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On the Performance of Round Trip Time Network
Tomography

Yolanda Tsang, Mehmet Yildiz, Paul Barford, Robert Nowak.

Abstract—Network tomography is an appealing method for active mea-
surement of link level characteristics such as delay and loss on end-to-end
paths. Most network tomography techniques developed to date are based
on one-waymeasurements requiring collaboration from both sending and
receiving hosts which severely limits the scope of the paths over which these
techniques can be used. We extend our previous work onNetwork Radar, a
new tomographic inference method based on round trip time (RTT) mea-
surements from TCP SYN/SYN-ACK packets. In this paper, our contribu-
tions are three-folded. (1) We extend our analytic framework for estimat-
ing delay variance on the shared network segment using Network Radar to
include confidence estimates which enable measurement accuracy to be as-
sessed - an important consideration for practical deployment. (2) We eval-
uate Network Radar in a series of experiments conducted in a controlled
laboratory environment. These tests explore the boundaries of effective-
ness of our RTT-based method, and show that it works well over a wide
range of traffic conditions. (3) We evaluate Network Radar in a series of
tests conducted in the wide area Internet. These tests show that RTT-based
delay variance estimates can be used effectively to identify most likely net-
work topology - a natural and verifyable application for RTT tomography.
The performance results in this paper demonstrate that Network Radar can
now be used for both research and operational purposes.

I. I NTRODUCTION
Researchers interested in measuring the behavioral and struc-

tural characteristics of the Internet face many challenges, not the
least of which is lack of open instrumentation in the infrastruc-
ture. Similarly, network operators charged with the responsi-
bility of identifying and diagnosing problems in their networks
have an on-going need for measurement tools that make this pro-
cess faster and more efficient. These issues have led to the de-
velopment of novel methods and systems for measuring network
characteristics beyond the confines of a single network. These
tools report network characteristics based on either passive mea-
surements of traffic at a given vantage point, or by measuring the
response to probe packets emitted by the tool itself.

One class of probe-based measurement tools developed over
the past several years are those that usetomographic inference
techniques to deduce link-specific information such as packet
loss rates, packet delay characteristics and network topology.
Prior work has established the basic mechanisms for the use of
tomographic inference in the networking context [1], [2], [3],
[4]. Despite these interesting results, validation and wide-spread
deployment of tools based on these techniques is problematic.
Most of these network tomography tools are based on the use of
one wayprobe traffic measurements, and as such, they require
cooperation between sending and receiving hosts(the only ex-
ceptions to this requirement that we are aware of are methods
based on passive monitoring loss [5], [6], [3]). This requirement
places a significant limit on the scope of the paths over which
measurements can be made, and thereby limits wide-spread use
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of these tools for research and/or network management activi-
ties. An additional practical limitation of one-way tomographic
tools that measure delay statistics is that they require clock syn-
chronization between end hosts. While new synchronization
methods such as those proposed in [7], [8] offer promise, syn-
chronization of large numbers of end host clocks may not hap-
pen for some time.

Recently, a new network tomographic technique based on
round trip time (RTT) measurements was proposed which
eliminates the need for special-purpose cooperation from re-
ceivers [9]. This technique, known asNetwork Radar, uses RTT
measurements from TCP SYN and SYN-ACK segments to es-
timate the delay variance of the shared network segment in a
standard one sender–two receivers configuration. In this work,
the authors evaluated Network Radar in a series of preliminary
tests conducted in an emulation environment. Although promis-
ing, it is difficult to access the effectiveness of Network Radar
in the Internet.

In this paper, we investigated the conditions under which
Network Radar is effective by careful designing a series of
laboratory-based and Internet-based experiments. The emula-
tion experiments were conducted on a network of Cisco routers
and PC hosts configured in a simple topology. The experiments
revealed that Network Radar is effective over a wide range of
traffic conditions. Most importantly, using our proposed confi-
dence estimator, we were able to establish a correlation between
the delay estimator and the number of measurements.

Our experiments in the Internet examine the application of
RTT tomography to the problem of logical topology discovery.
In this case, we use a clustering algorithm [1] based on measured
shared segment delays to establish logical connectivity between
nodes, but unlike [1], our RTT measurements are more prone
to the variability of delays. We choose this application since it
gives us an opportunity to validate our results using other tools
whereas delay or loss tomography would have required instru-
mentation that was not readily available in the wide area. Our
experiments consist of randomly selecting a set of destinations
and then using RTT tomography to discern topological connec-
tivity between a source and those destinations. We validated the
results usingtraceroute . The results show that RTT tomog-
raphy is very effective at establishing logical topology.

In summary, this paper makes the following contributions.
First, we extend the analytical framework based on RTT mea-
surements to include an automatic confidence estimator that en-
ables measurements that would otherwise skew results to be dis-
carded. This is an important capability for practical use of Net-
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work Radar. Second, we investigate the robustness of RTT to-
mography in a series of controlled laboratory experiments and
show that it is effective over a wide range of operating condi-
tions. Third, we investigate the capability of Network Radar in
Internet-based tests that we can validate with supporting mea-
surements and demonstrate that our tool is effective in the wide
area.

II. RELATED WORK
Network tomography has been an emerging area of study in

the past few years. A variety of inference techniques in estimat-
ing loss rates, delay statistics and topology identification have
treated in [1], [2], [10], [11], [12]. Most of these techniques
are promising but are not widely applicable because of the re-
quirement to have cooperation from receivers to collect one-way
measurement. Most of these techniques also require clock syn-
chronization between end hosts or they depend on special co-
operation from the internal routers. These practical limitations
have largely prevented the tomographic techniques from being
used widely.

The idea of RTT-based network tomography is introduced
in [9]. In that paper, we develop an analytic foundation
for this technique and discuss preliminary considerations for
widespread use which we treat in this paper. There are other
RTT-based measurement studies in inferring path characteris-
tics. Unlike ours, they are based on either the time-to-live
(TTL) [12] or the timestamp [10] options in the Internet Con-
trol Message Protocol (ICMP). Security and privacy concerns
related to the use of ICMP options have led to both rate limiting
and outright blocking of ICMP packets, thus reducing the effec-
tiveness of ICMP-based tomography. Our TCP-based method-
ology is easy to deploy for asymmetric path and is widely avail-
able.

III. M ETHODOLOGY AND MEASUREMENTFRAMEWORK
In this section, we briefly introduce the basic concept of net-

work tomography. Traditional network tomography assumes a
single source transmitting probe packets to pairs of receivers.
The topology is assumed to be fixed throughout the measure-
ment period (i.e., the routing table does not change and no load
balancing1 is employed) forming a tree with thesourceat the
root and thereceiversat the leaves in Figure 2. The branch-
ing node between the source and receivers represents an internal
router. Connections between the source, router, and receivers
are calledsegmentsor logical links. Each segment between
may be a direct connection, or there may be “hidden” routers
or switches (where no branching occurs) along the path that are
not explicitly shown. We focus specifically ondelay variance
estimationas in [9] on shared segment of the path. This focus
is by convention only and there are nothing inherent in our de-
scriptions that prevent the tomography methods from loss rate
measurements.

Basic tomographic measurement and inference ideas are
straightforward. Assume that the individual link delays along

1Load balancing is typically prefix based in the current Internet, as contrast to
load based, to avoid packet reordering. Thus the packets follow the same path
between a source-destination pair.
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Fig. 1. Round trip time tomographic delay variance estimation in a standard
one sender (0) two-receiver (1, 2) network. Variances on shared (σ2

s ) and
unshared segments (σ2

1 , σ2
2) are noted.

the end-to-end path are independent and stationary. A sender
transmits two closely time-spaced (back-to-back) probe pack-
ets to different receivers. The paths to these receivers traverse
a common set of links, but at some point the two paths diverge
(as the tree branches). The two packets are expected to expe-
rience approximately the same delay on the shared segment in
their path. The round trip delay consists of transmission, prop-
agation, processing and queueing delays. The delay variances
are mainly caused by the queueing delay, where the rest of the
delays can be modeled as a nearly constant quantities. Because
the delays on the shared and unshared links are assumed to be
independent, a straight-forward calculation shows that the de-
lay variances on each path equals to the sum of delay variances
on each link. The above observation has been used in topology
identification. This also allow us to evaluate and to demonstrate
the performance of the Network Radar, which will be detailed
in Section IV-B.

Network Radar measures round trip times by sending TCP
SYN packets to the HTTP service (port 80) on a target end host.
Any remote host running this service will respond with a SYN-
ACK packet. Round trip time measurements can then be made at
the sender using simple time differencing between transmission
of the SYN and receipt of the SYN-ACK. In cases where a port
does not have any associated HTTP server, most hosts will send
back a RST when receiving a SYN.

IV. PROPOSEDESTIMATOR AND PERFORMANCEANALYSIS
In this section we present an unbiased estimator for the shared

link variance,σ2
s , and derive confidence intervals for the esti-

mator. The confidence intervals allow us to automatically de-
tect and reject cases in which the estimator is unreliable. The
standard result of an unbiased estimator for the variance can be
found in most statistics textbook. However, in this section, we
derive the explicit formula for the unbiased estimator given the
conditions and assumptions in our context.

A. Confidence Estimator
To begin our analysis, we formally demonstrate that, under

the stated assumptions, the covariance of the RTTs is equal to
the delay variance on the shared link.

Proposition 1: Denote theN RTT packet pair measurements
by y ≡ {y1(k), y2(k)}N

k=1, wherey1(k) andy2(k) are thekth
RTT measurements to/from receiver1 and 2 respectivetively.
The delay on the shared path is denoted byds(k), and the de-
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lays on the unshared paths ared1(k) andd2(k), wherek de-
noteskth RTT pair. Assume that the packets in thek-th pair
experience an identical delay,ds(k), on the shared portion of
their paths, and thatds(k) is statistically independent of the
remainder of the RTT delays,d1(k) = y1(k) − ds(k) and
d2(k) = y2(k) − ds(k). Furthermore, assume that the delays
in different measurements (differentk) are statistically indepen-
dent. Then cov(y1, y2) = σ2

s . Moreover,σ̂2
s is an unbiased

estimator ofσ2
s .

σ̂2
s ≡ 1

N − 1

N∑
k=1

(y1(k)− ȳ1)(y2(k)− ȳ2) (1)

whereȳi is the sample mean of{yi(k)}N
k=1 for i = 1, 2.

The assumptions of Proposition 1 are approximately met in
actual practice. The first assumption is that the two back-to-
back packets experience the same delay on the shared path. This
is reasonable due to the back-to-back nature of the probes, and
we experimentally verify this assumption later in the paper. The
second assumption regarding the statistical independence of the
delays is reasonable because the cross-traffic tends to be inde-
pendent on the shared and unshared paths, and by sufficiently
spacing the probes in time, the delays in different measurements
are fairly independent. Both these assumptions have been ver-
ified by experimental work as well. Also, the assumption of
independence could be weakened to only assume that the delays
are uncorrelated.

Next we investigate the reliability of the estimator̂σ2
s via con-

fidence intervals. Specifically, we first determine the theoretical
variance of the estimator, and then propose an unbiased estima-
tor for this variance. The square-root of the variance equals the
standard deviationδ of σ̂2

s , which provides confidence intervals

of the formσ̂2
s ± α δ, whereα > 0 is the confidence level (e.g.,

α = 3 produces a confidence interval of three standard devia-
tions).

In practice, we do not have the theoretical value of the stan-
dard deviationδ, but we can estimate it from the data as shown
in the next proposition.

Proposition 2: Define

δ̂2 ≡ 1
(N − 3)(N − 2)

N∑
k=1

(y1(k)− ȳ1)2(y2(k)− ȳ2)2

− N + 1
N(N − 3)

(σ̂2
s)2 − N − 1

N(N − 2)(N − 3)
σ̂2

1 σ̂2
2 (2)

whereσ̂2
i is the empirical variance of the RTTs to destination

i, for i = 1, 2. Then under the assumptions of Proposition 1,
E[δ̂2] = δ2; i.e., δ̂2 is an unbiased estimate of the theoretical
valueδ2.

Finally, we apply the confidence intervals to automatically
detect and reject cases in which the estimatorσ̂2

s is unreliable.
From the propositions, and the measured data, we can compute
σ̂2

s and a confidence interval of thêσ2
s±α δ̂, whereδ̂ ≡ (δ̂2)1/2.

If δ̂ � σ̂2
2 , then the confidence interval is quite large relative

to the center point. In such cases, we can be reasonably con-
clude that the estimator is unreliable. The unreliability could
be due to excessive “noise” on the unshared portions (as men-
tioned above) or large deviations from the assumptions of our
the theory. Thus, for a given confidence levelα, we say that the
estimator isα-unreliable if

σ̂2
s

δ̂
< α .

In practice, we recommend a level ofα ≥ 3 whereα is also
known as the Signal to Noise Ratio (SNR), the ratio between
the estimator and its confidence.

B. Topology Identification
As mentioned earlier, the topology is tree-structured. We can

thus apply Network Radar to pairs of receivers to localize the de-
lay variance of each individual (logical) link. This feature also
allows us to use topology identification as averifiablemethod
for demonstrating the performance of the RTT tomographic tool.
Indeed, one of the significant challenges of network tomography
studies in general isin situ evaluation since access to network
internal instrumentation is so rarely available. In the context
of topology discovery, end-to-end topology measurement tools
such astraceroute or Scriptroute [13] which can be
used to validate the logical topology structures generated us-
ing the aforementioned RTT tomography and clustering meth-
ods described next.

0

1 2 3

Fig. 2. An example of topology identification illustration with3 receiver nodes.

An assumption in standard network tomography as well as
our framework is that the delays on the shared and unshared
links are independent. Therefore, the end-to-end delay variance
will be the sum of the link delay variances along the path. One
can also use this information to identify the underlying network
topology configuration. This is done by interpreting estimates of
delay variation as a measure of the physical extent of the shared
path. Letpij denote the shared path between the source and a
pair of receiversi andj. Let i, j andk be three receivers and
suppose thatpij is longer (from a physical distance perspective)
thanpik (clearly one of the shared paths has to be included in the
other). The delay variance associated withpij (denotedσ2

pij
) is

going to be larger than the delay variance associated withpik.
This partial ordering of the delay variance of the shared paths
can be used to identify the underlying topology. For example,
refer to Figure 2,σ2

p1,2
will be greater thanσ2

pi,2
for any other

receiveri, revealing that receivers1 and2 are siblings in the log-
ical tree. This property can be exploited to devise a simple and
effective bottom-up merging algorithms that identifies the full,
logical topology from the pairwise delay variances. This prob-
lem is indeed one of hierarchical clustering.
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In general we do not have access to the exact delay variances,
but only noisy measurements of those. In particular, the vari-
ability of the measurements for each pair of receivers may be
significant. In [1] a hierarchical clustering technique that is suit-
able for the topology identification problem is proposed. This
technique is based on a likelihood model capable of accounting
for the different statistical properties of the measurements for
each pair of receivers. Two clustering techniques building on the
likelihood model are proposed in [1]: (i) a deterministic, greedy
approach, with very low computation complexity; (ii) a Markov
Chain Monte Carlo method that attempts to find a globally op-
timal (in a likelihood sense) topology, at the expense of compu-
tation power. In the Section V-B, we apply these techniques to
infer the topology solely from RTT covariance measurements.

V. EXPERIMENTAL EVALUATION
We evaluate the capabilities and robustness of RTT tomogra-

phy in a series of lab-based and Internet-based experiments. The
lab-based experiments enable control and instrumentation of all
aspects of the test environment. This allows us to verify the
capabilities and limitations of the tool in a realistic but limited
infrastructure. We also perform a series of Internet experiments
to assess the tool’s performance in the wide area network. Its
capability in identifying the logical network topology provides
an indirect but verifiable (viatraceroute ) means of assess-
ing the tool’s performance. A series of more extensive tests are
also available in [14].

xT

0

xT

R R R

xT

2

1

S2

S1

xT R

R DAG

Fig. 3. The laboratory network configuration includes5 routers and9 PCs. The
sending host is0 and the receivers are1 and2 (logical topology in gray). The
boxesxT denote cross-traffic generators and the ballsR denote routers.S1
andS2 denote measurement systems used to validate the performance of the
RTT based tool and DAG denotes the DAG measurement system placement.

A. Emulation Experiments
Our lab-based experimental environment carried out in the

Wisconsin Advanced Internet Laboratory [15] includes5 Cisco
commercial routers (7200/7500/12000 series) and9 PCs run-
ning Redhat Linux. The bandwidth on all connections is1Gb/s.
The setup is illustrated in Fig. 3. Boxes0, 1 and2 denote the
nodes of interests as in Fig. 1. Box0 refers to the sender and
box1 and2 are the receivers. Variable background (non-probe)
traffic in this environment is generated usingHarpoon [16], a
flow level traffic generator that runs on the systems denoted by
xT . Propagation delays on individual links are emulated using
a simple configuration of the Click modular router [17]. During
each experiment, background traffic loads are generated based
on input distributions derived fromNetFlow logs captured at
the border router of University of Wisconsin. Emulated propa-

gation delays on each link are fixed and remain constant.

Each measurement period consist of1000 packet pairs sent
from node0 (the sender) to receiver nodes1 and2. The send
rate is fixed at a rate of10probes/sec (100ms intervals). Prac-
tically speaking, this is a low probe rate which should not cause
concern for medium to large web sites in the Internet. At the
end of each measurement period, we collect packet traces from
tcpdump which is running on the sender (node0) and at two
monitoring devices (S1 andS2) along the path to the receivers.
The monitors, which of course are not possible outside of the
lab, allow us to verify the performance of our tool by providing
ground truth measurements of packet delays. The first moni-
tor, S1, records the back-to-back packet spacing entering the
branching router. The second monitor,S2, records outgoing
packets from the branching router2 with extra cross traffic and
it provides us the “true” delay variance on the shared link of the
path. We synchronize the clocks on the monitoring hosts via
network time protocol. The clocks are disciplined from a local
stratum 1 time source giving us synchronization on the order of
single milliseconds. This is important for verification of one-
way delays in our experiments.

A.1 Results
Figure 4 depicts the accuracy of our tool, Network Radar, by

comparing the estimates to the “true” value of the shared path
delay standard deviation. The “true” value (σs) for the one way
delay on the shared path is the measured time difference of TCP
SYN packets at the sender and at the second monitorS2 in Fig-
ure 3. The estimates are computed directly fromy1 andy2, the
end-to-end measurements to receiver. A moderate level of back-
ground traffic was used during this experiment and no packet
loss was observed. The one-way delay between node0 and node
1 was fixed at0.6ms while the node0 to node2 delay was fixed
at 6ms. Ideally, the estimates should be identical to the “true”
value and fall onto the45◦ line. We hypothesize that the dis-
crepancy might arise if the timestamping mechanism is inaccu-
rate or unreliable, or if the back-to-back assumptions described
in the previous section are violated. Nonetheless, the estimates
are close to the real value.

1.5 2 2.5
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

σs (10-4 ) sec

sq
rt(

co
v(

y 1, y
2)) 

(1
0-4

) s
ec

true:

es
tim

at
ed

:

Fig. 4. Plot of standard deviation from direct measurement (horizontal axis)
vs. estimated delay standard deviation using RTT-tomography tool (vertical
axis).

A.2 Operating Conditions Study
One of the primary objectives in our lab-based experiments

is to understand the operating conditions under which RTT to-
mography is practical. To investigate potential sources of er-
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rors that would make RTT tomography ineffective, we examine
the effects of; (1) the reliability of the timestamping mechanism
(comparingtcpdump and others), (2) varying levels of back-
ground traffic, (3) varying spacing between packet pairs as they
are emitted by the sender (back-to-backness), (4) load on re-
ceiving end-hosts which can cause variability in generation of
response packets (SYN-ACK generation delay), and (5) number
of measurements as compared to the resulting estimation error.
Except the case where we investigate the effects of the back-
ground traffic, we fix the amount of background traffic load.
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Fig. 5. Verification of timestamping mechanism usingtcpdump utility and
hardware-base reference systems using DAG cards.

Timestamping mechanismWe evaluate our timestamping
mechanism with the Endace DAG cards [18], the current state
of art in hardware timestamping. It provides timestamping with
high accuracy, with no packet loss and no extra delay. Most
network interface cards suffer from corrupted, delayed or lost
packets when the traffic volume is high. We use systems with
DAG cards to assess howtcpdump timestamping variability at
the sender PC effects RTT measurements. During these exper-
iments we capture the packet departure and arrival times using
both tcpdump and systems with DAG cards. By comparing
the results in Fig. 5, we conclude that the variability in RTT
measurements caused bytcpdump does not have a significant
impact. For the rest of the paper, we collect the measurements
with tcpdump timestamping mechanism.
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Fig. 6. Significant of background traffic in the estimates. High SNR symbolizes
high accuracy in the estimates. The signal to noise ratio (SNR) increases
when the background traffic (correlation) on the shared segment increases.
Unshared segments had moderate load in these experiments.

Background Traffic With respect to background traffic, the
capabilities of RTT tomography are proportionally dependent
on the load on the shared segment and inversely proportional
to the load on the unshared segments. By fixing the traffic on

HTTP Connections Average Delay Delay Variance
1 7.23µs 1.8× 10−12s2

201 28µs 3.4× 10−11s2

TABLE I

AVERAGE SYN-ACK GENERATION DELAY AND ITS VARIANCE WITH

VARYING END HOST LOAD

the unshared segment (noise) and varying the the traffic on the
shared segment (signal), it is shown in Figure 6 that the signal
quality improves. Note that the accuracy of our estimator not
only depends on the variance on the shared segment, but also
the variances on the unshared segments. As these variabilities
increase, our confidence weakens, as shown in Equation 2.
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Fig. 7. Plot of directly measured delay standard deviation (vertical axis) and the
estimated one (horizontal axis) on the shared link when the spacing between
the packets are3µs (circle) and100 ms (triangle) apart at the sender.

Back-to-back assumptionFigure 7 depicts the accuracy of
the results by varying the packet spacing within the probe pair
while the spacing across pairs remains unchanged. The results
agree with our expectation that the accuracy of the estimates
decreases as the back-to-back assumption weakens. When the
packets are not well correlated, the packets no longer have sim-
ilar experience on the shared link. In our experiments, with ex-
haustive trials, the smallest achievable packet spacing is3µs.

End host load Delays in the generation of SYN-ACK re-
sponse packets at the end hosts depends on a variety of factors
including scheduling and the load. To evaluate these effects,
we adjust the end host load by varying the number of active http
connections to the Apache 2.0.52 http server on that system. The
results of average SYN-ACK generation delay are illustrated in
Table I. The variability of the SYN-ACK generation delay is
negligible even for large number of active simultaneous connec-
tions,e.g.,201 connections as shown in Table I.
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Fig. 8. Plot of signal to noise ratio (vertical axis) given different number of
packet pair probe measurements.
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Number of measurementsWe compute the SNR for each
measurement sets (varying the number of packet pair probe mea-
surements), the SNR increases with the number of probes, as
shown in Fig. 8. As expected, the confidence of the estimator
increases with increasing number of measurements. Typically,
the number of probes needed depends on the variability in traf-
fic and the back-to-back assumption, refer to [14] for compu-
tational details. Theoretically, one can use infinite number of
measurements to achieve high accuracy. However, in practice,
the measurement period increases as we increase the number of
probes. The measurement period should always be shorter than
the routing table updates. If one increases the probe frequency,
it is possible to interfere with the normal traffic and induce con-
gestion on the outbound link. The processing load at the receiver
ends might also be increased.

B. Internet Experiments
We randomly chose 6 universities on the Abilene Network

and we collect measurements from both Rice University and
University of Wisconsin - Madison. The university homepages
indexed from1−6 are Oklahoma University, Virginia Common-
wealth University, Vermont University, Utah State University,
University of Washington and University of Idaho. We collect
a set of estimates with good confidence given by the standard
deviation of the estimates. If the ratio between the standard de-
viation of the estimate and the estimate (SNR) is more than3
(as recommended in Section IV), we use them as an input to the
topology identification algorithm. The inputs to the clustering
algorithm are the estimates and its variability, as the mean and
the variance. We normalize the variance by the number of mea-
surements. An example of the results of topology measurement
experiments based on RTT tomography is shown in Figure 9.
The “true” topology is given bytraceroute . The estimated
topology is very close to what we expect. The estimated topol-
ogy results as an artifact of a binary tree. These results are repre-
sentative of our other topology tests (topologies estimated from
over50 homepages) using Network Radar.

0

1 2 3564

0

1 2 3564

(a) (b)

Fig. 9. Comparison between (a) “true” topology and (b) estimated topology for
6 universities on the Abilene Network. Probes are sent from Rice University.

VI. CONCLUSIONS
Many of the prior methods for network tomography rely on

coordinated measurement infrastructures. This has limited both
the share of the Internet over which the tools could be used,
and the number of people who could potentially take advan-
tage of this useful inference technique. In this paper we present
and evaluate a network tomography method based on the use of
round trip time measurements with confidence estimator. The
confidence estimator is critical for RTT tomography since probe
packets are subject to more dynamic conditions than probes in
a one-way coordinated infrastructure. The confidence estimator
enables inaccurate delay estimates to be rejected.

We have also detailed some of the operating conditions in
which our tool is effective. We summarize them briefly here.
The effectiveness of the tool depends on two major components:
(1) the ability to place the probe packets closely spaced, (2)
correlation on shared link and (3) the unshared link variability,
given the fixed number of measurements.

In this paper, we show that the tool, Network Radar, can be
conducted anywhere in the Internet the same way as other net-
work diagnostic tools. The tool is ready to be used and it is in
the final stage in integrating the ability to compute the confi-
dence interval. The beta version will be available for download
in the near future. We have tested the tool in both controlled
environment as well as in the wild Internet. We have shown that
the confidence interval derived from our estimator provides a
good estimate to the traffic condition. By collecting measure-
ments with high confidence interval, one could use it for topol-
ogy identification.
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