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ABSTRACT
Thorough test and evaluation of new software-defined network (SDN)-
based applications and configurations present many challenges. Ex-
amples of these challenges include scaling to large networks, accu-
racy, and efficiency in evaluation along with the ability to easily
transition between prototype and test environments. Current meth-
ods for test and evaluation include new programming languages
and frameworks, debugging and static analysis techniques, and VM-
and container-based emulation tools.

In this paper we describe a simulation-based tool called fs-sdn
that complements and expands upon these existing approaches. Our
work is designed to address the problem of prototyping and eval-
uating new SDN-based applications accurately, at large scale, and
in a way that enables easy translation to real controller platforms
like POX and NOX. We describe the design, implementation and
use of fs-sdn, and demonstrate its capability by carrying out a se-
ries of experiments using fs-sdn and the Mininet platform in nearly
identical configurations. We show that the measurements derived
from fs-sdn are accurate compared with Mininet, but offer signifi-
cant speed and scalability advantages.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management; I.6.3 [Simulation
and Modeling]: Applications

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Network flows; OpenFlow; Simulation; Software-Defined Networks

1. INTRODUCTION
Over the past several years, software defined networking (SDN)

has emerged as a compelling paradigm for developing and deploy-
ing new network capabilities and services. Centralizing the net-
work control plane—the key idea behind SDN—has led to inno-
vative approaches to traffic engineering, reducing network energy
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consumption, and data center network management, e.g., [6, 18].
As SDN applications and configurations continue to grow in scale
and complexity, a primary challenge is how to develop and test new
designs so that they behave as expected when deployed in live set-
tings and at scale.

The objective of our work is to develop new capabilities for test
and evaluation that complement current tools. Our work focuses
on a portion of the design space that we believe is not well served.
In particular, we seek to develop a new capability for prototyping
and testing SDN applications that is efficient, scalable, realistic and
enables a relatively seamless transition to practice.

Tools for developing and testing SDN applications have greatly
improved recently, but each has certain critical limitations. For ex-
ample, Mininet [16] has significantly advanced the state-of-the art
for developing and testing new controller applications. It is already
seeing wide use, as it offers good realism and seamless transition
from development to deployment, but as we show in Section 5, it
does not yet scale to large networks. Other researchers have used
testbed environments for development and evaluation, e.g. [5, 14].
These settings certainly offer a high degree of realism, but they also
have scaling problems and are typically not available to a broad
slice of the research community, thus making replication difficult.
To evaluate large-scale designs, other researchers have turned to
developing custom fluid-flow simulators, e.g., in [6, 12, 27, 30], or
extending existing packet-level simulators [4, 22]. While the fluid-
flow simulators scale well, by design they ignore many important
network characteristics, and are often “one-off” implementations,
which complicates sharing and scientific replication. Furthermore,
packet-level simulators generally do not scale well, and the devel-
opment environment often does not facilitate transition to a “real”
controller platform.

In this paper, we describe a simulation-based tool called fs-sdn1

that is designed to facilitate prototyping and evaluating new SDN
applications. fs-sdn is based on the fs [29] simulation platform that
was developed for realistic and scalable test and evaluation in stan-
dard networks. fs-sdn balances realism with scaling and perfor-
mance by virtue of its core abstraction, which captures details about
network flows while remaining at a relatively high conceptual level.

fs-sdn significantly extends the underlying fs simulation engine
by seamlessly incorporating the POX [3] OpenFlow controller frame-
work and API, and switch components that can be controlled and
configured through the OpenFlow control protocol. fs-sdn is de-
signed to facilitate controller application prototyping and develop-
ment by making it easy to transport implementations to POX and
similarly-designed controller platforms, thus creating a straightfor-

1Source code for fs-sdn is available at https://www.github.
com/jsommers/fs.



ward path to “real” implementation. fs-sdn is easy to use and it runs
on any system on which Python can run.

We demonstrate the capabilities of fs-sdn by running nearly iden-
tical network scenarios in both fs-sdn and Mininet. We compare
traffic measurements and performance and scalability aspects of
each platform. By virtue of its implementation, traces generated
from Mininet are highly realistic and thus a good benchmark for fs-
sdn. One of the key results of our tests is that there is a close corre-
spondence between the traffic characteristics extracted from traces
generated by each platform in modest configurations. This gives us
confidence in the realism of traces generated by fs-sdn. The second
key result is that simulations in fs-sdn run much more quickly and
robustly than Mininet. This demonstrates fs-sdn’s performance and
scalability capabilities.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss the context and background of our work, and
efforts related to ours. We describe the details of the design and
implementation of fs-sdn in Section 3. In Section 4 we describe the
setup for experiments to evaluate the accuracy and performance of
fs-sdn, the results of which are presented in Section 5. We conclude
and discuss future work in Section 6.

2. BACKGROUND
In this section we provide an overview of the fs flow-level simu-

lator and describe prior studies that influence and inform the design
and implementation of fs-sdn.

2.1 fs overview
fs is a Python-based tool developed by two of the co-authors and

others for generating network flow records and interface counters
à la SNMP [29]. Although it was not primarily designed for the
purpose of simulating network activity, it uses discrete-event sim-
ulation techniques for synthesizing the network measurements that
it produces. We illustrated in earlier work that fs not only generates
measurements extremely fast compared with identical setups in ns-
2 [25], but that the measurements it produces are accurate down to
the timescale of 1 second. TCP traffic generation capabilities based
on Harpoon [28] (which is in turn, based on SURGE [7]) are built
into fs. It further leverages existing TCP throughput models (i.e.,
Mathis et al. [24] and Cardwell et al. [11]) to simulate individual
TCP flows. More generally, fs includes the capability to generate
a broad range of simulated traffic conditions, which can be eas-
ily configured using a declarative specification based either on the
Graphviz DOT language [9] or in a JSON format.

Most critically, the key network abstraction it operates on is not
the packet, but a higher-level notion called a flowlet. A flowlet
refers to the volume of a flow emitted over a given time period, e.g.,
100 milliseconds, which may be 1 or more packets. By raising the
level of abstraction and thus the entity around which most simulator
events revolve, fs achieves much higher speed and efficiency than
existing packet-level simulators, like ns-2 [25] and ns-3 [4]. fs’s
better scaling properties are particularly relevant to this work, since
our longer-term goal is to scale to the size of a large, modern data
center.

2.2 Related work
Our efforts are related to the Mininet system [16,23] in the sense

that Mininet is also a prototyping and testing platform well-suited
for SDN applications. Mininet is based on using lightweight OS
containers to emulate hosts and switches in a network. As such,
it has much better scaling properties than other systems based on
using “full-blown” VMs, e.g., [2]. As we show in later sections, fs-
sdn offers better scaling and speed for testing and developing SDN

applications, and complements the advantages of realism available
with Mininet.

Our work is also related to recent efforts to improve the state of
the art in debugging and testing the correctness of SDN applica-
tions. Handigol et al. describe a gdb-like debugger for OpenFlow-
based networks in [17]. Their system allows users to obtain in-
formation analogous to a stack trace from the network, and to per-
form other tracing tasks. In a different vein, several research groups
have developed various methods for statically analyzing OpenFlow
rules in order to identify traffic loops, blackholes, and other prob-
lems [10, 20, 21]. Although fs-sdn does not currently support dy-
namic or static analysis of rules, it offers a controller development
setting similar to that of an emulated or live network, but in a highly
controlled context. Lastly, another thread of research has focused
on raising the level of abstraction at the programming level, thereby
making SDN-based application development easier. Examples of
these efforts include Frenetic [13], Nettle [31], Procera [32], and
Pyretic [26].

3. SYSTEM DESIGN
The key design goals for fs-sdn are as follows:

• Generate measurements that are accurate, in the sense that
they are similar to what would be collected in a real or accu-
rately emulated network setting;

• Scale to large networks; and

• Provide an API that enables controller applications to be eas-
ily ported to other platforms like POX [3], NOX [15], and
Floodlight [1].

The accuracy goal is clearly important. fs-sdn can generate SNMP-
like counter byte/packet/flow measurements at configurable inter-
vals, as well as flow records. In our prior work [29], we demon-
strated that the original version of fs produces accurate measure-
ments compared with those generated in a live network setting and
in a comparable simulation setting. It must, of course, continue
to exhibit high accuracy in a simulated OpenFlow/SDN network
setting.

An equally important goal is for fs-sdn to exhibit good scaling
properties. Our goal is for it to be able to scale to networks of
hundreds, if not (many) thousands of switches and hosts. As dis-
cussed in Section 2, a central design decision that affects how well
fs-sdn can scale is that it does not attempt to model packet-level
interactions, but rather operates on a higher-level abstraction called
a flowlet. In our current implementation, fs-sdn can scale well to
hundreds of switches and hosts, depending on the traffic configu-
ration. We discuss our plans for improving scalability further in
Section 6.

Currently, one of the most widely used techniques for perform-
ing large-scale evaluations of new controller-based algorithms is by
developing a custom fluid-flow simulator, e.g., as in [6, 12, 27, 30].
These have typically been designed to address large-scale data cen-
ter experiments, yet because of limitations in these types of simula-
tors, the profile of traffic generated cannot be easily made to match
observed characteristics of data center flows [8,19]. Advantages of
fs-sdn are that it is a more general and thus reusable platform, and
that it not only scales well, but it can easily accommodate measured
flow characteristics to drive its traffic generation.

In an effort to make using fs-sdn relatively straightforward and to
facilitate cross-environment development, controller components
developed for the POX [3] platform can be used directly in fs-
sdn. Specifically, controller code developed for fs-sdn can be trans-
ported without modification for use in POX. The APIs available in



POX are similar to those in NOX and other platforms, and represent
a class of controller APIs that are familiar to many SDN develop-
ers. As a result of leveraging the existing POX APIs and libraries,
fs-sdn enables developers and experimenters to prototype, test, and
debug an application in simulation, then directly run the same code
in other environments.

In terms of implementation, fs-sdn and POX are both written
in Python, which makes use of POX APIs fairly straightforward.
They key challenges to integrating POX are that there are depen-
dencies that rely on some notion of wall-clock time, and that con-
nections between the controller and OpenFlow switches use net-
working APIs (e.g., the sockets API) to transmit and receive con-
trol messages. Moreover, fs-sdn operates on flowlets, which do not
include many low-level details included in standard network pack-
ets, and which are important to OpenFlow in general and POX in
particular.

To address the timing and network dependencies in POX, we do
two things in fs-sdn before OpenFlow switch or controller elements
are created in simulation. First, we modify the underlying Python
time module so that requests for the current time return the cur-
rent fs-sdn simulation time, rather than wall-clock time. fs-sdn has
no notion of wall-clock time, and there were a number of places
in POX where the current system time is accessed. Rather than
modify POX code, we take advantage of Python features to mon-
keypatch2 calls to time.time.

To handle network-related dependencies, we modify at runtime
a class in POX that is used to encapsulate and abstract an individ-
ual connection from the controller to a switch. The original class
handled low-level network send and recv; the new class instead
uses the fs-sdn API to deliver and receive messages.

We also added new node-level capabilities in fs-sdn to model an
OpenFlow switch and OpenFlow controller. The new nodes each
build on generic fs-sdn node capabilities, and add code to bridge
the fs-sdn and OpenFlow worlds. The new switch node uses many
built-in POX capabilities (including the software switch code), and
in addition to delegating calls to POX, also performs translation be-
tween fs-sdn and POX data types. The new controller node also
performs delegation to POX, including simulating the arrival of
new OpenFlow control messages from a switch via the (overrid-
den) connection class.

There are two key data types that must be translated between fs-
sdn and POX: flowlets arriving at switches must be converted to
a packet representation prior to handling by POX API calls, and
packets emitted by POX library calls must be translated to a flowlet
representation in order to be properly handled within fs-sdn. For
arriving dataplane flowlets that are translated to packets, we also
cache the original flowlet with the packet object. The reason is that
once a forwarding decision is made (either through a match with the
local switch flow table, or by the controller), the original flowlet can
be forwarded, obviating the need for a second translation. We take
a similar approach with packet to flowlet translations, specifically
with packets that are emitted by the controller such as LLDP (link-
layer discovery protocol) frames.

As part of our modifications to fs-sdn, we also added basic no-
tions of MAC addresses and ARP to the new switch class. In our
current implementation, some additional work is yet to be done
with respect to translation of all packet headers, e.g., MPLS shim
headers, Ethernet frames besides LLDP and ARP, etc. We intend
to make fs-sdn’s datatype translations as complete as possible, to
ensure no loss of information when translating between the two
environments. Lastly, we have as yet only tested a fairly narrow

2http://en.wikipedia.org/wiki/Monkey_patch

range of POX controller applications. While the built-in hub, layer
2 learning switch, and topology discovery components work “out
of the box”, we cannot yet not claim a completely transparent envi-
ronment for executing POX controller modules.

4. EVALUATION METHODOLOGY
The primary goals of our experiments are to compare the accu-

racy of fs-sdn versus experiments carried out in a non-simulation
environment, and to evaluate the performance and scalability of fs-
sdn. Our basic approach is to set up a series of identical topological
and traffic scenarios in both fs-sdn and Mininet [16].

We consider fs-sdn in comparison with Mininet for a few rea-
sons. First, Mininet is currently one of the best and most accessi-
ble platforms for carrying out SDN-based experiments. Second, it
offers a realistic setting for carrying out experiments, so it is rea-
sonable to treat its measurement results as a basis for comparison
with fs-sdn. Third, although use of Mininet has many benefits, it
does have some limitations, as pointed out on the Mininet wiki it-
self 3. Two particular restrictions are that switching capacity is
limited to whatever the underlying host system can support, and ex-
periments cannot be run faster than real-time. These issues are not
particularly surprising, and they are also not inherent limitations of
Mininet. They do, however, make certain types of experiments cur-
rently impractical. It is important to note that our motivation for
comparing with Mininet is not to point out these limitations, but
rather to highlight the particular strengths of fs-sdn, and how it can
provide a complementary platform for prototyping and evaluating
SDN-based applications.

For our experiments, we created four topology sizes in a linear
configuration and used a range of traffic profiles. A linear topology
was chosen for simplicity, and in order to ensure that all switches
are well-exercised. The lengths of the linear chain of switches we
used were 1 (tiny), 10 (small), 50 (medium), and 100 (large). We
configured the link between each switch with a delay of 5 millisec-
onds. For each topology, we used constant bit-rate (CBR) UDP
traffic at two different loads (10 Mb/s and 100 Mb/s), and heavy-
tailed TCP traffic generated using Harpoon [28] at two different
loads (average of 5 Mb/s and average of 25 Mb/s). In Mininet,
we generated the UDP CBR traffic using iperf. Each experiment
was run for 900 seconds. All experiments (both in Mininet and
fs-sdn) were run using an 8-core 2.4 GHz Intel Xeon E5645-based
(Nehalem) system with 12 GB RAM. It was installed with Ubuntu
12.04.2 and a Linux 3.2.0-39 kernel.

To evaluate the accuracy of fs-sdn, we compared byte, packet,
and flow counts over 1 second intervals from each platform. fs-
sdn can directly export these measurements if configured to do so.
In Mininet, we used the CAIDA Coral Reef toolset 4 to collect
these measurements. We collected traffic using Coral Reef at the
first switch in the linear topology for each experiment5. We also
measured CPU and memory utilization on the host system on which
we ran our experiments, and measured the wall-clock experiment
duration for fs-sdn.

Lastly, we note that all fs-sdn experiments were run using the
PyPy Python interpreter (which includes a just-in-time compiler),
version 2.0 beta 6. Furthermore, in all fs-sdn experiments, we used
3https://github.com/mininet/mininet/
wiki/Introduction-to-Mininet#
what-are-mininets-limitations
4http://www.caida.org/tools/measurement/
coralreef/
5Traffic measurements collected at different switches in the topol-
ogy gave qualitatively similar results.
6http://pypy.org



a simple controller application that computes shortest paths and in-
stalls the appropriate OpenFlow rules on demand from switches.

5. RESULTS
In this section, we evaluate the accuracy of fs-sdn, as well as its

scaling and speed properties.

5.1 Accuracy and Scaling
We first compare traffic volumes forwarded in each of fs-sdn and

Mininet when subjecting each system to different types of traffic
and at different loads.

Figure 1 represents the cumulative distribution functions (CDFs)
of byte counts (in thousands of bytes) over 1 second bins with iperf
generating UDP CBR traffic. The analysis was done with two dif-
ferent rates, viz., 10 Mb/s (low load) and 100 Mb/s (high load).
fs-sdn shows a consistent performance across various topologies
and rate configurations, but the accuracy of Mininet degrades both
with the increase in load from 10 Mb/s to 100 Mb/s, and with an
increase in the size of the emulated network. These results illus-
trate the limits in the Mininet’s operating envelope, and highlight
fs-sdn’s utility as a more scalable and accurate platform to comple-
ment the advantages of Mininet. Results from additional topology
sizes using UDP CBR traffic are omitted but are consistent with
plots shown.

Figure 2 shows cumulative distribution functions (CDFs) of byte
volumes (in thousands) produced over 1 second bins using the Har-
poon traffic generator. The analysis was done at two different av-
erage traffic rates, 5 Mb/s and 25 Mb/s average. Although the Har-
poon traffic exhibits burstiness due to the distribution of file sizes,
interconnection times and the closed-loop nature of TCP, we ob-
serve that for the two smaller topologies (1- and 10-switch) and low
traffic load, fs-sdn and Mininet exhibit similar results. As the num-
ber of switches increases or the traffic load increases, the Mininet
results become inaccurate. From observing CPU utilization during
Mininet experiments, it is clear that the system switching capacity
is saturated. Moreover, it is interesting to observe the significantly
more intense effect on system performance that Harpoon has versus
using the simplistic UDP CBR traffic source. For the larger 100-
switch topology, the kernel Open vSwitch daemon crashed, and we
were unable to complete those experiments. We note that in addi-
tion to byte count measurements at low loads and small topologies,
flow and packet count measurements are consistent between fs-sdn
and Mininet.

These results suggest that measurements produced by fs-sdn at
aggregation of 1 second are statistically indistinguishable from Mininet
for small topologies with low traffic volumes but for large topolo-
gies and traffic volumes fs-sdn surely provides an advantage over
platforms like Mininet.

5.2 Speed
Table 1 shows the simulation time for carrying out various ex-

periments using fs-sdn. Recall that each experiment is designed to
take 900 seconds, thus all Mininet experiments took 900 seconds
to complete. While the speedup achieved by fs-sdn is machine-
dependent, on the particular machine configuration that we used
for our experimentation it can be concluded that fs-sdn offers a sig-
nificant run-time advantage. For a network of 100 nodes with high
load, fs-sdn shows speedup by a factor of 11.8 when CBR traffic is
used and by a factor of 2.7 when Harpoon is used.

Table 1: Scenario execution times for fs-sdn in seconds. The
simulated experiment length is 900 seconds in each case.

UDP CBR
Load Tiny Small Medium Large
Low 6 8 33 72
High 4 8 31 76

Harpoon
Load Tiny Small Medium Large
Low 16 33 104 193
High 30 62 194 337

6. SUMMARY, CONCLUSIONS, AND FUTURE
WORK

In this paper we describe fs-sdn, a scalable and accurate simulation-
based tool for prototyping and evaluating new SDN-based applica-
tions. fs-sdn enables direct use of OpenFlow controller components
developed using the POX controller API, enabling researchers and
developers to seamlessly move between simulation, emulation, and
a live network deployments. As a result, we argue that fs-sdn lowers
the barrier to experimentation with and testing of new OpenFlow
controller applications.

We evaluate fs-sdn’s accuracy, scalability, and speed by setting
up fs-sdn and the popular Mininet platform with a series of identical
network and traffic configurations, and comparing network traffic
and system-level measurements collected from each. We find that
in settings with relatively low traffic volumes and small topologies,
network measurements collected in Mininet and fs-sdn are nearly
identical, but that measurements collected in Mininet become dis-
torted in large topologies, and under more intense traffic conditions.
We conclude that while Mininet offers good facilities for develop-
ing and testing SDN-based applications in a realistic setting, fs-sdn
offers advantages of being able to accurately test and prototype new
applications at much larger scale and greater speeds. We contend
that fs-sdn offers a compelling complement to existing tools like
Mininet for prototyping and evaluating new SDN applications.

In future work, there are several directions we intend to pursue to
improve fs-sdn. First, although we have tested fs-sdn with network
topologies in the hundreds of nodes, we aim to scale it to network
topologies comparable to the size of a modern data center. We are
currently investigating ways to parallelize fs-sdn, in order to vastly
improve its scalability.

Lastly, we envision a key use case for fs-sdn to be in initial pro-
totyping and debugging of SDN applications. Currently the debug-
ging capabilities in fs-sdn include the ability to control log message
generation, including logs of OpenFlow control messages. In the
future, we intend to implement additional explicit debugging and
tracing capabilities in fs-sdn to better support and facilitate the ini-
tial stages of development and evaluation of new SDN applications.
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Figure 1: Bytes forwarded per 1 second intervals (in thousands) in Mininet and fs-sdn using UDP CBR traffic. Results shown for the
small topology (top) and large topology (bottom) using low traffic load (left) and high traffic load (right).
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