
CS 638 Lab 2: End Host Tools and DNS

Joe Chabarek, Kevin Springborn, Mike Blodgett and Paul Barford
University of Wisconsin –Madison

jpchaba,springbo,mblodget,pb@cs.wisc.edu

Managing and troubleshooting end hosts - especially in large enterprise en-
vironments - is essential for efficient operations in most businesses today. How-
ever, end host management is extremely complicated and time consuming due
to the scale and diversity of systems, applications and users in most environ-
ments. Furthermore, services that are routinely used by end hosts such as email
servers, web servers, file systems/backups and the domain name system must
be as close to 100% available as possible. This second lab is intended to give
you experience with common tools that are used to evaluate and assess end host
connectivity, and to give you experience with the domain name system.

1 Overview and Objectives

Lab 2 is divided into two parts. The first part will introduce you to tools that
provide important insights into end host network configuration and on their
network behavior. These tools are commonly used for debugging and trou-
bleshooting. The second part of the lab will focus on the domain name system.
You will setup a simple DNS hierarchy and execute requests that demonstrate
how DNS works in the wide area.

Upon completion of this lab exercises below, students will be able to:

1. Use standard tools to specify and inspect end host network configuration

2. Passively monitor packet streams to/from an end host

3. Use Simple Network Management Protocol (SNMP) to gather data from
end hosts

4. Inspect and trouble shoot DNS in a local area environment

2 Part 1: Standard Networking Utilities

Several networking utilities/tools are frequently used by network administrators
and researchers to verify connectivity, observe packets, map physical addresses

1

to IP addresses and manage network devices. Gaining experience with these
tools is the focus of part one of this lab. The tools are listed below along with
a description of what they do. Students should use man pages along with web
resources for further information on the tools, how they work and how to use
them for specific tasks. Following the tool description is a set of tasks that are
the specific focus of part one and should be commented on in your notebooks.

2.1 Ping

Ping is one of the most commonly used tools for debugging problems an IP
network. The purpose of ping is to test whether a particular host is accessible.
To do this the utility generates an ICMP (Internet Control Message Protocol
http://www.faqs.org/rfcs/rfc792.html) Echo Request datagram sent to a speci-
fied destination and waits for a ICMP Echo Reply. Unless otherwise specified,
the ping command will continue to send packets until a command line interrupt
is given (Control-C). An example of how to specify a ping command is as follows:
ping -c 5 192.13.4.2 where -c 5 indicates that only five ICMP Echo Request
datagrams are to be sent and 192.13.4.2 is the IP address of the computer that
is being queried. It is good practice to ensure connectivity of the PC’s and
routers in your experimental networks before you alter the configurations. Ping
is typically available on systems without requiring superuser privileges, though
certain options to the ping command may change that fact.

2.2 Tcpdump

Passive network monitoring typically refers to capturing packet traffic that is
transmitted on a link. It is typically done by the host that is itself sending or
receiving packets, and is important for understanding the details of the traffic
- especially at the application, transport and network layers. Tcpdump is the
most commonly used utility for passive network monitoring. A risk in passive
monitoring is that there can be a great deal of data passed on a network that the
listener is not interested in observing. To address this risk, filtering is commonly
used to avoid capturing unwanted packets. The filters can be based on packet
or payload information. An example of how to invoke the tcpdump utility is as
follows: tcpdump -n -l > filename & tail -f filename. The tail command
views the end of the file as it is being written. Alternatively, the user can omit
the tail command and view the file after capturing has been completed (hit
Control-c) to end packet capture. Tcpdump requires superuser privileges.

2.3 Wireshark, formerly known as Ethereal

Wireshark is a packet monitor that is similar to tcpdump, but includes a so-
phisticated user interface. The interface can be very helpful while interactively
examining network traffic. In addition, Wireshark provides detailed informa-
tion for each packet via drop down menus. To begin type ’wireshark’ at the
command prompt. The main window will be displayed if you have X Widows

2

functionality. If you are running Wireshark from a remote system via ssh make
sure to use the -Y flag to forward X11 packets. Next, select and set the cap-
ture options from the Capture:Start box in the main window. Some helpful
options include automatic scrolling in live capture, update list of packets in real
time, enable MAC name resolution, enable network name resolution, and enable
transport name resolution. Be sure to select the correct interface. Hit OK to
begin passive monitoring. To save captured traffic print via the File tab to a
file.

2.4 Ifconfig

Ifconfig is a utility used to manipulate network interfaces on an end host. Using
ifconifig, an administrator can activate/deactivate a network interface card and
can be used while the system is running to dynamically modify the network
configuration parameters, or during initialization of the operating system via
a configuration file. To view the configuration parameters of the interfaces on
a host, type ifconfig with the -a flag, which will display information for all
devices (those active and inactive). You can also display the configuration for a
specific interface via ifconfig [device]. To disable a device issue ifconfig [in-
terface] down. Be sure NOT to disable or corrupt the control interface (eth0)
on any of the workstations in your experiment. To enable an interface issue the
ifconfig [interface] up command. To set the address of an interface issue the
following command: ifconfig [interface] [IPAddress] netmask [Netmask]
broadcast [Broadcast] (e.g., ifconfig eth1 192.168.15.2 netmask 255.255.255.0
broadcast 192.168.15.255). Typically, to modify an address the interface is taken
down, the address change is issued, and then the interface is brought back up.
Ifconfig requires superuser privileges.

2.5 Netstat

Netstat is a utility that reports end host network statistics including the kernel
routing table, network interface information, and other useful information on
network behavior. Commonly used instances of the netstat utility include:

1. netstat -i Displays network interface information.

2. netstat -r Displays routing table information.

3. netstat -rn -n Displays IP Addresses instead of domain names.

4. netstat -an Displays information on TCP and UDP ports that are in use.

5. netstat -tan Displays only the TCP ports that are in use.

6. netstat -uan Displays only the UDP ports that are in use.

7. netstat -s Displays usage statistics for various networking protocols.

3

2.6 Address Resolution Protocol

During a filter free packet monitoring session an observer will most likely see a
series of ARP packets being exchanged from time to time. ARP (Address Res-
olution Protocol) is used to establish a translation or mapping between MAC
(physical) addresses and IP addresses. End hosts typically maintain an ARP
cache in order to speed up the process of resolving and IP to MAC translation.
The ARP cache can be viewed with the arp -a command. Each entry in the
ARP cache will timeout periodically triggering a lookup on the network. It
is possible to prematurely delete an ARP cache entry with the arp -d Ad-
dress command. Additionally, a user can statically add an ARP entry into the
cache with the arp -s IPaddress MACaddress command. This entry does
NOT have a timeout, and the MAC address in entered as 6 hexadecimal bytes
separated by colons (i.e., 00:00:00:00:00:00).

2.7 SNMP

The Simple Network Management Protocol (SNMP) provides a broad frame-
work for managing devices in a network. There are a number of different com-
ponents in SNMP: SNMP agents, SNMP managers, Management Information
Bases (MIBs), and the SNMP protocol itself. The Management Information
Bases (MIBs - see below) load and organize records of interest (stored in /us-
r/share/snmp/mibs) which are distributed via the agents, and managers using
the SNMP protocol. The SNMP agent runs on a particular network device and
updates the MIB records so that they represent the near real-time state of the
host system. A SNMP manager queries network devices with SNMP agents for
access to particular elements of the MIB database.

2.7.1 Management Information Base

A Management Information Base (MIB) consists of text files that form a
database of information about a particular network system. This database uses
a hierarchical tree to define a name space of object identifiers. These identifiers
are implement via Abstract Syntax One, a standard notation to describe data
structures. Each node in the tree is identified by an integer or a string, for
example. the string CISCO-CONFIG-MAN-MIB or the sequence of integers
1.3.6.1.4.1.9.9.43.2

2.7.2 SNMP Agents and Managers

For this lab we will demonstrate how the different components of the SNMP
protocol interact and what types of information are found in the MIBs. There
is a freely available software package that implements the SNMP components
and protocol called Net-SNMP. It will be necessary to begin the SNMP agent
daemon on some of the workstations in your experiment. Then you will use
the snmpget,snmpgetnext, or snmpwalk tools from the Net-SNMP package to
request information from the agent. You can consider these tools the SNMP

4

manager components. There are five different messages defined in the SNMP
protocol which are used by the commands in the Net-SNMP package:

1. GET REQUEST is used to retrieve a piece of management information.

2. GET NEXT REQUEST is used iteratively to retrieve sequences of
management information.

3. GET RESPONSE is issued from an SNMP agent to a request message.

4. SET is used to make a change to a managed subsystem.

5. TRAP is used to report an alert or other asynchronous event about a
managed subsystem.

We are interested primarily in the Get-request and Get-next-request. These
are implemented in Net-SNMP as snmpget and snmpgetnext respectively.

3 Part 1 Tasks and Questions

Use the Schooner “GUI-Editor” you learned in Lab #1 to construct the topology
shown on the pre-lab page. Use the FC6-STD OSID for each node.

3.0.3 Adding RPMs to Nodes in Schooner

The testbed images are smaller installations of an OS and don’t contain a num-
ber of software packages that you might want to use in the lab by default. In
Schooner, you can load an image on a node, install a piece of software manually,
and then save the new image of your node with the software installed. You
can then use this image later or on a large number of nodes. But making new
images can be a slow process. Another way you can have your custom software
installed is to have the testbed do it for you.

RPM’s (RPM Package Manager) are used across many Linux distributions
for installing software. By giving directives to the testbed, it will install RPM’s
for you. For this experiment the correct RPM’s have already been downloaded,
you just need to add them to your experiment. If you select node0 in the GUI
and then select the Edit button for ’RPM Files’ in the properties window, a box
will appear. In the box, click the + sign which will add an entry. You can write
out the paths manually, but it’s easier to just pull down the path entry field. It
will show the rpms we have downloaded into /proj/cs638/rpms. Make an entry
for each of the RPMs in the below list, and then repeat for node1 and node2.

1. desktop-file-utils-0.10-7.i386.rpm

2. htmlview-4.0.0-3.fc6.noarch.rpm

3. redhat-menus-6.7.8-2.fc6.noarch.rpm

4. wireshark-0.99.6-1.fc6.i386.rpm

5

5. wireshark-gnome-0.99.6-1.fc6.i386.rpm

6. net-snmp-5.3.1-15.fc6.i386.rpm

7. net-snmp-libs-5.3.1-15.fc6.i386.rpm

8. net-snmp-utils-5.3.1-15.fc6.i386.rpm

9. xorg-x11-fonts-Type1-7.1-2.noarch.rpm

This method can be used to install many different software packages. HTTP,
NTP, and LDAP are a few common network services which you can easily install
with RPM’s. Now that your configuration is complete create and swapin your
experiment.

3.0.4 Configuring and starting the SNMP daemon

Once your experiment has been swapped in, you will have to configure and
manually start the daemon or SNMP agent that will run on the host. After
logging into one of your nodes run the command ’snmpconf’. This program will
allow you to read in the current default SNMPD configuration file in /etc/sn-
mpd/snmpd.conf, and then merge in changes. See if you can get through the
configuration. You need to make changes to the snmpd.conf file, Access Con-
trol, SNMPv1/SNMPv2c read-only, add a community ’public’ accessable from
localhost, with no restrictions on the OIDs it can read. Then you type, finished,
finised,quit, and save the file off. Take a look at the bottom of the file it should
have something like

com2sec notConfigUser default public
group notConfigGroup v1 notConfigUser
group notConfigGroup v2c notConfigUser
view systemview included .1.3.6.1.2.1.1
view systemview included .1.3.6.1.2.1.25.1.1
access notConfigGroup "" any noauth exact systemview none none

If you can’t get the config to work, there is a good config file at
/proj/cs638/snmpd.wail. Copy the config file to /etc/snmpd/snmpd.conf
overwriting the system default configuration, Then start the daemon with
’/etc/rc.d/init.d/snmpd start’.

3.1 Standard Networking Utilities

1. ping: check to see if connectivity between all of the workstations. Make
sure to use the correct addresses 198.133.225.0/24 are the control interfaces
and are not what you want to be using.

2. tcpdump: set up tcpdump on PC1 and run ping between PC1 and PC3,
describe the traffic generated by the ping. Specify a filter to view only
ICMP packets, record this filter in your lab notebook. Make sure that you
understand what tcpdump is reporting.

6

3. wireshark: run wireshark on PC1. Establish an SSH session between PC1
and PC3. Observe and record the traffic generated by SSH. Try to describe
what triggers packets that are transmitted in SSH.

4. arp: keep wireshark running and clear the arp table on PC1 and PC3.
Issue a ping from PC1 to PC3 and describe what you see in terms of
traffic.

5. ifconfig: change the last 8 bits of the IP addresses for eth1 on
PC1,PC2,PC3. When you have finished, use ping to ensure that all com-
puters can still communicate.

6. netstat: run some of the netstat commands on any one of the PCs to
familiarize yourself with the utility.

3.2 SNMP

Start the snmpd daemon on some of your PCs. Below are a few values available
via SNMP.

1. ipForwarding

2. sysName

3. sysLocation

4. ipRouteTable

5. tcpRtoAlgorithm

6. tcpConnState

Use the snmpget,snmpgetnext, and or the snmpwalk command to display the
values on one of the PCs (use localhost for PCs address). Use the man pages
for each of the commands to find more information about usage. Also, report
the numerical OID and full textual descriptor for the fields that are listed. Try
finding the same values on a different host, do they match?

4 Part 2: The Domain Name System

4.1 Overview

A DNS server is simply a machine that handles key-value pairs. The pairs are a
many to many relation. A user can query the server to find values, or users can
insert new key-value pairs. DNS servers typically are used to map the human
readable Internet addresses to corresponding IP addresses. For instance I can
issues a query to the DNS sever to lookup ”www.yahoo.com” and it will return
the IP address associated with that site.

7

By using a hierarchical structure and efficient caching, the number of DNS
servers needed in the Internet is kept reasonably low. The DNS specification
requires zones to be served by a minimum of two DNS servers for redundancy,
but this is by no means a maximum. The Computer Science Department at
UW-Madison, for example, uses five servers, load balancing routers, and off
site services rendered by another University. Large ISP’s and content providers
maintain large numbers of servers that are geographically distributed. The DNS
servers for a zone are responsible for keeping key-value pairs for all computers
inside of the zone.

A DNS server is also needed to handle address lookups for other computers
on a network. The operating systems on most computers do not know about
the global structure of DNS, these machines implement what as known as a
stub resolver. Applications that need the network ask the operating system
for the IP address of e.g., www.google.com. The local machine only knows
how to pass this request on to a small list of DNS servers it has configured
by a system administrator. These servers provide ’recursive’ DNS services to
the hosts. For example, your request for www.google.com would generate a
request from the local machine to the local DNS server, the server would then
query one of many root servers. The root server will respond by informing
the local DNS server who it should ask next. This process repeats until the
local DNS server contacts a DNS server that contains the record for the address
in question. The local DNS server would then respond to your machine with
the IP address for www.google.com. Servers that offer recursive services are
frequently separated from servers that contain real zone data. Servers that
contain authoritative information about a zone, are aptly called authoritative
DNS servers, and while you would think recursive DNS servers would be referred
to as recursive servers, which they sometimes are, because of their caching
abilities they are most commonly referred to as caching nameservers.

The domain name itself specifies the path of DNS servers to be queried, and
it is always read from the right to the left. A trailing ’.’ is added to the address,
which corresponds to the root servers. Looking up www.cs.wisc.edu would begin
with a lookup to the root server to find the DNS server for the ’edu.’ zone. The
root server would respond with the address of a DNS server for the edu. zone.
The local DNS server would then ask the edu. DNS server for the IP address of
the wisc.edu. DNS server. The local DNS server would then ask the wisc.edu.
DNS server for the IP address of the cs.wisc.edu. DNS server, and so on.

In reality things are a bit more complicated, but this general picture should
help you get started.

4.2 Setup

The experimental setup for this part of the lab requires several machines. You
can easily construct a larger network topology, five nodes on a simple LAN are
recommended. Using the Schooner “GUI Editor” from Lab #1, create your five
node topology shown in Figure 1. You’ll also need to do some configuration of
the nodes in the GUI. For each node, select FC6-STD as your OSID as shown

8

Figure 1: Network configuration for the DNS experiment.

in Figure 2. If you want some experience with another OS, feel free to use
FBSD62-STD for node3 and/or node4, the others have to be FC6-STD.

4.2.1 Setting IP Addresses Manually

The testbed software will automatically figure out which IP addresses to use
in your experiment, but their are times where you need to set an IP address
to a specific value. Later on we have some configuration files that require IP
addresses, and while dynamically generating these configurations from certain
testbed data files is possible, we’re not doing that here. In the GUI, click the
hexagon shape in the middle of the network link between node0 and the lan0
icons. In the properties window, expand the ’IP Addresses’ menu, fill in the
appropriate IP for node0, repeat this for each of the nodes.

node0 192.168.1.10
node1 192.168.1.11
node2 192.168.1.12
node3 192.168.1.13
node4 192.168.1.14

4.2.2 Adding RPMs

Use the same procedure as part one, but this time use the bind, bind-libs, and
bind-util rpms. Make an entry for each of these three RPMs, and then repeat
for node2 and node3.

9

Figure 2: Snapshot of OSID configuration window.

4.2.3 Adding TAR files to Nodes in Schooner

In addition to the RPM files, you can also direct the testbed to add a TAR
file to a node. A TAR archive is commonly used to store software, data, or
configuration files. For this part of the lab, we have already created default
configurations TAR files, you just need to tell the testbed which archive to
use. For each node, in the GUI select the node, and the edit button for ’TAR
Files’, add the appropriate file from /proj/cs638/DNS. When the experiment
is swapped in, it will untar the archive into the root directory, placing all our
default configuration in place.

4.2.4 Auto Start Scripts

After your experiment swaps in, you could log into each node and start the
name service, but the testbed software also provides a method for you to have
a script run at boot time. In the GUI, for node0, node1, node2 as the ’Startup”
property, type in ”sudo /etc/rc.d/init.d/named start”. This will start the name
service on boot. Think about the possibilities with this. You could script a
whole experiment, starting, running, and transferring data. Schooner actually
provides a capability to batch multiple runs of a scripted experiment. though
you won’t be using these capabilities anytime soon.

Your experiment should now be ready, so create it and swap it in.

4.3 DNS Experiment Configuration

In the real world the root zone and TLDs are served by different servers, but
for our experiment we will collapse our fake root zone, and TLD of org and
com into a single server. Node1 will be used to serve our zone book.org and
node2 will server desk.com. The diagram in Figure 3 shows our delegation tree.

10

Figure 3: DNS hierarchy used in part 2.

Node3 and Node4 will be used as workstations to test resolving names later in
the exercise.

4.3.1 Editing Configuration Files

The most common DNS server software today is BIND or Berkeley Internet
Name Daemon, which has a program binary called named. Configuration of
BIND is done through a series of files. The first file is named.conf, which is
commonly in the /etc directory. Take a look at our example named.conf from
node0, at the top of the file you will find the global options block.

options {
directory "/var/named/";
pid-file "/var/run/named/named.pid";
recursion no;

};

These options affect all zones served. The rest of the file is a series of zone
declarations. Here is our root zone declaration.

zone "." {
type master;
file "root";

};

This block declares the root zone, of type “master”, with a data or zone
file “root”. From the previous global options block, the directory statement
declares where the zone files are kept, so the root zone file is /var/named/root.
Take a look at the root zone file, at the top we find a block

11

. IN SOA dns. mail.dns. (
200710505 ; serial#
28800 ; refresh, seconds
7200 ; retry, seconds
604800 ; expire, seconds
86400) ; minimum, seconds

This is known as the SOA, you will find a number of different timing values
which are used for various time-to-live fields used by DNS caches. The first
number in the field though is the zone serial, which is used for exchanging the
zone files between master and backup slave servers. Get in the habit, every
time you make a change to the zone file increment the serial number. While
the serial number is just an integer, many people commonly use a date such as
¡4DigitYear¿¡2DigitMonth¿¡2DigitDay¿¡2DigitRevision¿.

Below the SOA you will start to see the zone records, the first of which will
be

. IN NS dns.root-server.org

NS records are used to delegate parts of the DNS name-space. You might
ask why does the root zone have to have a delegation record for itself? This is
another part of the master/slave configuration, so don’t worry about it for now.
Further down you will see the delegation for the book.org zone.

book.org NS dns.book.org.
dns.book.org A 192.168.2.2

The first record delegates responsibility for the book.org domain to the server
dns.book.org. This brings us to our first problem - how can you delegate the
responsibility to a server in book.org domain? You need the IP address of the
DNS server to communicate with it, but you can only get that IP from that
server. This is where the second line comes in. To solve this circular dependency,
A records for a delegated zones DNS servers are added to the higher zone, these
are called glue records.

Now take a look at some of the files on node1. The config file /etc/-
named.conf is very similar to the one on node0 but has zone declarations for
our additional zones. Look at the book.org file, you’ll find some A records, like
those you saw earlier.

hardcover.book.org IN A 192.168.2.2
IN MX 0 mail.book.org

scifi.book.org IN A 192.168.2.3
IN MX 0 virus-scanner-1.mail-security.com

Additionally, you see the MX records, an MX or mail exchanger records
specifies what machine will handle electronic mail for the machine. In this case,

12

hardcover has it’s mail handled by a machine mail.book.org, and scifi has it’s
mail directed to a totally separate domain. It is increasingly common place to
outsource network services to outside companies. If I have a small number of
machines, it’s not cost effective to run say my own mail servers. It is much
easier for me to pay a provider who can run a large service handling thousands
of small domains.

The zone files we have been looking at map names to IP addresses, and
are referred to as forward files. However, we can also do a reverse lookup to
map an IP address to a name. For diagnostic purposes this is very important,
and comes into play in a number of security scenarios. Instead of developing a
second system, or even a separate root for the reverse entries, we can use our
existing DNS setup. Reverse entries are mapped into the domain in-addr.arpa,
and use a different record type (PTR). For example:

10:53am reed ~ (1)% host www.google.com
www.google.com is an alias for www.l.google.com.
www.l.google.com has address 64.233.167.99
...
10:53am reed ~ (2)% host 64.233.167.99
99.167.233.64.in-addr.arpa domain name pointer py-in-f99.google.com.
10:53am reed ~ (5)% host -t PTR 99.167.233.64.in-addr.arpa
99.167.233.64.in-addr.arpa domain name pointer py-in-f99.google.com.

First, we get an address for www.google.com. Using the host command we
can ask host to do the reverse map, but the host program understands it’s getting
an IP address and knows how to change the name to the in-addr.arpa zone. We
can the host program directly to request a PTR record for 99.167.233.64.in-
addr.arpa, as is shown.

4.4 Tools, Utilities, Commands and Files

/etc/rc.d/init.d/named is the system script used to start and stop the DNS
server program. For example:

mblodget@node0 ~]$ sudo /etc/rc.d/init.d/named start
Starting named: [OK]
[mblodget@node0 ~]$ sudo /etc/rc.d/init.d/named stop
Stopping named: [OK]
[mblodget@node0 ~]$ sudo /etc/rc.d/init.d/named restart
Stopping named: [OK]
Starting named: [OK]

rndc reload is the name server control utility. Read the man page for other
commands beside reload. For example:

[mblodget@node0 ~]$ rndc reload
server reload successful

13

sudo named -u named -g -p 53 allows you to see any errors experienced
on named startup.

sudo tail -f /var/log/messages /var/log/messages is the file named logs
to - use it to watch for errors and troubleshoot named.

dig is the DNS lookup utility that shows details on a local host’s DNS
configuration. See the man page for dig.

host enables host name lookup using a built-in OS resolver.

5 Part 2 Tasks and Questions

• Test the name resolution of the current system (including reverse lookups)
e.g., using the dig command for hardcover.book.org, scifi.book.org and
chair.desk.com (should return 10.57.0.4, 10.57.0.8 and 172.16.0.12 respec-
tively). Using the dig command allows you to query a nameserver directly
and bypass the stub resolver that is builtin to the operating systems of
the localhost.

[blodge@node3 ~]$ dig @192.168.0.12 drawer.desk.com
....
;; QUESTION SECTION:
;drawer.desk.com. IN A

;; ANSWER SECTION:
drawer.desk.com. 259200 IN A 172.16.0.14
.....

• Change the IP address of one of the nodes and make the necessary changes
to DNS. Remember to update the serial and change both the forward and
reverse zone files

• Refer to http://www.linuxhomenetworking.com/linux-hn/dns-static.htm
to set up some canonical names.

• What would happen if the link running to node1 broke (take the interface
down)? How could you prevent this problem?

• What happens if you lookup ’hardcover’ (command: host hardcover) on
node3? You will find it broken, what changes would you need to make it
work? What changes would you have to make to have the command host
chair work correctly on node3? What happens with the output of host
hardcover after those changes?

• Which takes precedence DNS or the hosts file?

• Do you get errors if a name has two different A records? How about two
names pointing to the same IP? Why might someone want to do this?

14

	Overview and Objectives
	Part 1: Standard Networking Utilities
	Ping
	Tcpdump
	Wireshark, formerly known as Ethereal
	Ifconfig
	Netstat
	Address Resolution Protocol
	SNMP
	Management Information Base
	SNMP Agents and Managers

	Part 1 Tasks and Questions
	Adding RPMs to Nodes in Schooner
	Configuring and starting the SNMP daemon

	Standard Networking Utilities
	SNMP

	Part 2: The Domain Name System
	Overview
	Setup
	Setting IP Addresses Manually
	Adding RPMs
	Adding TAR files to Nodes in Schooner
	Auto Start Scripts

	DNS Experiment Configuration
	Editing Configuration Files

	Tools, Utilities, Commands and Files

	Part 2 Tasks and Questions

