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Abstract—Establishing a clear and timely picture of Internet
topology is complicated by many factors including the vast size
and dynamic nature of the infrastructure. In this paper, we de-
scribe a methodology for estimating an important characteristic
of Internet topology - the hop distance between arbitrary pairs
of end hosts. Our goal is to develop an approach to pairwise
hop distance estimation that is accurate, scalable, timely and
does not require a significant measurement infrastructure. Our
methodology is based on deploying a small set of landmark
nodes that use traceroute-like probes between each other to
establish a set of accurate pairwise hop distances. The landmark
nodes are also configured to collect source IP addresses and
TTL values from passively monitored network packet traffic.
We develop a novel multidimensional scaling algorithm that
can be applied to both the passive and active measurements to
generate pairwise hop distance estimates for all of the observed
source host addresses. The basic algorithm is then enhanced to
consider the autonomous system membership of source hosts via
BGP routing information. We investigate the capabilities of our
estimation algorithms using a set of synthetic network topologies.
The results show that our method can generate highly accurate
pairwise hop distance estimates over a range of network sizes
and configurations, and landmark infrastructure sizes.

I. INTRODUCTION

Over the past quarter century, the Internet has grown into a
gigantic and fantastically complex infrastructure that connects
over a billion users world wide. The ability to measure,
map and analyze the structural characteristics of this artifact
accurately would, for example, facilitate network design and
network management processes by exposing potential weak-
nesses in the infrastructure and opportunities to improve its
robustness and performance. Similarly, the ability to generate
accurate maps of the Internet or portions of the Internet
in near real time could help in the process of diagnosing
anomalous events, or in constructing and maintaining overlay
infrastructures among other things.

There are significant challenges in any approach to measure-
ment and characterization of Internet topology. First, the lack
of inherent support for topology measurement coupled with
ISPs desire to keep much of this information private calls for a
distributed measurement infrastructure and structural inference
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methods that are reliable and robust. Next, the vast size
and global footprint of the Internet suggest that a potentially
significant number of measurement systems will be required
in order to gather sufficient data to generate comprehensive
maps. Finally, the well known dynamic nature of the Internet
means that measurements must be taken almost continuously
in order to identify changes in a timely fashion.

Most prior work on measuring Internet topology has
been based on using active probe-based tools similar to
traceroute to gather data. Great strides have been made
in solving the thorny problems associated with active probe-
based topology measurement (e.g., interface disambigua-
tion [1], [2]), which has enabled accurate mapping of ISP
topologies (e.g., [2]) and of the Internet’s core (e.g., [3], [4]).
However, the active probe-based approaches are inherently
limited in their ability to capture characteristics of the edges of
the network and by the fact that they introduce an additional
traffic load on the infrastructure.

In our prior work, we described a new approach to identi-
fying the Internet’s structural characteristics based on simple
passive measurements of end host address1 and TTL infor-
mation from packets observed on a link or opportunistically
gathered e.g., via network honeypots [5], [6]. We developed
a set of inference algorithms that can be used to establish
end host address clusters and to identify shared path char-
acteristics sufficient to recover important characteristics of
network topology. The passive measurement-based approach
offers the benefits of no additional traffic in the network,
simplified management of the measurement infrastructure, and
the potential for broader and more timely coverage.

In this paper, we extend our prior work by describing a new
method for accurately estimating the shortest hop distances
between arbitrary pairs of hosts in a network. We argue
that this characteristic of Internet topology is important and
useful in its own right. For example, if link failures are
independently and identically distributed, then identifying the
shortest paths between nodes is important to robust overlay
network design. The shortest pairwise hop distance estimation
between arbitrary nodes is also an important step toward our

1We assumed IP addresses to be equivalent to individual Internet hosts
although we understand that this could introduce error into our estimates.
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overall objective of accurate and timely generation of Internet-
wide topology maps using passive measurements. While it is
known that routes do not always take the shortest path [7],
we argue that the assumption is reasonable for this work since
our primary objective is to demonstrate the feasibility of our
methods, and not to draw conclusions about the empirical
characteristics of the Internet.

We address this problem by creating an embedding of
m landmark nodes, which send active traceroute-like probes
between each other. These nodes are also configured to collect
passive measurements of n À m source IP addresses and TTL
values. The difficulty is that hop counts between any pair of
the n nodes are not available and packets from all n nodes will
not be observed at all m landmark nodes. We apply a multi-
dimensional scaling (MDS) algorithm to generate estimates of
hop distances between all nodes using the combined active
and passive measurements. This algorithm uses an iterative
approach to minimize the error between the embedding of
the nodes and observed distances from the passive and active
measurements. We emphasize the fact that the number of
landmarks is far smaller than the number of end host addresses
(m ¿ n). In our experiments, m is orders of magnitude
smaller than n. Thus, the overhead of the active measurement
component of the process is almost negligible.

We evaluate the feasibility and capabilities of our pairwise
hop distance estimation method using a set of synthetic topolo-
gies and an empirical data set from Skitter [4]. We consider
varying degrees of missing passive measurement data and
find that the algorithm is able to consistently produce highly
accurate pairwise hop distance estimates. We also consider the
impact of different sizes of landmark infrastructures and find
that even low dimensional embeddings (e.g., < 7) are able to
produce highly accurate estimates.

The remainder of this paper is organized as follows. In
Section II, we discuss prior studies that are related to our
own. In Section III, we describe the datasets that are used
in the evaluation of our pairwise hop distance estimation
method. We provide details on the multi-dimensional scaling
estimation method using active measurements in Section IV,
and on our extension to this method using incomplete passive
measurements in Section V and using BGP information in
Section VI. We demonstrate the capabilities of our methods
in Section VII, and we conclude in Section VIII.

II. RELATED WORK

Most previous network embedding methods have considered
the problem of latency estimation between nodes. In [8], [9],
[10], [11], methods are proposed in which a set of m landmark
nodes are embedded in a low-dimensional Euclidean space,
and then mn measurements are made between each landmark
node and all n other nodes. While past studies have identified
difficulties with some of the basic assumptions of embeddings
(e.g., [7]) more recent work has shown them to perform quite
well in practice [12]. Embeddings have also been proposed
as a mechanism for topological inference [13], [14]. These
approaches are based on hop-count measurements obtained

using active probes between landmarks and all other nodes.
In contrast, our proposed approach relies primarily on passive
measurements and involves a negligible number of active
probes, resulting in a significantly lighter weight approach to
the problem. Our emphasis on passively collected data avoids
the problems of using a large number of active measurements,
which includes the difficulty in generating real-time Internet
topologies from these measurements and the prevalence of
active blocking of standard probes by ISPs.

To the best of our knowledge this is the first network
embedding method that uses passive measurements to reduce
the number of active probes. The total number of active probes
needed for our method will be shown to grow quadratically
in the embedding dimension. As the embedding dimension is
shown to be typically about 10 (see Section VII), the number
of probes needed will be on the order of around 100 (regardless
of the number of nodes in the network), making the method
almost completely dependent on passive measurements.

This is also the first network embedding study designed
to handles large amounts of missing measurement data. Our
embedding methodology, unlike the prior work in [14], [13],
[8], is designed to embed IP sources given very incomplete
network measurements. In fact, due to their reliance on com-
plete measurements, the previous work in the area of network
embedding is incomparable to our methodology. Our previous
work in the area of incomplete network measurements [5], [6]
focused on statistical clustering of end hosts given incomplete
passive measurement data. This paper describes a more ad-
vanced methodology that resolves the distance in router hops
between each pair of end hosts, a problem not addressed in
our previous research.

III. HOP-COUNT DISTANCE MEASUREMENTS

The basis for our approach is illustrated by the diagram
in Figure 1. Packets sent from source Si depart from the
network edge and eventually enter the densely-connected core
component through a border router. The packets then traverse
the core, exit through another border router and eventually
are intercepted by a passive monitor Mj . The number of hops
between Si and Mj , deduced from the TTL field, is denoted by
hij . A complete system with n such end hosts and m passive
monitors results in an n×m hop-count matrix denoted by H .
In practice, not all end hosts will be observed at every monitor,
and therefore H is typically incomplete (i.e., hi,j is missing
for certain i, j). We describe a procedure for dealing with this
incomplete data problem later in the paper. We also assume
that the complete set of hop-count distances (an m×m matrix
denoted by A) between all pairs of monitors is available. These
distances may be obtained either passively or actively.

IV. MULTIDIMENSIONAL SCALING (MDS)

Several previous studies have indicated that the salient
features (e.g., latencies or hop-count distances) of high-
dimensional networks can be captured by low-dimensional
embeddings [8], [9], [10], [13], [14]. We pursue this idea
by determining a low-dimensional embedding that preserves
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Fig. 1. Basic network model consists of passive monitors M1, M2, ...Mm

that capture packets sent by end host Si through a densely connected core
component.

the distances of the observed hop-counts hi,j as accurately
as possible. In turn, the embedding produces estimates (or
imputations) of the hop-count distances between sources and
monitors that were not observed and between n sources
themselves (also not observed).

A. Classical Multidimensional Scaling (MDS)

First consider the case where n2 active measurements have
been performed between all pairs of the n end hosts in the
network. This provides the hop-count distances between all
pairs of end hosts, creating the distance matrix D (where Di,j

is the number of hops between end hosts Si and Sj). Using
the complete observation of pairwise distances, one can apply
classical Multidimensional Scaling (MDS) [15] to map the
sources to a lower dimensional space (Si → Xi). This lower
dimensional space will be of dimension = d, where d ¿ n.
In this mapped space, the Euclidean distance between points
(‖Xi−Xj‖) corresponds to the estimated hop-count distances
between the two end hosts in the network.

The embedding dimension d is chosen to be as small as
possible while still providing an embedding that accurately
preserves the hop-count distances. This is accomplished by
considering the energy ratio

e (d) =
∑d

i=1 λi∑m
i=1 λi

(1)

where λi is the i-th eigenvalue of the matrix A. The
embedding dimension d is selected as the smallest d such
that e (d) > 90%. This can be considered as the smallest
embedding dimension, such that 90% of the energy of the
original high-dimensional data is retained. Motivation for this
threshold of 90% will be shown in Section VII-D.

B. Landmark MDS using Active Measurements

Given a very large number of end hosts, the computational
complexity of classical MDS may be too large to practically
implement (given the O

(
n3

)
computation time and O

(
n2

)
number of active probes needed). This challenge can be
addressed using a technique known as Landmark MDS [16].
Landmark MDS reduces the complexity by measuring the

distances between each end host to only m landmark points,
and then embedding each end host using knowledge of the
pairwise distances between each one of the landmarks (i.e., the
m monitors in our application). This method reduces the com-
putational complexity from O

(
n3

)
to O

(
m2n + m3

)
. In a

network setting, this requires making m2 active measurements
to obtain the pairwise distances between the monitors, and then
mn active measurements to obtain the distances from each
source to each of the landmarks. The GNP method from [8]
can be considered as a special case of Landmark MDS with
active measurements.

V. LANDMARK MDS USING INCOMPLETE PASSIVE
MEASUREMENTS

Active probing to determine the hop-count distances be-
tween end hosts and monitors is impractical. The virtue
of our proposed framework is that some of these distances
can be obtained passively, this eliminates the requirement of
mn active measurements between each IP source and each
landmark. Note that if we had a complete set of passive
measurements from each of the n end hosts to all m number of
monitors, it would be possible to simply use Landmark MDS
to embed both monitors and end hosts in a lower-dimensional
space. The challenge of the passive approach is that many of
the distances will not be observed, resulting in an incomplete
data problem. Thus, for a given set of monitors, many of hop
count distance observations are missing from the observed set.
For each end host Si, we have a (potentially incomplete) hop
count vector hi,I(i) where I(i) indicates the indices from the
passive monitors that have observed traffic from end host Si.
We assume that this data is Missing-at-Random (where the
missing data locations are chosen at random in each vector) 2.

The challenge becomes how to determine the embedding
from incomplete hop-count data. Previous work on Landmark
MDS with missing data in [17] simply removes any data
point with missing features. In our application, this simple-
minded approach would be catastrophic, since it is unlikely
that many end hosts will be observed at all m monitors.
We next adapt a method previously designed to handle noisy
distance observations to handle the missing data problem.

A. Stress Function Construction

Given A, the array of pairwise hop-count distances between
passive monitors, H the (potentially incomplete) hop-count
distances from the end hosts to the monitors, we can then
construct the (n+m)×(n+m) symmetric distance matrix D,
where each element represents the observed pairwise distance
between two end hosts. This matrix can be represented as
follows:

D =
[

A HT

∅1 ∅2

]

where ∅1 represents the unknown n×m reverse hop count
matrix (the number of hops from the monitors to the end hosts)

2Clearly, this Missing-at-random assumption is reliant on monitor place-
ment in real topologies
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and ∅2 denotes the n×n array of missing hop-count distances
between pairs of the n end hosts.

Next define a mask W to indicate the locations of the
observed hop values:

Wi,j = 1 for 1 ≤ i, j ≤ m

Wi,j =
{

1 : if hi,j is known
0 : if hi,j is missing

For m + 1 ≤ i ≤ m + n and 1 ≤ j ≤ m. An example of the
structure of W is depicted in Figure 2.

Fig. 2. Example mask array W , (with n = 4 and m = 2). Note that
not all hop-counts from end hosts to monitors are observed, and none of the
hop-counts between end hosts are observed.

The embedding process amounts to assigning a d-
dimensional vector to each monitor and source. Each vector is
generically written as Xi, for the i-th monitor or source. The
collection of all vectors, or embedded points, is represented
by the (m + n)× d matrix X . The embedding is designed by
minimizing the stress function:

stress(X) =
n+m∑

i=1

n+m∑

j=1

Wi,j (‖Xi −Xj‖ −Dij)
2 (2)

with respect to the embedded points X . Intuitively, minimiz-
ing the stress function will minimize the squared error between
the estimated distance between end hosts and the observed hop
count distances. Note that the stress function places no cost
on unobserved distances.

B. Stress Optimization Method

The stress function is minimized through an iterative pro-
cedure. Let X(t) denote the embedded points at iteration t.
Using the majorization method from the MDS literature [15],
we can bound the stress function from Equation 2 using a
convex function and then minimize the bounding function. The
procedure guarantees the stress is reduced at each iteration;
i.e., stress

(
X(t+1)

) ≤ stress
(
X(t)

)
. The bounding function

can be solved iteratively by:

X
(t+1)
i,a = zi

∑

j 6=i

Wi,j


X

(t)
j,a +

Dij

(
X

(t)
i,a −X

(t)
j,a

)

‖X(t)
i −X

(t)
j ‖


 (3)

For zi = 1∑
j 6=i

Wi,j
, i = 1, 2, ..., n + m and a = 1, 2, ..., d

(where d is found using Equation 1 on the m-by-m monitor

distance array A). A proof of the monotonically decreasing
stress of this method is stated in [18]. The procedure is
repeated until the embedding coordinates converge to where
‖X(t) −X(t+1)‖ < ε, with ε > 0. The step-by-step method-
ology for solving this problem is described in Algorithm 1.

Algorithm 1 - MDS Algorithm with Incomplete Passive
Measurements

Initialize:
• Using the matrix of pairwise distances between passive

monitors (A), use Equation 1 to find the embedding
dimension d.

• Randomly create d-dimensional placement vector X
(1)
i

for all i = 1, 2, ..., n + m.
• Set t = 1, ε > 0.

Main Body
1) Adjust the monitor embedding

X
(t+1)
i,a =

1
m− 1

m∑

i=1,j 6=i


X

(t)
j,a +

Aij

(
X

(t)
i,a −X

(t)
j,a

)

‖X(t)
i −X

(t)
j ‖




For i = {1, 2, ..., m}

2) Adjust all the end host node embedding with respect to
the monitor embedding. We can reduce the formula in
Equation 3 to:

X
(t+1)
i,a =

1∣∣I(i)
∣∣

∑

j∈I(i)


X

(t)
j,a +

hij

(
X

(t)
i,a −X

(t)
j,a

)

‖X(t)
i −X

(t)
j ‖




For i = {m + 1,m + 2, ..., n + m}, where I(i) is the
set of monitor indices observed for end host Si.

3) if ‖X(t) −X(t+1)‖ < ε then
Go to Step 4.

else
Set t = t + 1 and go to Step 1.

end if
4) Estimate the pairwise hop distances using the embed-

ding: d̂i,j = ‖Xi −Xj‖

VI. EXPLOITING BGP DATA

Consider the setup in Figure 3, where two end hosts have the
same observed hop count to a single monitor. Given only this
single element of information, the embedding algorithm may
place these two end hosts close (resulting in a small estimated
pairwise hop distance), even though they exist in separate
autonomous systems (ASes) and may be potentially far apart
in the real Internet topology. By exploiting BGP routing data,
we can extract the specific AS that each end host exists in, and
use that information to improve our pairwise hop estimation
technique.
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TABLE I
COMPARISON OF FOUR DIFFERENT TECHNIQUES FOR DISCOVERING PAIRWISE DISTANCES BETWEEN END HOSTS (n IS THE NUMBER OF END HOSTS, m

ARE THE NUMBER OF MONITORS (n À m), AND k IS THE NUMBER OF ITERATIONS PERFORMED ON THE OPTIMIZATION PROCEDURE FROM
SECTION V-B).

Method Number of Active Measurements Computational Complexity

Skitter O
(
n2

)
O (1)

Landmark MDS using Active Measurements O
(
m2 + nm

)
O

(
m2n + m3

)
Landmark MDS using Passive Measurements O

(
m2

)
O

(
kmdn + m3

)

Intuitively, given no other distance knowledge, one would
prefer to embed end hosts close together if they exist in
the same autonomous system (AS), while embedding the end
hosts farther apart if they are in different ASes. From either
examining BGP looking glass servers or our own selection of
passive measurement monitors, we can gather characteristics
of paths from end hosts in different ASes, including the mean
distance of these paths (µB). We can weakly assume that
end hosts in the same AS should have path lengths closer
to zero, while end hosts in different autonomous systems
should have path lengths closer to this average value, µB .
This motivates creating a BGP distance matrix containing our
weak assumptions on what the end host distances should be
from the BGP data,

DB
i,j =

{
µB : if Si and Sj are in different ASes
0 : if Si and Sj are in the same AS

For 1 ≤ i, j ≤ n + m.

AS AS
?

10
10

M

S
Si
j

k

1
2

Fig. 3. Two end hosts with the same hop distance to a single monitor.

Instead of relying only on the incomplete hop count dis-
tances between the end hosts and the monitors, we can also
use weak assumptions based on the AS distance information
to embed the end hosts. Intuitively, one would not weight
the weak assumptions of the AS distances the same as the
observed hop count distances from passive measurements. It
follows that the AS distance confidence for each pair should
be inversely proportional to the variance for all paths. From
a small set of probes, we can find the sample variance of the
length of paths in the same AS, σ2

in, and the sample variance
of the length of paths in different AS, σ2

out. This leads to the
definition of a new mask array WB ,

WB
i,j =

{
1

σ2
in

λ Si and Sj exist in the same AS
1

σ2
out

λ Si and Sj exist in different ASes

For 1 ≤ i, j ≤ n + m, and where the weight value, λ, can
be adaptively found using a bisection method to find the value
that embeds the monitors with the lowest error (with respect
to the observed pairwise hop distances to other monitors).

The stress function for this AS exploiting technique can
then be defined as:

stressB(X) =
n+m∑

i=1

n+m∑

j=1

Wi,j (‖Xi −Xj‖ −Dij)
2 +

n+m∑

i=1

n+m∑

j=1

WB
i,j

(‖Xi −Xj‖ −DB
ij

)2

The methodology for minimizing this stress function is de-
scribed in Algorithm 2.

VII. RESULTS

A. Passive Measurement Datasets

We use two different data sets to evaluate the algorithms
described in the prior sections. The first are a set of topologies
generated by Orbis [19]. Orbis is one of the latest and most
realistic network topology generators. It creates graphs that
have properties that are consistent with many of those observed
in the Internet. The Orbis-generated synthetic networks enable
us to analyze the capabilities of our methods with full ground
truth and over a range of network and embedding sizes.

The second data set that we use in this paper is a router-level
connectivity map of the Internet based on data collected by
Skitter [4]. Measurements in Skitter are based on traceroute-
like active probes sent from a set of 24 monitors to a set
of nearly 1M target hosts distributed throughout the Internet.
We use the openly available router-level map create from
data collected between April 21 and May 8, 2003. This map
consists of 192,224 unique nodes and 609,066 undirected
links. It is important to note that the goal of the Skitter
target host list is to have one responding node in each /24
prefix. Thus, the characteristics of the Skitter graph with
respect to destination subnets is different from Orbis generated
topologies, which reflect collections of nodes in subnets.

Our analysis assumes that the only data that will be used to
infer network structure is the end host address (used only to
uniquely identify a host) and TTL extracted from the header of
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Algorithm 2 - MDS Algorithm with Incomplete Passive
Measurements and BGP Information

Initialize:
1) Using the matrix of pairwise distances between passive

monitors (A), use Equation 1 to find the embedding
dimension d.

2) Using bisection search, find λ that minimizes the error
embedding the monitors in d dimensions.

3) Randomly create d-dimensional placement vector X
(1)
i

for all i = 1, 2, ..., n + m.
4) Set t = 1, ε > 0

Main Body:
1) Adjust the monitor embedding

X
(t+1)
i,a =

1
m− 1

m∑

i=1,j 6=i


X

(t)
j,a +

Aij

(
X

(t)
i,a −X

(t)
j,a

)

‖X(t)
i −X

(t)
j ‖




For i = {1, 2, ...,m}.
2) Adjust all the end host node embedding with respect to

the monitor embedding and the AS information

X
(t+1)
i,a =

1∣∣I(i)
∣∣ +

∑n+m
j=1 WB

i,j

(si + ti)

For i = {m+1,m+2, ..., m+n}, where I(i) is the set
of monitor indices observed for end host Si. Where:

si =
∑

j∈I(i)


X

(t)
j,a +

hij

(
X

(t)
i,a −X

(t)
j,a

)

‖X(t)
i −X

(t)
j ‖




ti =
n∑

j=1,j 6=i

WB
i,j


X

(t)
j,a +

DB
i,j

(
X

(t)
i,a −X

(t)
j,a

)

‖X(t)
i −X

(t)
j ‖




3) if ‖X(t) −X(t−1)‖ < ε then
Go to Step 4.

else
Set t = t + 1 and go to Step 1.

end if
4) Estimate the pairwise hop distances using the embed-

ding: d̂i,j = ‖Xi −Xj‖

each packet. In the case of the Orbis and Skitter data sets, we
synthesize these values. In real world applications, honeynet
data can be analyzed using the clever technique described
in [20] to infer the number of hops between the honeypot
monitor and the host. This inference is made based on the
fact that (i) there are only a few initial TTL values used in
popular operating systems (e.g., 64 for most UNIX variants,
128 for most Microsoft variants and 255 for several others),
and (ii) typical hop counts for end-to-end paths are far less
than the differences between the standard TTL values. Thus,
hop count is inferred by rounding the TTL up to the next

highest initial TTL value and then subtracting the initial TTL.

B. Mean Hop Distance Estimation

To compare the performance of our embedding algorithms,
we must find a methodology to contrast against. Due to
the reliance of our purposed method on incomplete passive
measurements, the previous network embedding algorithms
in [14], [13], [8] are not comparable. We instead choose the
most logical, a mean estimation approach, where the estimated
pairwise hop distance for any pair of end hosts in the topology
are estimated to be the mean of the pairwise hop distance
found by active measurements between the monitor nodes
(represented by the matrix A).

d̂mean =
1

m2

m∑

i

m∑

j

Ai,j

Note that the estimate of d̂mean is the same for all choice of
end hosts i, j.

C. Embedding Experiments

For each dataset, we obtain a low-dimensional embedding
using the MDS procedure described above. Given the low-
dimensional embedding of each end host, we estimate (or
impute) the hop-count distance between pairs of end hosts.
We begin by running the iterative methods from Section V
and Section VI on a series of synthetic Internet topologies
generated using the Orbis tool [19]. For the purposes of this
paper, we assume that the passive measurement monitors are
randomly placed in the topology, with our experiment monitors
randomly chosen from the set of leaf nodes in the topology,
with the passive measurements simulated as the length of the
shortest path found in the topology between the end hosts and
the monitors. In all experiments, the BGP/AS information was
synthetically created by randomly choosing a subset of 15 end
hosts and classifying each end host’s AS as the index of the
pairwise closest end host in the random subset.

The error metric used to assess the estimation accuracy is
the Root Mean Squared Error (RMSE) defined as:

RMSE(D̂) =
√∑

i,j

(
Di,j − D̂i,j

)2

=

√√√√
n+m∑

i=m+1

n+m∑

j=m+1

(Di,j − ‖Xi −Xj‖)2

If our estimator has an RMSE of 1, then we can estimate the
true hop distance (on average) within a single hop. It also fol-
lows for the mean estimation approach (from Section VII-B),
that the RMSE results are the sample standard deviation of
the ground truth hop count values.

In Figure 4, the size of the topology is held constant, while
performance of the algorithm is compared as the number of
monitors varies between graphs (from 8 measurement monitors
to 32 measurement monitors). The error rate (RMSE) is
plotted against the amount of “missingness” in the passive
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measurement data, where if there are 16 monitors, then X
observed features refers to observing X out of 16 elements
for each hop count vector with the observed elements chosen
at random.

Figure 5 shows the performance of the algorithm in estimat-
ing pairwise distances between end hosts are seen with respect
to varying topology sizes, where using the Orbis topology
generating toolkit the topologies are rescaled in terms of the
total number of nodes in the graph (from 1000 to 2000 nodes).

In both Figures 4 and 5, the performance of the algorithm
is seen with and without the autonomous system information.
The results show that when there is very little information from
the passive measurements (low total number of monitors, high
levels of incompleteness, etc.), the BGP exploiting algorithm
performs considerably better than the embedding algorithm
that ignores the BGP data. It is only when there is a large
amount of available passive measurement data, as shown in
Figure 4-(right), that the BGP exploiting algorithm is moder-
ately outperformed by the algorithm that ignores the BGP data.
Meanwhile, both MDS algorithms outperform the naive mean
estimation approach given moderate levels of missingness in
the hop count vectors.

Fig. 5. Simulation results for error rates of pairwise hop estimation for
synthetic topology versus amount of available data (m=16, n=2000)

D. Dimensionality Selection

Using the dimensionality selection technique described in
Section IV-A, we now examine how much a reduced dimen-
sion embedding space effects our estimation technique. In
Figure 6, we show the performance of the MDS algorithm
(with no BGP/AS information) as the dimension of the em-
bedding space increases. One can see that after the determined
embedding dimension d = 5 (found using Equation 1), any
additional embedding dimension has very little reduction on
both the RMSE and the confidence bounds of the pairwise
distance estimation.

E. Additional Monitors

Given the improvement on the pairwise hop estimation by
adding monitors (as seen in Figure 5), one important question
could be what effect does each additional monitor added

Fig. 6. The effect of embedding dimension to estimating the pairwise distance
values for the synthetic topology, n = 1000, w/ m = 32 and calculated
dimension d = 5, confidence bars indicating +/-1 standard deviation

to the experiment have on the estimation error rate? Using
the synthetic topology, in Figure 7 we see the effects that
each additional monitor has on the estimation RMSE and the
confidence bounds. As shown in the figure, after the placement
of roughly 10 monitors, each additional node has relatively low
impact on the resulting error rates and confidence bounds.

Fig. 7. The effect of adding additional monitors to estimating the pairwise
distance values for the synthetic topology, observing complete hop count data,
n = 3000, confidence bars indicating +/-1 standard deviation

F. Skitter

We also consider the performance of the estimation tech-
niques using the Skitter dataset [4]. Using the same method-
ology as the Orbis topology experiments, a random subset of
n = 1000 leaf nodes were selected as end hosts and randomly
selected other leaf nodes were selected as passive measurement
monitors. The pairwise distances were estimated for different
levels of missing data in Figure 8 using both embedding
methodologies. Again, the MDS algorithm exploiting the
BGP/AS information outperforms the non-BGP/AS algorithm
for experiments with low levels of observed data.

G. Routing Asymmetry Results

The resulting topology estimates from the Multidimensional
Scaling technique reveal a symmetric topology, where the
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Fig. 4. Simulation results for error rates of pairwise hop estimation for synthetic topology versus amount of available data (n=1000). (left) m=8, (center)
m=16, (right) m=32

Fig. 8. RMSE of pairwise hop estimation simulation results for the Skitter topology (n = 1000). (Left) M = 8, (Center) M = 16, (Right) M = 32

forward and reverse paths between end hosts are of equal
lengths. However, prior empirical research on Internet routing
has shown that asymmetry on forward and reverse paths
between hosts is not uncommon (e.g., [21], [22], although
we were unable to find prior empirical work that broadly
quantifies the difference between the forward and reverse path
lengths). Given the possibility of path length asymmetry, we
examine the impact on our estimators when the reverse paths
are off by one hop, two hops, and three hops (with equal
probability of positive or negative length offset).

The effects of this distribution of path length asymmetry
on our estimation methodology can be seen in Figure 9.
Although the error rate increases as the amount of asymmetry
in the forward and reverse hop counts increases, the MDS
methodology (for both the BGP/AS and non-BGP/AS method)
still outperforms the naive mean estimation methodology for
all but the highest levels of missingness.

VIII. FUTURE WORK

The next step for our work is to attempt to construct a
larger topology using these pairwise estimated distances. For
the case of two end hosts and a single monitor, as seen
in Figure 10, resolving the logical topology using both the
passive measurements and the estimated pairwise hop distance
is a trivial task. But, as the number of end hosts grows
and the number of monitors increases, fusing the numerous

subtopologies and adding the necessary nodes to the topology
becomes a non-trivial problem. One potential future direction
is fusing our work on resolving shared path lengths between
paths in [6] with the work in this paper. To improve upon
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Fig. 10. Discovering the logical topology using distances

the performance of the algorithm, another potential future
direction is to study how one can use directed active probes
to fill-in our incomplete passive measurements. Also to be
considered is the effect of intelligent placement of the passive
measurement monitors as opposed to the random placement
considered in this paper.

IX. CONCLUSIONS

Our goal is to establish comprehensive maps of Internet
topology quickly, accurately and with minimal impact on the



9

Fig. 9. Simulation results for asymmetric reverse paths for synthetic topology (n = 1000, m = 16) versus amount of available data . (left) Reverse paths
off by 1 hop, (center) Reverse paths off by 2 hops, (right) Reverse paths off by 3 hops

network. In this paper, we take an important step toward
that goal by presenting a method for establishing pairwise
hop distances between nodes in the Internet. Our approach
begins by deploying a landmark measurement infrastructure
in the Internet, which uses active probes to establish accurate
hop distances between all of its nodes. The measurement
infrastructure is also enabled to passively monitor links and
collect end host source addresses and TTLs from packets.
We describe a multi-dimensional scaling algorithm that we
apply to the active and passive measurements that generates
estimates of hop distances between all observed nodes (end
host addresses and landmarks). Our algorithm is designed to
generate estimates even when all end host addresses have
not been observed in all landmarks. The embedding algo-
rithm is then enhanced to incorporate autonomous system
information for the end hosts, which results in improved
estimation performance. We evaluate the capabilities of our
method using topologies generated by Orbis and from Skitter
data. The results show that our method is able to generate
highly accurate pairwise hop count estimates even with a
small landmark infrastructure and a relatively large amount of
missing data. Our ongoing efforts are focused on refinement
of the methodology, additional empirical evaluations, and
devising methods for using pairwise hop distances to establish
and enhance Internet topology maps.
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