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Abstract—The effectiveness of rate adaptation algorithms
is an important determinant of 802.11 wireless network
performance. The diversity of algorithms that has resulted
from efforts to improve rate adaptation has introduced a
new dimension of variability into 802.11 wireless networks,
further complicating the already difficult task of understand-
ing and debugging 802.11 performance. To assist with this
task, in this paper we present and evaluate a methodology for
accurately fingerprinting 802.11 rate adaptation algorithms.
Our approach uses a Support Vector Machine (SVM)-based
classifier that requires only simple passive measurements of
802.11 traffic. We demonstrate that careful conversion of raw
packet traces into input features for SVM is necessary for
achieving high classification accuracy. We tested our classifier
on the four rate adaptation algorithms available in MadWifi,
the most popular open source driver for commodity wireless
cards. The classifier performs with an accuracy of 95%-100%.
We also show that the classifier is robust over a variety of
network conditions if the training data includes a sufficient
sampling of the range of an algorithm’s behavior.

I. INTRODUCTION
802.11 supports multiple data transmission rates at the

physical layer to allow senders to maximize throughput
based on channel conditions. The modulation schemes used
to encode data at lower rates are more robust to channel
noise that those used for higher rates. If the channel quality
is good, i.e., the signal-to-noise ratio (SNR) is high, then
higher data rates will maximize throughput because the bit-
error rate (BER) will be low. If the channel is noisy, lower
data rates will maximize throughput because the high BER
at higher data rates will lead to increased loss and MAC-
layer backoffs, resulting in poor throughput.
Designing algorithms that allow wireless senders to con-

verge to the optimal rate for prevailing channel conditions
in a timely fashion is challenging due to the difficulty of
determining the cause of packet loss [1], limitations of the
PHY/MAC interface in commodity wireless cards [2], and
the assumption that a higher transmission rate always results
in higher loss for a given RF environment not always being
true [3]. Many attempts have been made to address this
challenge, resulting in a large number of rate adaptation
algorithms, with different algorithms performing best under
different network conditions.
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In this paper, we describe a method for identifying or
fingerprinting the rate adaptation algorithms used in an
802.11 environment. We envision this capability as being
part of a toolkit for automated performance analysis and
debugging of production networks. The need for automated
analysis and debugging has become increasingly urgent
as 802.11 networks have grown to support large user
populations. Client devices set their own configurations and
connect and disconnect at will. Wireless network adminis-
trators have little control over, and knowledge of, network
configurations, and cannot rely on cooperation from clients
for performance analysis and debugging. Thus, practical
performance analysis and debugging efforts for large-scale
wireless networks such as [4], [5] are typically based
entirely on passive monitoring, which requires no support
or participation from clients. The presence of multiple rate
adaptation algorithms introduces a new dimension of vari-
ability into 802.11 wireless networks. However, to the best
of our knowledge, none of the passive monitoring-based
performance analysis and debugging efforts in the literature
consider the impact of 802.11 rate adaptation algorithms,
despite the fact that the choice of rate adaptation algorithms
can have a major impact on network throughput. The rate
adaptation algorithm fingerprinting capability will provide
additional information to passive monitoring systems to
facilitate wireless network performance analysis.
We begin by investigating the details of the four open

source rate adaptation algorithms from the popular MadWifi
driver that constitute the test cases for our study. Manual ex-
amination of implementations shows that the algorithms can
result in many possible rate change permutations depending
on the timing and pattern of packet transmissions and losses.
The large space of permutations precludes a fingerprinting
approach based on explicitly enumerating all possible cases
of an algorithm’s behavior and suggests the need for a
learning-based approach for algorithm classification.
We develop a rate adaptation classifier using Support

Vector Machines, a state-of-the-art machine learning tech-
nique, using carefully selected input features from passive
packet traces. We then conduct extensive experiments in a
laboratory environment to identify combinations of features
that result in the most accurate classification capability. Our
results show that a classifier trained with a robust set of
features can exhibit classification accuracy as high as 95%-
100%. We show that careful selection of input features is



necessary for achieving high classification accuracy. We
also demonstrate that a classifier generated in one set of
network conditions can identify algorithms in a different set
of network conditions as long as the training data includes
a sufficiently broad sampling of an algorithm’s behavior.

II. RELATED WORK

Given the potentially large impact rate adaptation al-
gorithms can have on 802.11 network throughput, it is
not surprising that many research efforts over the past
decade have focused on these algorithms. Rate adaptation
algorithms fall into two categories, those that use physical
layer information such as signal-to-noise ratio (SNR) [6]–
[9], and those that use frame level information such as
packet loss and throughput [3], [10], [11]. Specialized
rate adaptation algorithms have also been developed for
vehicular wireless networks, e.g., [12], [13].
A number of projects such as [3], [8], [14] have fo-

cused on characterizing the performance of rate adaptation
algorithms, analyzing whether particular algorithm design
choices results in optimal throughput in a particular type
of RF environment. Our work is complementary to these
projects because it can be used to identify the algorithms
deployed, and the knowledge of algorithm performance
characteristics garnered from these other projects can be
used to determine whether the rate adaptation algorithm is
the cause of performance problems.
Several machine learning techniques, including SVMs,

have been used to select optimal modulation and coding
schemes based on physical layer parameters for MIMO
systems (e.g., [15]). Such efforts are complementary to our
work because they use SVMs to optimize throughput while
our work uses SVMs for algorithm identification.

III. SUPPORT VECTOR MACHINES

This section introduces Support Vector Machines: for
more details see [16]. We are interested in predicting
the identity of rate adaptation algorithms based on their
observed characteristics. In statistical machine learning, this
can be cast into a classification problem.
Each run of a particular algorithm produces a series

of feature vectors. We call each such feature vector x an
instance. Each instance is represented by a d-dimensional
real-valued vector x ∈ Rd . The label y ∈ {1, . . . ,C} of an
instance x is the identity of the algorithm underlying this
run, where C is the number of distinct algorithms. For
example, if a run of algorithm 2 produces 1000 feature
vectors, we would have the following instance-label pairs:
(x1,y1 = 2),(x2,y2 = 2), . . . ,(x1000,y1000 = 2).
We have a training set which consists of multiple runs of

all the algorithms under different conditions. The complete
training set can be represented as a collection of n instance-
label pairs {(xi,yi)}ni=1. A “test run” of an algorithm with

unknown identity (but known to be one of those C algo-
rithms) can be represented by its m instances {xi}n+mi=n+1.
Our goal is to infer the class labels yn+1 . . .yn+m in the test
run. Note by definition yn+1 = . . . = yn+m. However, for
computational convenience we adopt a two-stage procedure:
In the first stage, we use a Support Vector Machine (SVM,
discussed below) to predict the instance labels yn+1 . . .yn+m
which may be inconsistent (not all the same). In the second
stage, we compute the single consensus label of the test run
by a majority vote of the predicted instance labels. That is,
the consensus label is the one which appear most frequently
in yn+1 . . .yn+m.
To predict the instance labels, we train an SVM which

can be understood as a function Rd → {1, . . . ,C} that
attempts to map any instance x to its class label y. For
simplicity, we describe the linear, binary-label case C = 2,
and refer the reader to the literature for the multi-label case.
In this case, it is customary to encode the labels equivalently
as {−1,1} instead of {1,2}. A linear binary-label SVM
estimates a real-valued function f :Rd→R with parameters
w ∈ Rd and b ∈ R:

f (x) = w%x+b,

and predicts the class label according to sign( f (x)). Train-
ing amounts to selecting an f that performs the best on the
training set {(xi,yi)}ni=1. Performance here is measured by
the so-called hinge loss function

L( f (x),y) =max(1− y f (x),0)

which is to be minimized. The hinge loss is a surrogate
(and in fact, a convex upper bound) of the 0-1 loss, which
is one if the prediction sign( f (x)) differs from the true label
y, and zero otherwise. The hinge loss is preferred over the
0-1 loss because the former is easier to optimize due to its
convexity.
Given the training set, training an SVM involves finding

the function f̂ that minimizes the hinge loss on the training
set, plus a regularization term:

f̂ = argmin
f

n

∑
i=1

L(( f (xi),yi)+λ‖ f‖2. (1)

The first term is the total loss on the training set. The
function that minimizes this total loss “does best” on the
training set. Such a function, however, may not be the
one that produces the most accurate predictions on future
test instances. This is because minimizing training set loss
has the danger of overfitting the training data. One way
to prevent overfitting is to regularize f by its norm ‖ f‖2,
with the intuition that we prefer a smoother function. The
scalar λ balances training set loss and smoothness of f .
The solution to the optimization problem (1) can be found
efficiently using a quadratic program. The basic idea can be
readily extended to multi-label cases. We use the multi-label
linear SVM software SVMmulticlass [17].



We have used SVM-based methods for our earlier work
on TCP throughput prediction for wireline and wireless
environments in [18], [19]. The use of SVM in this case is
considerably different because in the earlier work, the input
feature set was small (less than 5 features), fairly obvious
(e.g., path properties such as loss rate and queuing delay),
and the time scale of interest was on the order of several
seconds. However, in this case, the feature set is large and
non-obvious as described in Section V-C, and the time scale
of interest is on the order of tens of milliseconds.

IV. RATE ADAPTATION ALGORITHMS
The development of our classifier is based on the four

802.11 rate adaptation algorithms implemented by the lat-
est version (0.9.4) of the popular open-source MadWifi
driver [20]. We chose an open source driver so we could
gain insight into algorithm behavior and validate the results
of the classifier based on manual algorithm inspection. In
this section we summarize the MadWifi rate adaptation
algorithms. Our objective is to highlight the complexities
of an algorithm’s behavior, in particular the fact that an
algorithm’s behavior can change dramatically depending on
the prevailing network conditions. The need for a learning-
based classifier arises because the large number of packet
rate and retransmission patterns that can occur with a given
algorithm would be very difficult to enumerate explicitly.
The MadWifi driver is designed for wireless cards using

Atheros chips, which implement multi-rate retries [21]. The
Hardware Abstraction Layer (HAL) exports a retry chain,
consisting of 4 ordered pairs of rate/count values, r0/c0
through r3/c3. The hardware makes c0 attempts to transmit
a given packet at rate r0, c1 attempts to transmit a packet
and rate r1, and so on. Once the packet is successfully
transmitted, the remainder of the retry chain is discarded.
The rate adaptation algorithms have three tasks, (a) to

select rate r and count c values for the retry chain, (b) to
determine the conditions under which the retry chain values
are updated, and (c) to determine how often to check for
the update condition. In the remainder of this section, we
outline how the four algorithms perform these tasks. We
present the algorithms in increasing order of complexity.
Onoe [22] tries to maximize throughput by selecting the

highest transmission rate that results in loss rate below
a certain threshold. It uses a system of credits to decide
whether to change the current rate r0. The credit associated
with r0 is increased by one if less than 10% of packets
in the last interval need retries, and r0 is increased to the
next highest rate when the credit exceeds 10. The credit
associated with r0 is decreased if more than 10% of packets
need retries. r0 is decreased to the next lowest rate if the
average number of retries per packet exceeds one. The
interval for evaluating loss rate and updating credits is 0.5–
1.0 seconds. r1 and r2 are set to the two rates consecutively
below the current r0, and r3 is set to the lowest possible

rate (6 Mbps in 802.11a/g). c0 is set to 4, and c1, c2 and c3
are set to 2. Since r0 is updated indirectly based on credits,
and the retry chain is 10 packets long, Onoe is rather slow
to adapt to changing network conditions.
AMRR [11], like Onoe, tries to maximize throughput by

selecting the highest transmission rate that results in loss
rate below a certain threshold. If less than 10% of packets
are lost in the last interval, the current r0 is increased to the
next highest rate, and if greater than 30% of packets are lost,
it is decreased to the next lowest rate, otherwise it remains
unchanged. Loss rate is evaluated every 10 packets. If a rate
increase is attempted and it results in a loss, the interval
for attempting the next increase is enlarged exponentially,
up to a maximum of 50 packets. This is done to prevent
unnecessary losses if the current transmission rate is the
highest possible for the target loss rate. r1 and r2 are set
to the two rates consecutively below the current r0, and r3
is set to the lowest possible rate. c0, c1, c2 and c3 are all
set to 1 to make the retry chain shorter and the algorithm
more responsive compared to Onoe.
Sample Rate [3] selects r0 by explicitly computing the

rate most likely to maximize throughput in the prevailing
network conditions, unlike Onoe and AMRR, which use the
combination of loss minimization and rate maximization
to estimate the best rate. Onoe and AMRR assume that
a higher transmission rate will always result in a higher
loss rate in a given environment. However, [3] shows this
assumption to be incorrect, and shows that loss rate at a
higher transmission rate may be lower depending on the
modulation and encoding of the rates and the amount of
noise in the RF environment. Motivated by these obser-
vations, Sample Rate explicitly computes throughput for a
given rate based on the number of successful and failed
transmissions and 802.11 parameters such as inter-frame
spacing and ACK transmission time. Sample Rate changes
r0 when another rate begins to yield better throughput.
Since a rate other than the next highest or next lowest
from the current r0 may yield the best throughput, the
algorithm has to periodically sample all other rates. 10%
of transmission time is used for sampling alternate rates.
Rates for sampling are selected intelligently, with rates more
likely to improve throughput selected more frequently. r0 is
changed if sampling indicates that another rate will result
in higher throughput. r1 and r2 are no longer set to the two
next lowest rates after r0, rather they are set to rates with
the next lowest throughputs. Throughput is reevaluated for
the current r0 and other candidate rates periodically and
is smoothed using EWMA, with 5% of the weight coming
from the last evaluation interval. r0 is changed if another
rate’s EWMA throughput is greater.
Minstrel [23] is the most advanced rate adaptation algo-

rithm implemented by the MadWifi driver. It improves on
two aspects of Sample Rate. First, it sets c0, c1, c2 and
c3 based on r0, r1, r2 and r3 such that the retry chain
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Fig. 1: Laboratory testbed used to generate wireless network
traces for rate adaptation algorithm classification.

completes within 26 ms, a time limit selected to minimize
TCP performance deterioration in case of losses. Second, it
was noted that even with Sample Rate’s intelligent selection,
sampling alternate rates resulted in use of low rates and low
throughput. Minstrel tries to avoid this problem by more
sophisticated sampling rate selection, the complete details
of which can be found in [23]. The throughput is calculated
in a manner similar to Sample Rate. It is reevaluated for the
current r0 and other candidate rates every 100ms. The value
is smoothed using EWMA, with 25% of the weight coming
from the latest 100ms interval, and r0 is changed if another
rate’s EWMA throughput is greater.

V. EXPERIMENTAL SETUP
In this section we describe our experimental testbed, how

we used it to generate packet traces, and how we processed
the traces for SVM-based algorithm classification.

A. Experimental Environment
Figure 1 illustrates the experimental testbed that we used

to collect traces for classification. There are four primary
components to the setup: wireline nodes, wireless nodes,
one commodity access point (AP), and a monitor node. The
wireline and wireless nodes are connected in a dumbbell
topology via the APs and a switch. The AP is a Cisco
AP1200, running IOS version 12.3(8), with single Rubber
Duck antenna, and integrated 802.11a module/antenna. The
switch is a commodity LinkSys 10/100 16-port Workgroup
Hub. The wireline nodes and switch are connected to the
AP via 100Mbps Ethernet connections. The maximum data
rate for 802.11a is 54Mbps. Having 100Mbps wireline links
insures that the wireless, rather than the wireline, part of the
network is the throughput bottleneck.
The wireline and wireless nodes are identically config-

ured Sun 4200 AMD Opteron 275 (dual Core) nodes, with

4 GB RAM, Intel 82546EB (e1000) chips, running CentOS
5.2. The wireless nodes are installed with R52-350 mini-
PCI cards (Atheros 5414 chip). We used default wireless
interface configurations for our experiments. These were:
(a) no RTS/CTS, and (b) no MAC layer fragmentation.
Communication between wireless and wireline nodes is

pairwise, i.e., during an experiment, each wireless node
sends data to a single, pre-assigned, wireline node and
vice versa. One wireline-wireless pair is designated the
measurement pair. Algorithm classification is done for
packet traces from the measurement node pair. The other
two node pairs generate background traffic. We refer to
them as background pair one and background pair two.
The monitor, an AirPcapNx adapter [24] is located next to
the measurement node for all experiments. We use 802.11a
channel 36 for all our experiments.

B. Experimental Protocol
The measurement node transferred 8MB files with 5

seconds between transfers. There were three levels of back-
ground traffic: no background traffic, one node pair gen-
erating background traffic, and two node pairs generating
background traffic. The first background node pair transfers
4MB files with an interval of 2 seconds between transfers,
and the second pair transfers 512KB files with 1 second
between transfers. Both background nodes use Sample Rate,
the default MadWifi rate adaptation algorithm.
For each background traffic level, 100 files per rate algo-

rithm were transferred for each of the four algorithms. The
file transfers for the different algorithms were interleaved in
sets of 25 to compensate for possible external interference
that could effect the integrity of classification.
The training set consists of 10% of samples selected

uniformly at random from the first half of the transfers
at each background traffic level. The test set consists of
all samples from the second half of transfers at each
background traffic level. We constructed 5 different training
sets via random sampling, and tested all of them using
the second half of the transfers. The classification accuracy
values in Section VI are the averages of the five runs.

C. Feature Selection for Algorithm Classification
We process packet traces for rate adaptation algorithm

classification in the following manner. We generate a
training/test feature vector for every instance where the
transmission rate of the kth and k+1th 802.11 data packet
transmitted by the measurement node is different. The rate
transition is the center of the packet window over which
we compute features. The feature values were normalized
by subtracting the mean of each feature from the respective
feature values and then dividing by the standard deviation
before training and testing.
We use two different feature sets, detailed below. The

difference in the feature sets is that they represent infor-
mation at varying levels of granularity for training and



testing. Feature Set 1 aggregates the information in the
feature vector window, while Feature Set 2 exposes detailed
packet trace information. The results in Section VI will
show that having packet trace information at varying levels
of granularity is essential for accurate classification.
Feature Set 1: The following features are computed for

a window of size m1 around a rate transition event. Features
(1)–(4) are computed once for the entire window, and (5)–
(12) are computed individually for each of the eight 802.11a
data rates. Each feature in the list below corresponds to
two distinct features, one computed for a window of size
m1 before the rate transition event, and the second for a
window of size m1 after the rate transition event.
(1) The number of packets in the window.
(2) The packet reception probability, defined as the number
of non-retry packets divided by the total number of packets
in the window.
(3) The fraction of packets in the window that are unique,
defined as the number of distinct 802.11 sequence numbers
observed divided by the total number of packets.
(4) The trace accuracy, which is defined as
1−# o f missing 802.11 sequence numbers

total # o f packets .
(5) The number of packets with each rate in the window.
(6) The number of packets with each rate that are retries in
the window.
(7,8,9) The minimum, median, and maximum distance in
packets for packets with each rate from the center of the
window. Distance in packets is calculated in terms of the
number of packets in the trace rather than packet sequence
numbers. When a packet of a particular rate does not occur
in a window, distance is set to a constant high value.
(10, 11, 12) The minimum, median, and maximum distance
in packets for a retry packet with each rate from the center
of the window.
Hence, for any value of m1, there are a total of 136

features, 2 ∗ 4 for the four features (1–4) before and after
the center of the window, and 8∗8∗2 for the eight features
(5–12) for each of the eight rates before and after the center
of the window.
We consider the following different values of m1: 100ms,

200ms, 300ms, 400ms, 500ms, 10 packets, 20 packets, 30
packets, 40 packets, 50 packets, 1-5 802.11 retries around
a packet transition event.
Feature Set 2: For this set, the following three features
corresponding to each packet in a window of size m2 are
included in the feature vector:
(1) The transmission rate of the packet.
(2) A binary value indicating whether the packet is a retry.
(3) The difference in sequence numbers between the packet
and the center of the window.
We use the following values of m2: 5, 10, 15, 20, 25,

30, 35, 40, 45 and 50 packets. In this case, since there are
3 features per packet and the window size is m2 packets

before and after a rate transition, the total number of
features per feature vector is 3∗ ((2∗m2)+1)1.
Finally, we constructed an all features vector, which is

the concatenation of feature vectors for all window sizes for
both feature sets, and contains 3720 features. In Section VI,
due to space considerations we present classification accu-
racy results for all features, all window sizes for Set 2, and
10, 20, 30, 40 and 50 packet window sizes for Set 1, because
these feature sets yielded the most interesting results.

VI. RESULTS
We conducted two sets of experiments one week apart,

which we refer to as Experiment 1 and Experiment 2,
both using the protocol described in Section V-B. For
results presented in Section VI-A, training and test sets,
constructed as described in Section V-B, were drawn from
the same experiment. For results presented in Section VI-B,
the classifier trained on data from Experiment 1 was tested
on data from Experiment 2 and vice versa to investigate the
portability and robustness of the classifier.
We considered two classification metrics, transfer classi-

fication accuracy and sample classification accuracy. The
first metric indicates whether the rate adaptation algorithm
for the whole transfer is classified correctly. The classifica-
tion for the whole transfer is determined by the majority
of the classifications of the individual samples (feature
vectors) in the transfer. We report the fraction of transfers
classified correctly and incorrectly for each rate adaptation
algorithm. The second metric is defined as the percentage of
samples classified as a particular algorithm for each transfer.
This is a measure of the confidence we can have in the
classification of a transfer. We used this metric to guard
against accuracy inflation, because a transfer classification
is considered correct whether 100% of the samples from
the transfer are classified correctly or whether 25.1% of
the samples are classified correctly and the other 74.9%
of the samples are split evenly between the remaining
three classes. We found that sample classification accuracy
closely followed transfer classification accuracy. Due to
space considerations, we only present transfer classification
accuracy in this paper.

A. Classification Accuracy
Figure 2 illustrates the algorithm classification accuracy

for the case where the training and test sets are drawn
from the same experiments. We present results from two
different runs of the same experiment, conducted in the
same laboratory environment but one week apart, because
wireless network conditions are difficult to replicate due to
external interference effects. Table I presents the distribution
of transmission rates for the two experiments, and it can be
seen that there is a significant difference in the distributions
in many cases.

1+1 for the packet at the center of the window.



Fig. 2: Stacked histograms illustrating the fraction of transfers classified for each algorithm for Experiment 1 and Experiment
2 conducted one week apart in the same laboratory setting. In each case, the training and test set was drawn from the same
experiment. The individual figure labels indicate the experiment and the correct algorithm. The x-axis indicates the feature
set (1 or 2) and window size used. The y-axis indicates the fraction of transfers classified for a certain algorithm and feature
set, e.g., Set 1, 20 pkts for Experiment 2, Onoe shows that approximately 70% of transfers were classified correctly as Onoe,
25% were classified incorrectly as Minstrel and 5% were classified incorrectly as AMRR. Algorithms are indicated in the
key with the first letter in their name.
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TABLE I: Distribution of packets across transmission rates for four target algorithms. The first column indicates the algorithm
(algorithms are identified by the first letter in their names), the background traffic level (nobg for no background traffic,
bg1 for one background node pair generating traffic, and bg2 for two background node pairs generating traffic), and the
experiment number (1 or 2). The columns labeled with rates indicate the percentage of packets in each experiment transmitted
at that rate. Rate Change indicates the percentage of times two consecutive packets were transmitted at different rates. Retry
indicates the percentage of packets that were retries. Consecutive Retry indicates the percentage of times the k+1th packet
was a retry given that the kth packet was a retry. This is an estimate of how far down the retry chain the algorithm had to
go in case of a loss. The last three values are measures of the information content of a packet trace. Algorithms that have
higher values are likely to be classified with higher accuracy because they provide SVM with a larger amount of information
over a given time window, enabling SVM to generate a better distinguishing signature. All values are aggregates for all
transfers in a given experiment.

Experiment 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mbps 48Mbps 54Mbps Rate Change Retry Consec. Retry
a, nobg, 1 0.3 0.0 0.1 0.7 9.6 78.1 11.1 0.0 31.8 16.5 6.2
a, nobg, 2 0.4 0.1 0.6 1.3 15.3 77.2 5.0 0.0 30.3 15.7 6.2
a, bg1, 1 0.3 0.1 1.3 6.7 37.7 51.2 2.8 0.0 28.6 15.4 9.8
a, bg1, 2 0.6 0.6 2.8 8.7 35.7 50.0 1.6 0.0 29.1 15.7 10.9
a, bg2, 1 0.3 0.7 1.4 5.4 31.3 55.4 5.5 0.0 30.7 16.4 9.2
a, bg2, 2 0.6 0.5 2.4 8.1 48.7 39.4 0.3 0.0 31.6 17.0 11.0
m, nobg, 1 0.0 0.0 0.1 0.2 0.5 92.4 4.0 2.8 7.4 14.2 42.9
m, nobg, 2 0.3 0.0 0.0 0.6 2.8 89.7 3.9 2.5 10.3 23.0 46.8
m, bg1, 1 0.2 0.1 0.1 0.3 2.8 88.9 5.1 2.6 13.1 24.6 44.9
m, bg1, 2 0.5 0.1 0.2 1.5 15.5 75.9 3.9 2.4 13.4 27.8 47.8
m, bg2, 1 0.4 0.0 0.1 0.5 1.9 89.5 4.9 2.6 10.5 22.7 41.3
m, bg2, 2 0.6 0.1 0.3 1.2 12.6 78.5 4.3 2.4 14.9 30.3 50.8
o, nobg, 1 0.0 0.0 0.0 0.0 4.9 94.8 0.2 0.0 4.1 10.9 32.8
o, nobg, 2 0.2 0.0 0.0 0.5 46.7 52.6 0.0 0.0 5.8 15.1 38.7
o, bg1, 1 0.2 0.0 0.0 0.7 33.0 66.2 0.0 0.0 7.7 18.8 30.4
o, bg1, 2 0.3 0.0 0.1 1.8 81.8 16.0 0.0 0.0 5.4 17.3 26.8
o, bg2, 1 0.3 0.0 0.0 1.4 56.1 42.1 0.0 0.0 5.8 17.2 26.6
o, bg2, 2 0.3 0.0 0.1 1.9 82.4 15.2 0.0 0.0 5.1 17.2 26.7
s, nobg, 1 0.2 0.0 0.2 2.9 41.5 54.5 0.7 0.1 9.7 8.2 23.9
s, nobg, 2 0.4 0.0 0.5 11.9 61.7 25.2 0.2 0.0 10.7 9.0 25.9
s, bg1, 1 1.1 0.0 2.9 18.9 49.2 27.4 0.4 0.1 11.6 16.8 25.5
s, bg1, 2 0.8 0.0 4.5 24.7 57.2 12.7 0.1 0.0 11.3 16.3 25.3
s, bg2, 1 1.7 0.0 4.6 17.1 40.3 36.0 0.2 0.1 13.2 17.9 29.7
s, bg2, 2 0.9 0.0 4.7 22.5 54.6 17.0 0.1 0.0 11.8 16.6 25.8
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Fig. 3: Stacked histogram showing the fraction of trans-
fers classified correctly and incorrectly for each algorithm,
training set and test set combination. This figure illustrates
the potential for the portability of the classifier. All results
presented are for the all features set. The x-axis indicates
the correct algorithm and the training and test sets, e.g.,
a, 2–1 indicates that AMRR is the correct algorithm, the
training set consisted of data from Experiment 2 and the test
set consisted of data from Experiment 1, while m, both–2
indicates that Minstrel is the correct algorithm, the training
set consisted of data from both Experiments 1 and 2, and
the test set consisted of data from Experiment 2.

Figure 2 shows that for all algorithms except Onoe
(2e,2f), the classification accuracy for all features is high,
ranging from 95% to 100%. Also, for all cases except
Experiment 1, Onoe 2e, the accuracy for all features is very
close to that of the highest accuracy individual feature set
for that experiment. Both observations support our learning-
based approach. Their combination means two things. First,
classification accuracy is high. Second, feature set and win-
dow size selection are simplified because the concatenation
of all feature sets and window sizes in all features results
in accuracy equal to that of the most accurate individual
feature set. This occurs even though the most accurate
feature set varies by algorithm and experimental run.

The classification accuracy for Onoe is lower than all
other algorithms across all feature sets. This is explained
by considering the Rate Change column of Table I. This
column indicates the rate change frequency, i.e., the per-
centage of times two consecutive packets in a trace have
different transmission rates. Onoe has the lowest rate change
frequency, 4.1% to 7.7%. Sample Rate has the next lowest
rate change frequency, 9.7% to 13.2%, roughly twice that
of Onoe. This difference means that over a given packet
window, a Sample Rate trace will provide SVM with twice



as much information to generate a distinguishing signa-
ture compared to Onoe, resulting in higher classification
accuracy for Sample Rate. The fact that Onoe has by far
the lowest rate change frequency is consistent with what
we know about the four algorithms. Onoe is the slowest
to change rates because of its use of credits to calculate
rate change. Also, it has the longest and slowest-to-change
retry chain with a c0 value of 4, which further reduces the
frequency of rate change and hence the information content
of packet traces. All other algorithms change rates at a
frequency of roughly 11%-30% due to shorter retry chains
and properties such as sampling alternate rates or trying a
higher rate after every 10 successful packet transmissions
at a given rate, yielding traces with a higher information
content and therefore better classification accuracy.
Another observation from Figure 2 is that different win-

dow sizes and feature representations (Set 1 versus Set
2) have different classification accuracies for the different
algorithms and even for different experiments with the
same algorithm. For example, Set 1 has high classification
accuracy for both experiments withMinstrel, while Set 2 has
high accuracy only for Experiment 2 (Figures 2c,2d). Also,
for Sample Rate, [Set 2, 5 pkts] is the only feature set and
window combination that has high accuracy for Experiment
1 (other than all features), while a number of feature set and
window combinations have high accuracy for Experiment 2.
To explain why different window sizes and feature rep-

resentations result in different classification accuracy, we
have to consider how transmission rate changes between
two successive packets. One reason for rate change is retry
chain traversal due to packet loss. The second is sampling
of other candidate rates, as in Sample Rate and Minstrel.
The third is due to the algorithm deciding that the current
r0 is suboptimal and picking a new r0. Rate change due
to the traversal of the retry chain occurs at the finest time
granularity, from one packet to the next, for the length of
the retry chain. Rate change due to sampling occurs at the
second finest granularity (10 packets). Rate change due to
computation of a new optimal r0 occurs at the coarsest
granularity (tens of packets, 1 or more seconds).
Consider a hypothetical algorithm that changes rates

only due to retry chain traversal. Such an algorithm’s
distinguishing signature would be captured most effectively
by highly detailed information over a small window, such
as [Set 2, 5 pkts], because all rate changes would occur
at the granularity of individual packets. If Set 1 and a
larger window are used, the fine-grained information that
is the algorithm’s signature will be lost. Consider another
hypothetical algorithm that only changes rate based on long-
term loss and throughput feedback, i.e., when it re-evaluates
the optimal rate, it sets all rates in the retry chain to that one
optimal value. Such an algorithm’s distinguishing signature
would be captured most effectively by features that (a) are
computed over longer windows, and (b) can filter out short

term variations and capture longer term throughput, loss
and rate change behavior, such as [Set 1, 50 pkts].
Practical algorithms change rates at all three time gran-

ularities, so features computed at varying levels of detail
at a range of time granularities are necessary to compre-
hensively capture an algorithm’s signature. This is why all
features, a concatenation of all feature set and window
size combinations, always has the highest classification
accuracy. However, in a given run for an algorithm, rate
might change for one particular reason more often than
for others. If the dominant cause of change is retry chain
traversal, we expect [Set 2, 5 pkts] to be the most accurate
classifier, as for Sample Rate, Experiment 1. If, however,
the dominant cause of change is reevaluation of the optimal
rate, we expect Set 1 classifiers to be more accurate than Set
2 classifiers, as for Minstrel, Experiment 1. Based only on
passive packet traces, it is difficult to identify with certainity
the cause of rate change from one packet to the next.

B. Classifier Portability
We investigate the portability of classifiers by testing

the classifier trained on Experiment 1 on transfers from
Experiment 2 and vice versa. We conclude that classifier
portability depends on the relative information content in
the training and test data. If the training data’s information
content is greater than or equal to that of the test data,
the classifier is as accurate for the test data from the
other experimental run as it is for test data from its own
experimental run, otherwise it is less accurate.
Figure 3 illustrates the classification accuracy when a

classifier trained on data from one experiment is tested
on data from the second experiment. The classification
accuracy for Onoe is low across all training and test sets due
to low information content of traces, as discussed above.
The classification accuracy for AMRR and Sample Rate
is high (70% or higher) in all cases. Table I shows that
this is the case even though the distribution of packets
by transmission rate is different for the two experimental
runs for each algorithm. What is similar about the two runs
for each algorithm is the information content of the traces
measured in terms of the last three metrics in Table I.
The interesting case in Figure 3 is Minstrel, where

the classifier trained on data from Experiment 1 performs
poorly on test data from Experiment 2 (case m, 1–2) with
an accuracy of only 40%, but the classifier trained on
Experiment 2 performs very well on Experiment 1 (case m,
2–1) with an accuracy of 100%. Table I shows that for all
the three measures reported, Set 2 has higher information
content than Set 1. This means that the classifier trained
on Experiment 1 captures a limited set of the algorithm
behavior compared to that present in Experiment 2 test data,
resulting in poor classifier accuracy. However, when the
classifier is constructed with data from both Experiment
1 and Experiment 2, its accuracy on Experiment 2 tests



increases dramatically, suggesting that enhancing a ported
classifier with current data is beneficial.
These results have important implications for the practi-

cal use of our methods. They show that if the training set
has high enough information content, the resulting classifier
is portable, regardless of the difference in the distribution of
packet transmission rates. Classifier portability is a desirable
property in general because it reduces training time in
new environments. Classifier portability is essential for
wireless networks because the RF environment is constantly
changing, and retraining every time is expensive. The results
in this section also show that the accuracy of a poorly-
performing classifier can be improved by updating it with
training data from the current environment.

VII. SUMMARY
In this paper, we describe a new methodology for ac-

curately identifying the 802.11 rate adaptation algorithms
deployed in a target wireless network. Our learning-based
approach obviates the need to explicitly characterize the
full spectrum of each rate adaptation algorithm’s behavior,
a difficult if not impossible task given the large number of
possible rate change permutations. Our approach is practical
because it is based entirely on passive monitoring of target
networks. We test our methodology under varying network
conditions and show that by using a comprehensive feature
set, a classifier can be highly accurate, correctly identifying
algorithms 95%-100% of the time for three of the four
algorithms implemented by MadWifi, the most popular
open source wireless interface driver. We show that careful
selection of inputs for training the classifier is essential for
high accuracy. We demonstrate the potential for classifier
portability across a range of operating conditions. We
envision rate adaptation algorithm fingerprinting becoming
part of passive monitoring-based suites for wireless network
performance analysis. In future work, we plan to construct
classifiers for a wider variety of wireless interface drivers.
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