Measurement, Modeling and Analysis of the Internet

March, 2004

Paul Barford
Assistant Professor
Computer Science
University of Wisconsin
Motivation – there’s plenty!

• The Internet is a HUGE network of networks
 – Scientists love to study/model complex systems
 • Emergent characteristics

• Wide area network behavior is unpredictable
 – Many factors are pushing and pulling the infrastructure
 – Constant change is normal

• Many applications have minimum performance requirements
 – Reliability, predictability, …

• Network managers adjust systems to conditions
Tutorial goals

1. Present overview of the when, where, how, and why of Internet measurement and monitoring techniques
 – Particular focus on tools and infrastructure
2. Present overview of Internet measurement data analysis
 – Where we’ve been and where we are headed
3. Provide citations and pointers to Internet measurement resources
4. Stimulate discussion!
Tutorial outline

1. Network measurement overview
 - Challenges, tools and techniques
2. Internet measurement infrastructures
 - Today’s and tomorrow’s
3. Overview of methods of Internet data analysis
 - A lead into to part 2
4. Problems with network measurement work today
 - It’s a little grim…
Tutorial themes

• Measurement has been the basis for critical improvements
 – Without measurement, what do you know?
• Measurement capability in the Internet is limited
 – The systems not designed to support measurement
• Measurement tools and infrastructures are few and limited
 – Size, diversity, complexity and change
• Measurement data presents many challenges
 – Networking researchers need better connections with experts in other domains
Part 1: Network Measurement

Challenges
Successes
Tools and methods
Internet measurement challenges

• Size of the Internet
 – $O(100M)$ hosts, $O(1M)$ routers, $O(10K)$ networks

• Complexity of the Internet
 – Components, protocols, applications, users

• Constant change is the norm
 – Web, e-commerce, peer-to-peer, wireless, next?

• The Internet was not developed with measurement as a fundamental feature
 – Nearly every network operator would like to keep most data on their network private

A small selection of past successes

 – Thorough analysis of Bellcore LAN traces established *self-similar* properties of packet arrival process

 – Modeled a variety of WWW client use characteristics

 – Characterized routing and packet behavior in wide area
Past successes contd.

 – Establishes basic properties of inter-domain connectivity
 – First use of *tomographic inference* to isolate packet loss
 – First analysis of the extent of denial of service activity
Why do we measure the Internet?

• Some reasons have been presented already…
 – Basic component of scientific method
 – Operation

• We cannot improve the Internet if we don’t understand its structure and behavior
 – We cannot understand it if we don’t measure
 – We cannot build effective models or simulators if we don’t measure

• A long term objective – “a day in the life of the Internet”
What can we measure in the Internet?

• Structure
 – Topology, routing, proxies, wireless, etc.

• Traffic
 – Transport, end-to-end performance, etc.

• Users and Applications
 – WWW, peer-to-peer, streaming, DNS, etc.

• Failures
 – In all areas

• Nefarious behavior
 – Pattern attacks, port scans
Where can we measure the Internet?

• For some measurements, this is obvious
 – For example, if you are studying the Web servers, Web logs are a good starting point
 – The goal for other measurements is to be “representative”
 – Various “Internet weather reports”

• Placement of measurement nodes is not a well understood problem
 – More is better??

• Where we can’t measure is in commercial networks
How can we measure the Internet?

• Active methods
 – Probes, application simulation

• Passive methods
 – Application monitors (logs), system monitors, packet monitors

• Surveys (almost never)

• Significant infrastructure is always required

• All methods present difficulties

• Resources
 – CAIDA: www.caida.org/tools/taxonomy
When should we measure the Internet?

• Diurnal traffic cycle
• Time scales depend on “what” and “how”
• Passive measurements are typically continuous
 – Can generate huge data sets
 – Many people will not allow access to their logs
• Active measurements are typically discrete
 – Important characteristics can be missed
 – Probes can be filtered and/or detected
Who is measuring the Internet?

- Businesses do a great deal of measurement
 - What measurements are they taking and what do they do with their data?

- Instrumentation for measurement-based research is relatively new
 - Developments over the past 12 years have been slow
 - 10’s of current studies

- Most studies are not coordinated and relatively narrowly focused
Active probes to study path properties

- Active probe tools send stimulus (packets) into the network and then measure the response
 - Network (IP), transport (UDP/TCP), application layer probes
- Active probes can measure many things
 - Delay/loss
 - Topology/routing behavior
 - Bandwidth/throughput
- Oldest examples of probe tools use Internet Control Message Protocol (ICMP)
 - Network layer probe
Simple delay/loss probing with \textit{ping}

Simplest request/response probe tool using ICMP Echo capability

C:\WINDOWS\Desktop>ping www.soi.wide.ad.jp

Pinging asari.soi.wide.ad.jp [203.178.137.88] with 32 bytes of data:
Reply from 203.178.137.88: bytes=32 time=253ms TTL=240
Reply from 203.178.137.88: bytes=32 time=231ms TTL=240
Reply from 203.178.137.88: bytes=32 time=225ms TTL=240
Reply from 203.178.137.88: bytes=32 time=214ms TTL=240

Ping statistics for 203.178.137.88:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 214ms, Maximum = 253ms, Average = 230ms
Routing behavior with \textit{traceroute}

- Standard utility for assessing the route between hosts
- \textit{traceroute} sends a series of probes to successive nodes along a route to an intended destination and records the source address of the message returned by each

- **Operation**
 - Routers decrement the “time to live” (TTL) field in IP pkts.
 - Router sends ICMP Time Exceeded message back to source if the TTL field is decremented to 0
 - If TTL starts at 5, source host will receive Time Exceeded message from router that is 5 hops away
 - \textit{traceroute} typically sends three probes to each hop and reports source address information and RTT for each probe
traceroute example

C:\windows\desktop> tracert www.soi.wide.ad.jp
Tracing route to asari.soi.wide.ad.jp [203.178.137.88]
over a maximum of 30 hops:
 1 19 ms 27 ms 23 ms 208.166.201.1
 2 17 ms 13 ms 14 ms 204.189.71.9
 3 25 ms 29 ms aar1-serial4-1-0-0.Minneapolismpn.cw.net [208.174.7.5]
 4 24 ms 27 ms aar1.Minneapolismpn.cw.net [208.174.2.61]
 5 26 ms 22 ms acr2-loopback.Chicagochd.cw.net [208.172.2.62]
 6 29 ms 29 ms cand-w-private-peering.Chicagochd.cw.net [208.172.1.222]
 7 28 ms 24 ms 0.so-5-2-0.XL2.CHI2.ALTER.NET [152.63.68.6]
 8 26 ms 27 ms 28 ms 0.so-7-0-0.XR2.CHI2.ALTER.NET [152.63.67.134]
 9 25 ms 24 ms 26 ms 292.at-2-0-0.TR2.CHI4.ALTER.NET [152.63.64.234]
 10 73 ms 74 ms 73 ms 106.ATM7-0.TR2.LAX2.ALTER.NET [146.188.136.142]
 11 74 ms 76 ms 76 ms 198.ATM7-0.XR2.LAX4.ALTER.NET [146.188.249.5]
 12 73 ms 75 ms 77 ms 192.ATM5-0.GW9.LAX4.ALTER.NET [152.63.115.77]
 13 80 ms 73 ms 76 ms kdd-gw.customer.ALTER.NET [157.130.226.14]
 14 84 ms 84 ms 91 ms 202.239.170.236
 15 97 ms 81 ms 86 ms cisco1-eth-2-0.LosAngeles.wide.ad.jp [209.137.144.98]
 16 174 ms 174 ms 178 ms cisco5.otemachi.wide.ad.jp [203.178.136.238]
 17 201 ms 196 ms 194 ms cisco2.otemachi.wide.ad.jp [203.178.137.34]
 18 183 ms 182 ms 196 ms foundry2.otemachi.wide.ad.jp [203.178.140.216]
 19 183 ms 185 ms 178 ms gsr1.fujisawa.wide.ad.jp [203.178.138.252]
20 213 ms 205 ms 201 ms asari.soi.wide.ad.jp [203.178.137.88]
Trace complete.
Probing for link characteristics

• *Packet dispersion* techniques (Jacobson) can be used to infer characteristics of each link along an Internet path
 – Latency, bandwidth, and queue delays
 – Cross traffic causes problems

• Tools available: bprobe [CC97], clink [D99], nettimer [LB99], pathchar [J97], pchar [M00], pathrate [DRM01]

Probes for link bandwidths between Boston Univ. and Univ. Wisconsin

>clink pluto.cs.wisc.edu

8 probes at each of 93 sizes (28 to 1500 by 16)

0 localhost | n= 744 lat= 0.210 ms bw= (6.414, 6.411, 6.611) Mb/s
1 CS4NET-GW.BU.EDU (128.197.14.1) | n= 744 lat= -0.026 ms bw= (-387.989, -140.840, -136.152) Mb/s
2 crc-ext-gw.bu.edu (128.197.254.60) | n= 744 lat= 0.148 ms bw= (260.224, 346.367, 320.380) Mb/s
3 ATM10-410-OC12-GIGAPOPNE.NOX.ORG (192.5.89.13) | n= 744 lat= 2.556 ms bw= (493.574, 639.542, 23568.176) Mb/s
4 ABILENE-GIGAPOPNE.NOX.ORG (192.5.89.102) | n= 744 lat= 6.095 ms bw= (-1440.365, 705.495, 1438.433) Mb/s
5 clev-nycm.abilene.ucaid.edu (198.32.8.29) | n= 744 lat= 3.113 ms bw= (-748.522, 1502.420, 780.744) Mb/s
6 ipls-clev.abilene.ucaid.edu (198.32.8.25) | n= 744 lat= 4.243 ms bw= (-8.827, 29.965, 12998.206) Mb/s
7 r-peer-at-0-1-0-14.net.wisc.edu (144.92.20.137)
8 144.92.128.226 (144.92.128.226) | n= 744 lat= 0.449 ms bw= (-34.186, 23.717, 40.601) Mb/s
9 144.92.128.196 (144.92.128.196) | n= 744 lat= 0.626 ms bw= (-248.625, -37.351, -7.664) Mb/s
10 e1-2.foundry2.cs.wisc.edu (128.105.1.6) | n= 744 lat= -0.742 ms bw= (7.680, 18.018, 23.017) Mb/s
11 pluto.cs.wisc.edu (128.105.167.50)

n = number of probes, lat = latency (ms), bw = (low, best, high) bandwidth
Passive packet measurement

• Capture packet data as it passes by
 – Packet capture applications (tcpdump [JLM89]) on hosts use packet capture filter (bpf [MJ93], libpcap [MLJ94])
 • Requires access to the wire
 – Promiscuous mode network ports to see other traffic
 – Hardware-bases solutions
 • Endace, Inc.’s DAG cards – OC12/48/192 (0.622/2.5/10Gbps)

• Problems
 – Adds, deletes, reordering, timestamping
 – 10 Gbps Ethernet today, 40Gbps soon - LOTS of data!
 – Privacy issues
Example of tcpdump output

04:47:03.489652 sunlight.cs.du.edu.4882 > newbury.bu.edu.http: . ack 1 win 32120 (DF) (ttl 64, id 47964)

pb@cs.wisc.edu
Passive IP flow measurement

• An IP Flow is defined as “a unidirectional series of packets between source/dest IP/port pair over a period of time”

{SRC_IP/Port, DST_IP/Port, Pkts, Bytes, Start/End Time, TCP Flags, IP Prot, ...}

 – Exported by applications such as Cisco’s NetFlow

• We use FlowScan [Plonka00] to collect and process Netflow data
 – Combines flow collection engine, database, visualization tool
 – Provides a near real-time visualization of network traffic
 – Breaks down traffic into well known service or application
2001/02/08 1902 applied 33.6Kb/s limit on ResNet-to-world Napster data flows (other Resnet-to-world remains 100Kb/s)
2001/02/09 0130 platform Catalyst/ATM problem caused measurement outage (30 mins)
2001/02/09 1400 Napster.com outage/problems? (this was independently observed by other FlowScan sites)
2001/02/10 1155 removed ResNet rate-limits
2001/02/10 1326 routed ResNet through RiverStone router (reactivating rate-limits)
Passive monitoring for intrusions

- There are plenty of bad guys out there
 - Cracking tools are readily available
- Detecting attacks and nefarious behavior (e.g., port scans) is critical for protecting networks
- Passive measurements of packet traffic can be used to reconstruct higher level behavior
 - Most traffic is unencrypted
- Network Intrusion Detection Systems (NIDS) use packet filters to observe network traffic
Network intrusion detection systems

- **Signature-based NIDS**
 - Generates alerts based on observations with known attacks

- **Anomaly-based NIDS**
 - Generates alerts based on observed deviations from established profile of normal behavior

- **Activity-based NIDS**
 - Generates alerts based on observed deviations from a site’s security policy

- There are many commercial systems

- All systems suffer from false positives and negatives
Example of Snort output

Snort portscan log:

Mar 11 19:37:00 130.253.192.2:51217 -> 130.253.192.200:79 SYN ******S*
Mar 11 19:37:00 130.253.192.2:51218 -> 130.253.192.198:79 SYN ******S*

Snort alert log:

[**] [100:1:1] spp_portscan: PORTSCAN DETECTED from 130.253.192.2 (THRESHOLD 4 connections exceeded in 1 seconds) [**] 03/11-19:37:00.874491

[**] [1:1243:2] WEB-IIS ISAPI .ida attempt [**] [Classification: Web Application Attack]
TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:1420
AP Seq: 0x264615F1 Ack: 0xBFDF7245 Win: 0x7BFC TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS552]
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2000-0071]
iSinks: an intrusion data gold mine

- **Observations**
 - A great deal of IPv4 address space is allocated (routed) but not used (no system connected)
 - the bad guys don’t know which addresses in a network are used
 - Monitoring allocated but unused addresses (network telescopes) is a great source of intrusion data

- **An iSink** is a scalable tool for both active and passive measurement on unused address space
 - Includes active responders used to gather details of exploit
Part 2: Measurement Infrastructures

Today
Future
Design of measurement infrastructures

• Architecture consists of physical systems and management/operation environment

• Physical systems
 – Measurement method will inform system selection
 • Extra hardware (e.g., GPS) could be necessary
 – Deployment is typically based on what you can get more than what you would like to have
 – Even deploying a small number of systems is difficult
 – Maintaining systems is always underestimated
Operation and management systems

• Security is critical!!
 – Strong authentication is more important than encryption
 – Assume bad guys will break in and design system for quick reinstall

• Measurement scheduling system and method
 – Automated environment for scheduling and sometimes synchronizing measurements
 – Methods must consider things like synchronization in traffic
 • Use Poisson probing methods

• Data collection and archival system
 – Automated environment for collecting and storing results
 – Careful work in this area ALWAYS pays off in the end
Operation/management systems contd.

• Analysis and visualization systems
 – Standard scripts for evaluating data
 – Visualization of time series data is critical
 – Web front end

• Software deployment and maintenance
 – Standard distributions and management methods
 • Documentation and archives of configurations
 – In very large systems a PULL environment works better than PUSH
Rapid prototype visualization

The *Skitter* infrastructure

- CAIDA’s Internet routing and topology measurement infrastructure
 - *traceroute* study focused on router/link discovery
 - Raw data available on request
 - Also trace packet delay and loss
- Infrastructure: 21 sources, ~500K destinations
 - World wide deployment
 - Not all destinations are reached by sources
- Methodology: sources *traceroute* to destinations 24x7
- Visualization is also a component of the project
- www.caida.org
Skitter daily summary

[Graphs showing distribution of hop counts and RTTs]
Skitter daily summary contd.
Skitter visualization – IP paths
Skitter visualization – BGP paths
The Route Views infrastructure

• University of Oregon’s inter-domain (autonomous system) routing measurement infrastructure
 – Passive collection system for Boarder Gateway Protocol (BGP - a path vector protocol) routing updates
 – Data used also used to understand size of routing tables
• Infrastructure: Looking glass router that receives BGP peering feeds from 41 networks world wide
• Methodology: database of both routing table snapshots and updates is made available in pseudo real-time
• www.antc.uoregon.edu/route-views
• www.ripe.net/ripencc/pub-services/np/ris-index.html
Route Views example

BGP routing table sizes (weekly median values)

Number of Prefixes in Table

Date

pb@cs.wisc.edu
The Surveyor infrastructure

• Advanced Network Systems deployed this infrastructure for measuring Internet performance and reliability
 – Provides data on routing, latency and loss
• Infrastructure: 71 PC measurement systems deployed world wide
 – GPS enabled
 – Centralized database
 – Some analysis and visualization tools
• Methodology: One-way active probe measurement in Poisson intervals (2 Hz avg.) in full mesh 24x7. Traceroutes every 10 min.
• www.advanced.org
Surveyor node deployment

Courtesy Matt Zekauskas, Advanced Systems
Surveyor node deployment in US

Courtesy Matt Zekauskas, Advanced Systems
Surveyor daily analysis example

![Surveyor daily analysis example](image)

Courtesy Matt Zekauskas, Advanced Systems
Surveyor example - delay

Univ Wisconsin to CANARIE-I2 Gigapop

Delay statistics over 1-minute intervals starting 00:00 UTC, Thursday, December 10, 1998

Minimum delay
50th percentile delay
90th percentile delay

Courtesy Matt Zekauskas, Advanced Systems

pb@cs.wisc.edu
Surveyor example - loss

NCAR to Carnegie Mellon Univ

Packet Loss statistics over 1-minute intervals starting 00:00 UTC, Saturday, November 07, 1998

Courtesy Matt Zekauskas, Advanced Systems

Midnight EST
Surveyor status

• Systems are currently being overhauled
 – OS transition from BSDi to Linux to enhance manageability
 – Open access to the community via Scriptroute
 • Monitoring activity will continue
 – Target: May, ‘04

• Database is currently being overhauled
 – New Web interface and Netdb backend
 • Netdb developed by DeWitt and Gray
 – 3 years worth of archived data plus new when Surveyor spins up again
 – Target: Summer, ‘04

• http://wail.cs.wisc.edu
The Network Analysis Infrastructure

- National Laboratory for Applied Network Research (NLANR)
- Infrastructure for active (AMP) measurements
 - Confederation of universities (approx. 130)
 - RTT, loss and topology measurements
- Infrastructure for passive (PMA) measurements
 - High speed packet monitors across US (approx. 20)
 - Throughput, packet and flow analysis
- Squid cache hierarchy
 - Publicly available cache logs from 10 NLANR caches
- There is a TON of data at these sites!!
- amp.near.net, pma.nlanr.net, ircache.nlanr.net
AMP summary data example
Squid Cache log example
Internet weather/traffic reports

- Andover News, MIDS, others…
- Infrastructures meant to provide high level global Internet traffic statistics
 - Periodic pings to routers, DNS servers and WWW servers all over the world
 - Break down by provider and geographically
 - Commercial focus
Internet traffic report example

Latency

Matrix IQ
ms
300
200
165
134
117
100
0

Timezone (pjc-1, Austin, TX) Copyright (c) 2000 Matrix.Net, matrix@matrix.net http://www.miq.net/
GMT Oct 26 Oct 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
CDT Oct 26 6 PM 8 PM 10 PM Oct 27 2 AM 4 AM 6 AM 8 AM 10 AM noon 2 PM

 pb@cs.wisc.edu 53
Global Internet traffic summary

Ping response time

“Chunk of data” response time

No response to several pings
The PlanetLab infrastructure

• “An open, globally distributed platform for developing, deploying and accessing planetary-scale network services.”
 – An Intel-funded, distributed PC infrastructure
 – Systems deployed at 137 sites world wide
 – A systems development project with Internet measurement as a primary application
 – http://www.planet-lab.org
Managing experiments with *Scriptroute*

- A “measurement tool management system”
- “The goal is to allow any user to connect to any server and execute any safe network measurement”
 - Basic tools include *ping, traceroute*
 - Enables system resource restriction
- Deployed widely, including Planetlab
traceroute.org

• Routing and topology study is greatly influenced by *location* of measurement hosts

• There are hundreds of resources all over the Internet openly available for executing *traceroute*
 – Capabilities vary

• www.traceroute.org is a huge index of these resources
 – Be careful using these!
Another approach - The Wisconsin Advanced Internet Lab

• Why do we need an “internal” lab?
 – Enables instrumentation and measurement of entire end-to-end system
 – Enables new systems and protocols to be implemented in places where access is not possible in wide area

• Complement to external facilities

• Hands-on test bed which creates paths identical to those in the Internet from end-to-end-through-core
 – Variety of highly configurable equipment

• Vision of internal lab: New means for doing network research

• Status: Systems operational and open access by summer ‘04

• http://wail.cs.wisc.edu
WAIL Conceptual Design

Distribution

Access

Core

Access

Distribution
Part 3: Measurement data analysis
Standard approaches to data analysis

• Summary statistics
 – Are these meaningful considering size, and complexity?
• Histograms and curve fitting
 – There is a danger that we are spending too much time here
• Assessment of upper tails
 – Many properties exhibit heavy tails
• Assessment of scaling properties
 – Self-similarity is one of the true success stories
Modeling and simulation

• A variety of models for Internet traffic have been proposed
 • Proposed ON/OFF model for network traffic
 – Many rely on a mathematical construction to generate data that can be shown to approximate Internet traffic behavior
 • These provide no insight into Internet mechanisms

• Simulations have been successful but are highly simplified
 – www.isi.edu/nsnam/ns, www.ssfnet.org
New analysis methods are necessary

• Innovative methods for extracting more information from existing data
 – Critical path analysis, fluid analysis, Rocketfuel
• Mechanistic models which explain behavior of the Internet at a variety of levels
• Application of new mathematical and statistical methods
 – Fractals, wavelets, non-linear dynamics, etc…
• Innovative visualization techniques are necessary
 – Dimensionality and magnitude must be addressed
Extracting more information from TCP packet traces

- CPA identifies the precise set of events that determine execution time of a distributed application
- Applying CPA to TCP transactions enables accurate assignment of delays to:
 - Server delay
 - Client delay
 - Network delay (propagation, network variation and drops)
CPA example

File transfer delay for 500KB file between Denver and Boston
Analysis of traffic anomalies

- **Motivation:** Anomaly detection remains difficult
- **Objective:** Improve understanding of traffic anomalies
- **Approach:** Multiresolution analysis of data set that includes IP flow, SNMP and an anomaly catalog
- **Method:** Integrated Measurement Analysis Platform for Internet Traffic (IMAPIT)
- **Results:** Identify anomaly characteristics using wavelets and develop new method for exposing short-lived events
Multiresolution analysis

• Wavelets provide a means for describing time series data that considers both *frequency* and *time*
 – Powerful means for characterizing data with sharp spikes and discontinuities
 – Using wavelets can be quite tricky
• We use tools developed at UW which together make up IMAPIT
 – FlowScan software
 – The IDR Framenet software
Ambient IP flow traffic

One Autonomous System to Campus, Inbound, 2001-DEC-16 through 2001-DEC-23

- bytes, original signal
- bytes, high-band
- bytes, mid-band
- bytes, low-band

WAIL

pb@cs.wisc.edu
Byte traffic for flash crowd

Class-B Network, Outbound, 2001-SEP-30 through 2001-NOV-25

Outbound Class-B Network Bytes, original signal

Outbound Class-B Network Bytes, mid-band

Outbound Class-B Network Bytes, low-band

Flow traffic during DoS attacks

Campus TCP, Inbound, 2002-FEB-03 through 2002-FEB-10

- Inbound TCP Flows, original signal
- Inbound TCP Flows, high-band
- Inbound TCP Flows, mid-band
- Inbound TCP Flows, low-band
Byte traffic during measurement anomalies

Campus TCP, Inbound, 2002-FEB-10 through 2002-FEB-17

Inbound TCP Bytes, original signal
Inbound TCP Bytes, high-band
Inbound TCP Bytes, mid-band
Inbound TCP Bytes, low-band
Anomaly detection via deviation score

- Short-lived anomalies can be identified automatically based on variability in H and M signals
 1. Compute local variability (using specified window) of H and M parts of signal
 2. Combine local variability of H and M signals (using a weighted sum) and normalize by total variability to get deviation score V
 3. Apply threshold to V then measure peaks
- Analysis shows that V peaks over 2.0 indicate short-lived anomalies with high confidence
 - We threshold at $V = 1.25$ and set window size to 3 hours
Deviation score for three anomalies

Campus TCP, Inbound, 2002-FEB-03 through 2002-FEB-10

Inbound TCP Packets

Deviation Score

Packets/sec

Score

0 10 k 20 k 30 k 40 k 50 k

Sun Mon Tue Wed Thu Fri Sat

pb@cs.wisc.edu
Deviation score for network outage

Inbound

Outbound

Bytes/sec

Pkt/s

Flows/sec

Score

Sun Mon Tue Wed Thu Fri Sat

pb@cs.wisc.edu
Deviation score evaluation

• How effective is deviation score at detecting anomalies?
 – Compare versus set of 39 anomalies
 • Set is unlikely to be complete so we don’t treat false-positives
 – Compare versus Holt-Winters Forecasting
 • Time series technique
 • Requires some configuration

• Holt-Winters reported many more positives and sometimes oscillated between values

<table>
<thead>
<tr>
<th>Total Candidate Anomalies</th>
<th>Candidates detected by Deviation Score</th>
<th>Candidates detected by Holt-Winters</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>38</td>
<td>37</td>
</tr>
</tbody>
</table>
Part 4: Difficulties with Network Measurement
Poor data consistency

• Data collected for the same characteristic using different methods does not always agree
 – Packet delays in TCP versus probes
 – Logs from different sources do not always have the same information

• Perspective matters
 – Results for BGP by Chang et al. from UMich

• Clock synchronization is always difficult
Inaccurate tools

- Active measurement tools can be blocked
- Passive measurement tools can behave in all sorts of ways
- Systems operating at lower levels in the network are not visible
- Privacy issues limit the ability to validate
- Calibration is difficult
Representativeness

• Size, heterogeneity, constant and radical change
• Just what does “representative” mean?
 – There may be no such thing
 – There do seem to be some invariant properties
 • Self-similarity
 • Heavy-tails
• Infrastructures available to the community are important
Reproducing results

• The networking community does not have a culture of reproducing results
• There are very few instances of public repositories of data
 – research.cs.vt.edu/nrg/dbase/nrgsearch.html
 – ita.ee.lbl.edu
 – www.internet2.org
 – Infrastructures mentioned in this talk
• There is little sharing of analysis tools
Explosion of data!!

- Current state of the art is OC192 (10 Gbps)
- Many popular web sites get over 1B hits per day
- Understanding all aspects of the Internet require measurements across many layers
- No standard databases for Internet measurement data
- Datasets today overwhelm statistical methods and statistical tools
Conclusions

• Measurements are necessary for understanding and improving Internet structure and behavior
• Tools and methods for taking Internet measurements give a limited view of Internet characteristics and behavior
• Current measurement infrastructures can provide a great deal of data but fall short of the GIMI goal
• There is a significant need to expand the analysis methods employed to evaluate Internet data
• Internet measurements are easy to do poorly and difficult to do well
Acknowledgements

Thanks to the following people for their help and support:

Mark Crovella, Jeff Kline, Larry Landweber, Vern Paxson, David Plonka, Amos Ron, Walter Willinger, Vinod Yegneswaran, Matt Zekauskas