inferred by j@ection V, we study the key features that are retained across
looking at McAfee names. The 611 edges between differeggnerations of malware in some of these large families.
McAfee named families are also interesting. Though some ofNext, we consider the number of “generations” in each
them might be false positives, the others might give useftialware family. It is likely that a new generation malware is
new insights into how the different families evolved fromeondeveloped in response to specific counter-measures that wer
another. We give some examples of these edges in the fanflgveloped by AV companies to contain the previous gener-
descriptions in Section V, while leaving an in-depth ingjmc  ation. Thus, this analysis provides a perspective on thesarm
of all these edges for future work. race between malware authors and AV experts. In Figure 3(b),
To further examine the quality of our inferred relationship We show the distribution of the heights/generations of the

we augmented the above checking of names with a mangal largest family trees. On average, these families span 7
check of the accuracy of some of the relationships. Speciénerations. In Section IV-B, we study the time-span oféhes

cally, for each family we obtained, we first checked if mos§enerations, and find that some of them span a few years.
of the members share a common McAfee name predig. ( Figure 3(c) shows the distribution of the maximum fanout
W32/Gaobot). If this check is not satisfied, we manually ghed? family trees, as well as the fan-out of the root of the

the meta-data to see if we erroneously inferred a relatipnshir€es. In several families, each malware instance spawns fe
In almost all the cases, we observed strong similaritiewben Other malware instances over time: 92% of the trees have a

a “parent” and its “child”. Additionally, some well known maximum fanout less than 5; and 95% of the roots have a

malware evolutions were also observed in our families. F&nout less than 5. However, we do observe three trees with
example, our families expose the evolution Mjt ob from & maximum fan-out- 20, and the maximum fanout observed

Mydoom and Zot ob from Myt ob, both of which are well In & tree is 29. , o ,
documented in the popular and technical press. Since the root and maximum fan-out distributions are differ

In Section V, we show the trees for some of the Iarge@f‘t' it is clear that the root does not necessarily have tigesh
fan-out. This may happen when some intermediate malware

families we identified. A complete list of the families we )
inferred may be found at our Project Web site [1]. bundles together the capabilities of several of its presismes
and in turn becomes the source for multiple future strains.

IV. CHARACTERISTICS OFMALWARE EVOLUTION B. Family Tree Life-span

As mentioned earlier, 8182 malware from the original Each edge in the graph we obtain has an assoclategth
malware database had a non-trivial textual description: OWe define the length of an edge as the difference in the “time
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Fig. 3. Figure (a) shows the distribution of the number of eoéh family trees. Figure (b) shows the height of the lar@&stamily trees. Figure (c) shows
the distribution of the maximum and root fan-outs in famitgets.

of discovery” field in the two malware instances; we measutext descriptions. Thus, this plot includes even the isalat
the length in days. Edge lengths help us understand the timmdes in our relationship graph. The key observations ae th
duration over which the the successors of potent malwaaeceleration in new instances since 2001 and dips between
instances are developed and released. 1994-1996 and in 1998.

Figure 4(a) shows the distribution of the lengths of all exige Figure 5(b) shows the distribution of the lifetime of the
in derived family trees. The figure shows that 90% of the ed@5 largest malware families as well as the distribution & th
lengths are less than 730 days long. Thus, it appears that mifstimes of all families. The lifetime of a family is defineabs
malware are spawned from their predecessors in under téhe difference in the timestamp of the root and the timestamp
years. of the most recent member of the family. We observe that 80%

Figures 4(b) and (c) show scatter-plots of the fanout of all families have a lifetime less than 730 days (around 2
malware instances versus the mean and the minimum leng#ars). However, a small fraction of the families, rough®s,9
of their outgoing edges, respectively. These plots helps last more than 1960 days (around 5 years). Among the top 25
understand the correlation between the popularity of a miaw families, ~ 50% have a lifetime greater than 950 days (around
instance - defined in terms of how many immediate success@r5 years), and 18% of them have a lifetime more than 2350
are spawned from it - and the time to the evolution of itdays (around 6.5 years). Thus, it appears that the largdiésmi
successors. An interesting trend is evident: malware mtsts. also have very long lifetimes.
with a high fanout do not have any long outgoing edges. In We consider families that were last seen in 2006 to be “ac-
other words, it seems that malware instances that spawnive”. These families have not been included in the aforemen
lot of children (perhaps because the malware’s source caitsned lifetime distributions. There are 68 “active” faias,
was reused very frequently), do so relatively quickly. Fsing  of which 46 have more than 2 nodes. Furthermore, we found
on malware that spawns few successors, we note thathat 9 of the 25 largest families are still active. The 46\axti
much longer time may elapse before they spawn their fifgimilies with > 2 nodes have been in existence for mean time
successors. For example, in Figure 4(c), there are sevasabc of 544 days.
where the minimum edge length is 1000 days for malware  Figure 5(c) delves deeper into the malware evolution dy-
with a fan-out< 5. namics. Here, we compare the cumulative counts over time of

Figure 4(d) shows the mean length of edges at each degib total number of trees born and the total number of trees
in family trees. This can be interpreted as the mean time fgiat died since the first family originated in 1987The gap
one generation to evolve into the next. As can be seen fraggtween the two cumulative counts indicates the number of
the figure, the mean time for the generations to evolve seefasilies alive in a given year. Note that there is a huge gap
to fall exponentially with the generation number. between the two plots in the early 1990s, indicating that a
C. Evolution Dynamics of Malware Families lot of _familie_s were active. By 1998, the two curves_gl_most

, ) ... .meet indicating (perhaps) that most of the vulnerabilitiés
We now consider the temporal patterns in the "birth the early nineties were patched. Along the same lines, we can

life-span, a_nd “death” of ma'W?re families. Qur foCus iS Ofhfer that the early 2000’s saw a revival of sorts in malware
understanding how these evolutionary dynamics have chhn%g(

; X _ Fgloits (the two plots are almost parallel). These obg@&ma
over the past decade or so. We believe that this analysisshg supported by the anecdotal evidence on the prevalence of

more light on the effect of two concurrent phenomena on ﬂ?ﬁalware in recent years
overall prevalence of malware: (1) the ongoing race betweenThe right half of Figure 5(c) is even more interesting: the

malware code Writers,_ _and the anti-virus compa_nies, Whi%pe of the “birth of trees” curve becomes very steep, yet
cou!d cause some_fam|l|es t_o have a very long “Te t'_mE; apd (§1e gap between the two curves remains roughly fixed. This is
the improvements in operating system and application su&w representative of the ongoing tussle between malware eitho

security, which could cause the death of some f§m|l|es“._ and AV companies. For every malware family the AV com-
Figure 5(a) shows the time line of the distribution of “time

of .d|scovery." fields in the malware, b'nned by the yea_-r' 3By "dying” we simply mean that there are no further generaiaf the
This graph includes all 8182 malware instances have ri¢dmily, not that the malware is removed from the Internet
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Fig. 5. Figure (a) shows the number of malware(ir)1stances baah year. Figure (b) shows thé )distribution of lifetimes d6 family trees and for the 25
largest family trees. Figure (c) shows The cumulative cafrthe number of families born and the number of families tiiat Figure (d) shows the timeline
of the five largest malware families.

panies eliminate, malware authors are able to come up wilownloader family) was widely active in 2005 (52 malware).
newer families that (possibly) exploit newer vulnerakskt The fifth largest family was a Word Macro family which was
mainly active in 1997, and died after that.

Finally, we focus on the 5 largest families and dig a
bit deeper into their life-spans (a more in-depth analysis i \/ A DEEpPERLOOK AT SOME MALWARE FAMILIES
presented in the next section). Figure 5(d) shows the tirasli
of the five largest families. The largest family was chiefly The malware families we identify are useful to domain
active in 1997 and 1998. The members of this family do nexperts as they can aid in the development of strong counter-
have any specific McAfee family name. Most of the memberseasures for future malware. We believe that understanding
of this family are viruses that infect files. These virusesstlyo these issues is important to evaluate the effectiveness of
spread via floppy diskettes and online downloads. The secondlware defenses developed over the years.
and fourth largest families are Adware/Spyware/Keylogfam In this section we drill down on the details and unexpected
ilies. They were widely active in 2005 (68 and 47 malwareharacteristics of some of the largest families we idemtifie
respectively in 2005). They continue to be active in 2006 and by our algorithm. We name each family according to the
must be monitored closely. Likewise, the third largest fgrta  most commonly appearing McAfee-assigned name across all
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Fig. 6. A Bagle family tree. The first instance (W32/Bagle M&) appeared on 03/13/2004 and the last instance (Tabef@aapd on 04/15/2006.

malware instances in the family. We show graphical repréb instance became popular and spawned new variants. Two
sentations of one of the malware family trees. The rest ané W82/ Myt ob. cv@Ms children, V82/ Myt ob. eu@M
available at [1] due to space limitations. and W82/ Myt ob. dl @M seem to be spawning important
_ strains and the family appears to be evolving along these two

A. AMytob Family main sub-families.

The “Mytob” malware instances are spread across several _
families in our classification. We discuss here the largeBt A Bagl e Family
Mytob family. An important feature of this tree is that in The W32/Bagle.* collection of malware is one of the most
addition to Mytob instances, Zotob instances are evidént.drolific in our entire dataset. In our classification, we fdun
has been reported the popular press that the same hacket the Bagle malware instances were spread across faurtee
responsible for creating the Zotob worm also authored sgvedifferent families. The biggest among the families is shown
variants of the Mytob family [6]. It is instructive to notedh in Figure 6. This family has 36 nodes, a depth of 8 and a
our classification algorithm is able to unearth such evohuti maximum fanout of 5. The non-Bagle members in this family
ary trends without the direct aid of specific text describingre\WB2/ Beagooz andTabel a. Some of the phrases which
the evolution. There are three other small families in whiclvere common to the malware in this family include “address
Mytob instances appear, and these families show relatiassspoofed”, “worm opens”, “mail propagation”, “copiesetb
between Mytob and Mydoom, Polybot, and Gaobot (Gaobtt folders”, “contains its own smtp engine”, “contains a
also spawns Sdbot in the same family) malware. It is walkmote access component”, “peer to peer applications’zaka
known that Mytob is a variant of Mydoom. The largest Mytolbearshare limewire”, “email addresses are harvested3jisp
family has 46 nodes, a height of 15 (the maximum among ahd “mass mailing worm”. As is well known (and as the
the Mytob families), and a maximum fanout of 8. phrases seem to indicate), the Bagle variants copy thepsselv

Most of the Mytob variants in this family spread via emailto the shared folders of popular peer-to-peer applications
We examined some of the phrases which were common acros$he malware instances belonging to this family were most
the different generations of the malware in this family. Wactive 2004, with 22 variants being discovered in that year.
noticed phrases such as “sender address”, “mass maili@gly six new variants were discovered in 2005, and eightén th
worm”, “mail propagation”, “arrives in an email message”first few months of 2006. This may suggest that the malware
“via SMTP”, “via SMTP constructing messages using itead lost some of its prevalence, but there are a few unpatched
own SMTP engine the worm guesses the recipient emailinerabilities that continue to be exploited by the newaraiis
server prepending the target domain”, and “worm contaig Bagle. We speculate that the high number of variants in
strings which it uses to randomly generate or guess emad04 may be due to the rise and popularity of peer to peer
addresses these are prepended as user names”. Looking aafidications around that time, and that the drop in 2005 may
common phrases at the various depths can also provide uséfe come about due to the community’s growing awareness
information. For instance, the backdoor component was &ddef the security problems associated with popular peereterp
in the 8th generation of the family. applications.

Another interesting aspect of this family is its structure.
This family is dominated more by depth than fanout, and it
has 15 generations. This suggests that the Mytob authors artsers throughout the Internet are plagued by malicious at-
designing new variants to get past the latest defenses. Taeks on an on-going basis. The task of defending againstthe
family is more or less a linear chain in the initial parts. fheattacks is complicated by many factors, including compyexi
WB2/ Myt ob. cv@Mmalware instance spawns 8 children. Iscale, and the increasing sophistication of malware asthor
takes 2 months from the root %82/ Myt ob. cv@M This The premise of our work is that an expanded perspective on
suggests that it took roughly around two months before a Myaalware behavior and in particular the relationships betwe

VI. CONCLUSIONS



malware variants will eventually lead to the development of2]
more effective countermeasures. (3]

In this paper we present an analysis of malcode meta-d
compiled by McAfee, one of the largest AV companies in thgs]
world. The meta-data describes malware that was collectdél
by McAfee and other AV companies over a period of 197
years. The objective of our work is to identify and evaluate
relationships between malware instances based on thdsdet%]
of their descriptions. We do this through a process thatrizegi
by decomposing the descriptions into frequent phrases, ang
then pruning the resulting set to eliminate the superfluous
phrases. Next, we establish relationships between inssaoic
malware using a tunable graph pruning algorithm that is thasgo]
on the similarity of frequent phrases between all instarafes
malware in our data set. In our analysis, we show the tra&el]
offs in graph structure using different parameter settiagd
select a configuration that results in a graph that we vadidat (12
being “likely” using the malware names applied by McAfee.

The resulting families have rich structure. We identify 669.3]
distinct malware families. Some of the families are vergé&r
containing in excess of 50 members. We found that some of
the families were active for a few years at a stretch, while4]
others last no more than a few days. Detailed examination
of the families reveals many instances where specific trajts;
(as identified by a specific phrase) are inherited after many
months and that one instance of malware may spawn many
others. We believe that the malware families identified byg
our algorithm are useful to domain experts and can aid In
developing proactive strategies to counter malware agtac

o ) : . [17]
Another application of our technique would be to |dent|i)\(<18]
similar instances of malware in different repositoriestthse
different naming strategies.

The malware families are available at our project Web-site[](g]
[1]) for general perusal. We plan to pursue several exterssio
to this work. First, we hope to expand the corpus of malwaté!
meta-data in order to flesh out the evolutionary charadiesis
of malware in greater detail. Second, we believe that adding
the behavioral characteristics such as those identified 6 [ [21]
and others will further enrich our analysis. Finally, we lwil
work more closely with AV companies and others concerngzb]
with malware analysis, to develop methods for anticipating
future trends in malware development. We hope that this wjlls)
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