
CS 638 Lab 6: Transport Control Protocol (TCP)

Joe Chabarek and Paul Barford
University of Wisconsin –Madison

jpchaba,pb@cs.wisc.edu

The transport layer of the network protocol stack
(layer 4) sits between applications (layers 5-7) and
the network (layer 3 and below). The most basic
capability that is enabled by transport is multiplex-
ing the network between multiple applications that
wish to communicate with remote hosts. Similar to
other layers of the network protocol stack, transport
protocols encapsulate packets with their own header
before passing them down to layer 3 and decapsulate
packets before passing them up to applications.

The most simple transport protocol is the User
Datagram Protocol (UDP). UDP provides a mul-
tiplexing/demultiplexing capability for applications
but not much more. Most significantly, UDP pro-
vides no guarantees for reliability, which is unac-
ceptable for applications like a file transfer, Web or
Email, in which people would very much like to get
complete files. For this and other reasons, the Trans-
port Control Protocol (TCP) is the most widely used
transport protocol in the Internet today. Over 70%
of the traffic on the Internet today is carried by TCP.

TCP is complicated, and there are actually many
different versions of the protocol. There are literally
thousands of academic research papers on TCP and
TCP variants, many IETF RFC’s on TCP, and en-
tire books written about TCP’s implementation and
its behavior. TCP includes many features such as bi-
directional connection management, ACK-based reli-
ability, receiver flow control, and congestion control,
all of which make it an attractive choice for a wide va-
riety of applications. An easy way to think of what
TCP does (beyond multiplexing/demultiplexing) is
that it governs how and when packets are trans-
mitted between a sending host and receiving host.
As such it has a very big influence on the transmis-
sion performance as measured by either throughput
(bytes transmitted over a specified time period) or
response time (elapssed time from transmission start
to transmission end). The flow of data between hosts
is determined by windows which dictate how many
packets can be in flight between sender and receiver
at any point in time.

1 Overview and Objectives

Unlike prior labs, the focus of lab #6 is is on
learning more about experimental tools and on ob-
serving the behavior of the various mechanisms that
are part of TCP. The reason for this is because in
moving from layer 3 to layer 4, we are moving away
from the network per se, and into end hosts. Further-
more, network administrators usually don’t spend a
lot of time messing around with TCP since there is
no programming or management interface to TCP
on end hosts. The exception is content providers
who may make tweaks in an attempt to get better
performance on large file transfers.

In terms of experimental tools, a focus of this
lab is on learning about traffic generation. Since
the transport layer is concerned with facilitating the
transmission of packets between two end hosts, hope-
fully, it is clear that we need tools for transmiting
data in order to observe how TCP behaves. On one
hand, we could simply have you generate traffic by
using an application like the Web, and then tracking
packet traffic generated by your browsing. However,
it would be difficult to have you do enough browsing
by hand to generate traffic sufficient to cause conges-
tion on even low bandwidth links, which is essential
in order to observe key aspects of TCP behavior.

Another tool that you will use in this lab is the
Click Modular Router. Click is a utility that enables
high performance personal computers to operate like
a network device. Click offers a simple programming
framework that you can implement many different
kinds of new functions on top of a high performance
packet processing system. This is a capability that
is extremely useful for lab experiments since com-
modity routers and switches don’t offer programming
APIs.

Wireshark will be used to observe the details of
TCP behavior. Since TCP governs the transmission
of packets by end hosts, the focus of the lab config-
urations will be to generate different kinds of traffic
that exercise different aspects of TCP’s algorithms.
In particular, you will be able to observe the details

1



of TCP connection setup and tear down, flow control,
reliability and congestion control. Before you pro-
ceed to the lab description, take a minute and think
about how you might configure the lab in order to
observe these chacteristics. We will experiment with
two different versions of TCP in this lab: TCP-Reno
and TCP-Vegas.

Finally, TCP is entirely implemented on end
hosts. This means that you can examine how TCP
is implemented (e.g., in open-source software), make
tweaks to existing implementations or even create
your own implementation. While we will not be do-
ing any TCP hacking in this lab, you may be inter-
ested in doing this at some point in the future.

Upon completion of the lab exercises below, stu-
dents will be able to:

• Understand the basic packet transmission behav-
ior of TCP.

• Distinguish the differences between TCP-Reno
and TCP-Vegas.

• Configure and operate simple traffic generators.

2 TCP Variants

As mentioned above, there are many differ-
ent variants of the Transmission Control Protocol
(TCP). In most cases, the primary differentiating
feature of a TCP variant is its congestion control
mechanism. The reason for this is that the con-
gestion control mechanism has a large impact on
performance (defined in terms of either throughput
or response time). Remember, the congestion con-
trol mechanism governs the size of CWND, which on
paths with congestion will almost always determine
the number of unacknowledged packets in flight (as
opposed to RWND which is likely to govern on un-
congested paths).

The two TCP variants that we are concerned with
in this lab are TCP Reno and TCP Vegas. TCP
Reno was one of the first of the Jacobson-based ver-
sions of TCP. Reno is considered an agressive ver-
sion of TCP since it is always probing for additional
available capacity until a loss event takes place, in
which case it backs off (multiplicative decrease) and
recovers the lost packets. The New-Reno and SACK
versions of TCP improved the ability to quickly re-
cover from losses of multiple packets, which is not
uncommon. Collectively, all of these variants of TCP
attempt to control congestion in the network.

An alternative approach is to attempt to avoid
congestion all together. The idea is that if there is
some signal that indicates that congestion is starting,

then adjust the sending rate to keep it from overload-
ing the path. So, the question is, how might a sender
infer congestion other than by simply packet loss,
which is what is used by TCP Reno? The answer
is that when a link begins to be overloaded, packet
will enqueue in the congested router’s output buffers.
The effect of this enqueuing is to lengthen the RTT
of data/ACK pairs (since packets now have to spend
time in the queue before being transmitted). The
direct implication of lengthened RTT values is a de-
crease in end to end throughput since fewer packets
will be sent over a given period of time. The basis
for the Vegas version of TCP is that if a decrease
in throughput is measured, then send rate should be
adjusted to stay just below the rate that led to the
decrease. This approach to managing congestion is
called congestion avoidance since it does not rely on
packet loss to adjust send rate.

2.1 TCP Reno

TCP Reno has all the required elements of a
reliable, connection oriented, full duplex protocol
which implements flow control and conjestion con-
trol. For flow control, a sliding window algorithm is
used to ensure that the sender does not overrun the
receiver. For conjestion control TCP Reno uses Ja-
cobson/Karls to compute the estimated round trip
time and the RTO. It also included slow start, ad-
ditive increase/multiplicative decrease and the fast
retransmit/fast recovery mechanisms for managing
CWND.

TCP Reno is the default TCP protocol variant
used in the FC6-STD image, so you don’t have to do
anything special to use Reno in your experiments.
You will, however, need a mechanism for generating
traffic that will then utilize the version of TCP Reno
running on the Schooner hosts. Note that traffic is
generated by applications (or in our case traffic gen-
eration utilities); those used in this lab are described
below.

2.2 TCP Vegas

Like Reno, TCP Vegas has all the required ele-
ments of a reliable, connection oriented, full duplex
protocol which implements flow control and conges-
tion management. However, instead of reacting to
congestion in an after-the-fact fashion like Reno (i.e.,
when loss takes place), Vegas attempts to avoid con-
gestion through careful measurement and manage-
ment of send rate. While the ideas behind Vegas are
interesting and certainly make sense, it can be the
case that Vegas is unsuccessful at avoiding conges-
tion and packet loss takes place. In this case, Vegas’

2



default behavior in terms of loss recovery and win-
dow management is identical to TCP Reno.

TCP Vegas along with a few other major TCP
variants are distributed with the linux kernel. Mod-
ern 2.6 kernels implement a modular framework
which makes changing from TCP Reno to TCP Ve-
gas is relatively painless. See the commands below on
how to find the current TCP algorithm in use and to
change beteen Reno and Vegas for your experiments.

There are a number of differences between Reno
and Vegas (See PreLab readings) that you will be
measuring. NOTE: It may be easier to complete all
of the tasks/experiments with Reno described below,
then change to Vegas to conduct the remainder of the
tasks/experiments.

sh-3.1# sysctl net.ipv4.tcp_congestion_control

net.ipv4.tcp_congestion_control = reno

sh-3.1# sysctl -w net.ipv4.tcp_congestion_control=vegas

net.ipv4.tcp_congestion_control = vegas

sh-3.1# sysctl net.ipv4.tcp_congestion_control

net.ipv4.tcp_congestion_control = vegas

sh-3.1# sysctl -w net.ipv4.tcp_congestion_control=reno

net.ipv4.tcp_congestion_control = reno

3 Experimental Tools

In this section, brief overviews of the tools that
will be used in this lab are provided. More details
can be found in the readings specified in the Pre Lab.

3.1 Measuring and Observing Packet
Traffic

In a laboratory test environment, one of the ma-
jor goals while running experiments is to observe
traffic without disturbing the performance of the
system. To this end we describe a standard tech-
nique for measuring packet traffic. Remember, how-
ever, that another critical task in conducting exper-
iments with network traffic is to identify useful van-
tage points in the network i.e., where you should
place your instrumentation for measuring traffic.

Wireshark, a tool that you have used in prior ex-
periments, is one of a number of applications that
uses a system library named libpcap to capture
packets. The library efficiently creates copies pack-
ets as they are received from the network card (set
in promiscuous mode) and sends them to user pro-
grams. Perhaps the most well know application that
uses libpcap as a mechanism for creating a stream of
packet copies is Tcpdump (which is utility available
on most systems).

Wireshark is a popular tool because of its graph-
ical user interface and easy to use features. For our
exercises, we will be using a graphing module to ob-
serve the sequences of packets generated by TCP
variants. To use the graphing module, find the “TCP
Stream Graph” entry in the “Statistics” menu of the

Wireshark GUI. Try each of the graph types and
think about what they are showing you. You can
also use a Wireshark display filter to limit the traffic
you are graphing. You are encouraged to play around
with the Wireshark GUI to gain familiarity with this
observation technique. Be sure to ask questions early
if you need help.

3.2 Generating Traffic

In order to examine the behavior of the TCP
Reno and Vegas protocols we must be able to gen-
erate packet traffic. This is normally done by users
accessing application such as Email or the Web that
result in files being transfered between a client and a
server. However, having real users accessing real ap-
plications in lab experiments is cumbersome and does
not lend itself to repeatability or to experiments that
demand large traffic loads (e.g., for experiments on
how TCP behaves under congested conditions) since
hundreds or thousands of users who be required!

You will be using two tools for generating traf-
fic in this lab. The first is ttcp, which is a simple
tool that generates a single TCP or UDP stream.
We will use ttcp with Wireshark to gather statistics
about different implementations of TCP. However,
ttcp does not address our need to recreate traffic
that is a composite of perhaps thousands of users.
For this purpose, the Harpoon traffic generator will
be used. Harpoon is a sophisitcated tool which we
will use in our experiments to generate a sufficient
amount of representative “background” traffic that
to create congestion on a link.

3.2.1 ttcp

Ttcp is a simple tool that starts a TCP or UDP flow
between two systems and reports some basic statis-
tics about the flow. A few other features are also
available in the utility – see the man page for these
additional options. To initiate a transfer, you need a
receiver and a transmitter. The receiever is started
on one machine with ttcp -s -r on the transmit-
ting machine the command is ttcp -s -t IPAddress.
NOTE: use this utility to generate the streams that
you will visualize in Wireshark for your experiments.

3.2.2 Harpoon

Harpoon is a sophisticated tool which can mimic the
type and intensity of traffic on a network. At its
core, Harpoon is a tool that runs on a two systems
- clients and servers. The clients determine how and
when to request file transfers. The servers send data
to the clients based on what has been requested. An

3



easy way to think about this is as an automated Web
environment. The important aspects of Harpoon are
that the client request streams can be automatically
configured to generate traffic that it identical to what
has been observed in an actual network.

The Harpoon software distribution comes with an
extensive user manual that describes installation and
configuration procedures. A link to this manual is
provided in the Pre-Lab. Harpoon is available on
the standard FC6-STD Operating System image that
you will use for this lab. So, you will only need to
familiarize yourself with how to configure and run
Harpoon in your experiments.

NOTE: In the interest of time, Harpoon
will not be used for the required tasks of this
lab. However, you are welcome and encour-
aged to install it and use it in your experi-
ments if you are interested.

3.3 Simulating Adverse Network Condi-
tions

The Initial experiments that you will run will pri-
marily be concerned with observing TCP in ideal
conditions i.e., with no congestion on the path be-
tween clients and servers. However, we are also in-
terested in how the two different variants of TCP
behave when a link is congested and packet loss oc-
curs. Normally, to create congestion, the aggregate
demand on a set of input links must exceed the ca-
pacity of an output link. For example, if you are
using a router in an experiment with 1 Gbps links,
then the input on some set of input links (where the
set must be at least size = 2), must be greater than 1
Gbps. In real life, it takes a lot of clients to generate
1 Gbps of traffic. For example, the average traffic
rates for the entire UW-Madison campus is usually
only several hundred Mbps! The good news is that
we have several options in Schooner in terms of how
we experiment with congestion.

Using Schooner, we actually have the ability to
specify different link characteristics. Three charac-
teristics that we are particularyly interested in are
bandwidth, propagation delay and packet loss rate.
There is a popular BSD-based operating system util-
ity called dummynet, which is used to augment traffic
flows with different characteristics. By specifying a
bandwidth, dummynet can enable an output link that
has 1 Gbps native capacity to behave as if it has e.g.,
1 Mbps. The implication is that with dummynet, we
can create a test environment in which it is much
easier to create congested conditions. Alternatively,
we can use dummynet to simply specify a loss rate or
RTT on a link. In this case, we need not even bother
with creating an input load that exceeds an output

link’s capacity in order to get a sending host to react
to congestion. However, this approach is not nearly
as realistic and will result in behavior that is not
very similar to what would be seen in real networks.
dummynet is available by default in Schooner through
the standard network configuration GUI, which by
clicking on a link, enables you to specify link charac-
teristics including bandwidth capacity and loss rate.

When you set any sort of traffic shaping com-
ponent (delay, loss, possibly bandwitdh) Schooner
interposes a hidden node on the link running dum-
mynet. At experiment swapin the traffic shaping
node will use the parameters in your NS file. Dur-
ing experimentation you can use the “Modify Traffic
Shaping” link on the experiment webpage which will
allow you to dynamically change the shaping param-
eters of your experiment.

3.4 The CLICK Modular Router

CLICK is a utility and programming framework
that enables you to configure a PC to behave as a
high performance packet processing system. The ba-
sic primitive in Click is called an element. A set of
elements can be composed in Click to create a packet
processing device. Many different kinds of devices
can be created including routers, switches, firewalls,
intrusion detection systems, etc. Click is easy to use
and has a growing library of preconfigured elements.

A Click of elements are composed in a configu-
ration file that is read by the Click engine. There
will be three different configurations used in the ex-
periments that enable you to create different condi-
tions for your experiments. The first configuration
is a standard router with drop tail queues. The sec-
ond configuration implements a RED queue. The
third configuration delays each packet for 50us with
a drop tail queue. In each configuration file you will
need to change the strings PC1 IP, PC2 IP, PC3 IP,
... PC8 IP, MAC1, MAC2, MAC3, MAC4, MAC5,
MAC6, MAC7, MAC8 to the appropriate values.

NOTE: In the interest of time, Click will
not be used for the required tasks of this lab.
However, you are welcome and encouraged to
install it and use it in your experiments if you
are interested.

4 Tasks

Create Topology #1 described in the Pre Lab and
determine where to gather measurements for your
tests. NOTE: In the interest of time, topology
#2 will NOT be used in this lab. This topology
will be used in all of the experiments described below.
Load the standard FC6-STD disk image and include

4



the RPM for ttcp along with the list of RPMs you
have been using for WiresharkNOTE: A lot of data
will be generated in this lab so make sure that you
have a method for organizing the data before you
actually gather it so you don’t mix up traces from
different experiments.

4.1 Baseline Performance Characteris-
tics

We will begin by examining throughput and
RTT’s, and taking a look at sequence numbers in
packets to get an idea of how TCP Reno and TCP
Vegas each perform. Transfer three different sized
files of your own choosing (from about 100Bytes to
1MB) with ttcp from PC1 to PC2, and generate
graphs for the statistics that we listed above. Wire-
shark should enable you to do this. Report the re-
sults of the experiments in your lab notebook. De-
tailed tasks include:

1. Using TCP Reno, ttcp and Wireshark, trans-
fer each of the three files from PC1 to PC2
and record the sequence number versus time, for
throughput, and RTT for the connection.

2. Using TCP Vegas, ttcp and Wireshark, trans-
fer each of the three files (same sizes as before)
from PC1 to PC2 and record the sequence num-
ber versus time, throughput, and RTT for the
connection.

These measurements and statistics will serve as a
baseline for performance in an uncongested environ-
ment.

5 Performance in Congested Condi-
tions

Next, run a set of tests using the same file sizes
as above, this time using Schooner to specify a loss
rate and or a propagation delays on the link between
sender and receiver. Report of each experiment in
your lab notebook. Detailed tasks include:

1. Using TCP Reno, ttcp and Wireshark, transfer
each of the three files from PC1 to PC2 config-
ured with a loss probability of 0.1 on the link,
and record the sequence number versus time,
throughput, and RTT for the connection.

2. Using TCP Reno, ttcp and Wireshark, transfer
each of the three files from PC1 to PC2 config-
ured with a loss probability of 0.1 and a RTT de-
lay of 30ms on the link, and record the sequence
number versus time, throughput, and RTT for
the connection.

3. Using TCP Vegas, ttcp and Wireshark, transfer
each of the three files from PC1 to PC2 config-
ured with a loss probability of 0.1 on the link,
and record the sequence number versus time,
throughput, and RTT for the connection.

4. Using TCP Vegas, ttcp and Wireshark, transfer
each of the three files from PC1 to PC2 config-
ured with a loss probability of 0.1 and a RTT de-
lay of 30ms on the link, and record the sequence
number versus time, throughput, and RTT for
the connection.

5


	Overview and Objectives
	TCP Variants
	TCP Reno
	TCP Vegas

	Experimental Tools
	Measuring and Observing Packet Traffic
	Generating Traffic
	ttcp
	Harpoon

	Simulating Adverse Network Conditions
	The CLICK Modular Router

	Tasks
	Baseline Performance Characteristics

	Performance in Congested Conditions

