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Inferring Unseen Components of the Internet Core
Brian Eriksson, Paul Barford, Joel Sommers, Robert Nowak

Abstract—
Despite many efforts over the past decade, the ability to

generate topological maps of the Internet at the router-level
accurately and in a timely fashion remains elusive. Mapping
campaigns commonly involve traceroute-like probing that
are usually non-adaptive and incomplete, thus revealing only a
portion of the underlying topology. In this paper we demonstrate
that standard probing methods yield datasets that implicitly
contain information about much more than just the directly
observed links and routers. Each probe yields information that
places constraints on the underlying topology, and by integrating
a large number of such constraints it is possible to accurately
infer the existence of unseen components of the Internet (i.e., links
and routers not directly revealed by the probing). Moreover, we
show that this information can be used to adaptively re-focus the
probing in order to more quickly discover the topology. These
findings suggest radically new and more efficient approaches to
Internet mapping. Our work focuses on the discovery of the
core of the Internet. We define ”Internet core” as the set of
routers that is roughly bounded by ingress/egress routers from
stub autonomous systems. We describe a novel data analysis
methodology designed to accurately infer (i) the number of
unseen core routers, (ii) the unseen hop-count distances between
observed routers, and (iii) unseen links between observed routers.
We use a large experimental dataset to validate the proposed
methods. For our data set, we show that our methods can predict
the number of unseen routers to within a 13% error level,
estimate 60% of the unseen distances between observed routers
to within a one-hop error, and robustly detect over 35% of the
unseen links between observed routers. Furthermore, we use the
information extracted by our inference methodology to drive an
adaptive active-probing scheme. The adaptive probing method
allows us to generate maps on our data set using 50% fewer
probes than standard non-adaptive approaches.

Index Terms—Internet Topology, Matrix Completion, Infer-
ence, Internet Measurements

I. INTRODUCTION

The performance and stability of Internet applications and
services depends intrinsically on the individual networks over
which their traffic flows. Among the significant challenges in
ensuring acceptable performance and stability for applications
and services are the lack of widely deployed end-to-end QoS
mechanisms, dynamic events such as flash crowds, failures
and outages that disrupt service, and malicious outbreaks and
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attacks that threaten infrastructure and end hosts. Given the
scope and magnitude of these challenges, accurate and timely
information about the characteristics and state of network
infrastructure is of paramount importance.

Topological connectivity is one of the most basic character-
istics of network infrastructure. Connectivity can be specified
in different ways, but one of the most important is router-
level connectivity: the graph structure of routers and the
links between them. While router-level connectivity within an
individual ISP may be well known and relatively simple for
the provider to monitor, understanding connectivity beyond a
single domain is problematic.

Mapping the Internet’s router-level topology has been the
subject of a large number of studies over the past decade
(e.g., [1], [2], [3], [4], [5], [6]). The standard method for
gathering data on Internet topology is to use traceroute-
like tools to send TTL limited probes between a set of sources
and destinations. These tools return the IP addresses of router
interfaces encountered in the source-to-destination (forward)
direction of a path. The challenges in recovering the topology
from these measurements include (1) interface disambiguation
(i.e., associating one or more IP addresses with a single
router) [2], [5], (2) perspective (i.e., understanding how much
of the Internet is captured by a set of measurements) [3],
and (3) measurement infrastructure management (e.g., widely-
deployed, active probe-based infrastructures, the load they
impose on the Internet and the data they return) [7]. The end
result is that despite concerted efforts, we are still unable to
generate accurate maps of the Internet’s router-level topology
in a timely fashion.

In this paper, we address a subset of the general problem
of router-level Internet topology mapping. Our objective is to
infer the existence of components that have not been observed
(unseen routers, unseen route lengths, and unseen links) in a
partial probing of the Internet core. We appeal to prior work on
Internet mapping to define what is meant by the Internet core.
Specifically, the core is composed of the set of routers that
are greater than one hop away from end hosts and is roughly
bounded by the borders of stub autonomous systems [3]. We
expand on this definition in Section III. We believe that this
somewhat imprecise definition of core is sufficient since we
would like to identify as large a core component as possible.
We argue that unseen core inference is important because the
large volume of traffic that traverses the core of the Internet
(although this has been challenged recently in [8]).

We assume an infrastructure from which active probe-based
measurements can be made and that the infrastructure has a
relatively broad deployment. Using this infrastructure as the
starting point for gathering data, our inference methodology
has three components. The first component addresses the
unseen core router problem. Namely, given an increase in
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the network probing infrastructure, how many extra core
routers will we find? Our solution to this problem is related
to solutions for the so-called ‘unseen species problem’ but
cast in a networking context. The second component of our
methodology addresses the problem of inferring unseen links
between observed routers. Instead of using measurements with
router interface IP addresses, we exploit a matrix completion
algorithm that is based on a novel exploitation of data returned
by traceroute probes. This approach enables accurate
and efficient estimation of connectivity without the need for
interface disambiguation which has proven to be difficult and
to have a significant impact on resulting maps [5]. The final
component consists of a targeted, matrix completion-based
probing methodology we call TargetComplete that merges our
contributions of inferring unseen core routers and unseen core
links to efficiently reveal areas of the core containing the most
uncertainty. This efficiency is of critical importance in large-
scale Internet topology studies where issues of timeliness will
results in out-of-date information using exhaustive probing [2].

While inferring the existence of unseen components may at
first blush seem impossible, bear in mind that the Internet
topology is highly structured. Each active probe yields in-
formation that places constraints on the underlying topology.
Our algorithms effectively integrate a large number of such
constraints to produce inferences about unseen components.

The accuracy of our proposed inference methodology is
validated as follows. We evaluate the capabilities of our
method by using existing high quality topology data sets from
the iPlane project [9], supplemented with a large set of addi-
tional traceroute measurements gathered from PlanetLab
nodes [10]. The interface-disambiguated iPlane measurements
act as a ground truth on the observed portion of the Internet
for our topology estimation methods. From these data sets we
identified nearly 115,000 core nodes, constituting the test set
for our evaluation.

The methodologies described in this paper provide impor-
tant insights on the topological characteristics of our empirical
data. On this data set, experiments using our unseen core router
methodology estimate the number of additional routers found
given increased probing within a 13% error level. Using our
unseen link methodology, we find 35% of the unseen links in
the topology with limited false alarms. And finally, using our
TargetComplete targeted probing methodology, we generate
topology maps using less than 50% of the probes required
using a non-adaptive technique. These improvements point to
a new ability for timely large-scale Internet map generation
through the use of our efficient, targeted methods.

The remainder of this paper is organized as follows. We
discuss prior studies that are related to and inform our work in
Section II. In Section III we describe our data gathering meth-
ods and infrastructure, and the datasets used in our evaluations.
We provide an overview of our estimation methodologies in
Section IV. In Section V, we describe our methodology for es-
timating the number of unseen core routers, and in Section VI
we describe our methodology for estimating unseen core links.
An application of this estimation of the unseen areas of the
network is the TargetComplete probing methodology described
in Section VII. We summarize, conclude and describe future

directions for our work in Section VIII.

II. RELATED WORK

There have been many studies that have focused on devel-
oping methods for mapping Internet topology. While topology
can be considered on different levels including application-
specific connectivity or autonomous system connectivity, our
focus in this work is on router-level connectivity. A great
deal of prior work in this area has focused on using active
traceroute-like probes as a basis (e.g., [1], [2], [3], [5]). In
each case, these studies highlight several challenges associated
with this kind of approach, including the need for widely
distributed nodes from which probes can be sent (i.e., to
address the need for a broad perspective) and the difficult prob-
lem of interface disambiguation. A number of large topology
mapping efforts that attempt to address the problem of limited
perspective have been active for years including the well
known Skitter [11] and Dimes [12] efforts. While the problem
of interface disambiguation has been known since Paxson’s
work in the mid-1990’s [13], the recent study by Sherwood
et al. demonstrates how problematic this issue can be when
using standard disambiguation techniques [5]. Another study
that is related to ours is by Magoni and Hoerdt [14]. In that
paper, the authors describe a traceroute-based approach
and encounter the same difficulties with perspective and router
interfaces. While we are informed by prior work on Internet
topology mapping based on active probes, our study differs
in our use of lightweight probes that measure hop counts in
order to infer connectivity between nodes.

Our consideration of “Internet core” is informed by prior
topology mapping studies including [1], [3], [15]. While these
papers provide various definitions of “core”, we believe that a
strict definition is of less importance and ultimately arbitrary.
The goal of our study is not to find specific boundaries, but
to find as much of the central component of the Internet as
possible. To that end, our definition is similar to what is given
in [16] — roughly that the core is bounded by routers that are
greater than one IP hop beyond end hosts or border routers of
stub autonomous systems.

Our work is also informed by Eriksson et al. in [6],
[17], [18]. In those studies, the authors propose methods for
establishing Internet maps based on passive observations of
hop counts in packets. While the idea of using inference
methods to estimate incomplete hop counts is similar, our
work differs from theirs in objective (unseen core inference),
data (the use of active probes), and methods (unseen router
estimation, matrix completion, unseen link estimation). The
work in [18] examines the problem of estimating pairwise hop
counts using incomplete measurements to a set of landmarks.
In contrast, our work will demonstrate a methodology for
estimating pairwise hops using only massively incomplete
pairwise distance observations between the objects.

Our recent work in [19] describes DomainImpute, a new
method for inferring unseen properties of Internet topology.
Specifically, the DomainImpute algorithm demonstrates that
by intelligent segregation of interdomain/intradomain links,
hop distances between routers can be more accurately esti-
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mated compared with off-the-shelf Matrix Completion tech-
niques. The DomainImpute algorithm is a specific extension
of the unseen link estimation work described in this paper,
in contrast to the larger Internet core topology inference and
measurement framework described here.

A standard problem in statistics is the “unseen species
problem”, where given an incomplete observation, we try
to estimate how much was missed. Classic results in [20]
estimated the number of unseen species of moths in an
environment given a limited observation, and the work in [21]
estimates the total number of words Shakespeare knew given
his collective works. Recently, methodologies in both [22] and
[23] have examined the problem of unseen species estimation
in the context of networking. Both of these methodologies
are directed towards finding the total number of routers/links
in a network given limited observations. While estimating
the total number of unseen routers is a compelling problem,
validating the results is an impossible task without information
pertaining to the entire network (infeasible when considering
the Internet). Here we focus on the problem of estimating
how many additional routers would be found given a fractional
increase in the probing infrastructure. This would be of interest
to anyone trying to determine whether or not to continue
probing a network to discover additional nodes.

We show in Section VI that the link lengths between core
routers can be constructed into a very large hop count matrix.
Due to the limited number of probes sent throughout the
network, this matrix is very sparsely populated. Recent work in
[24] has shown that matrices of size N×N and of linear rank
r can be exactly reconstructed with only k known elements,
where k ∼ O (rN logN). Due to the very large size of
the matrix, our work uses an efficient matrix factorization
method from [25]. We use these prior results in an attempt
to infer the unobserved path lengths between arbitrary core
routers. By expanding upon these techniques, we develop a
novel methodology for estimating unseen link locations in the
network, an issue previously unexplored in Internet literature.

While our TargetComplete probing methodology in Sec-
tion VII looks at a similar goal as prior work on the Double-
Tree algorithm [26] and Vantage Point Spreading algorithm
[27], both prior algorithms use specially crafted probes to
limit the number of probes needed to discover the topology.
In the network tomography literature, recent work in [28],
[29] has also examined how to decrease the number of
probes required to reconstruct logical tree topologies using
delay-based methods. In contrast to this prior work, our
TargetComplete methodology focuses on the reduction of the
number of source-destination pairs used to probe the network
using standard off-the-shelf TTL limited probing techniques
(e.g., traceroute), not on the crafting of special probes to
minimize measurement load. In addition to generating efficient
topology maps, we offer the results of our TargetComplete
technique as validation that the unseen core discovery tech-
niques of Section V and Section VI are correctly revealing
areas of particular uncertainty in the network.

III. EXPERIMENTAL DATA

In this section we describe the core router data used in our
study and how it was collected. The goal of our data collection
effort was to establish a data set from which our methods could
be evaluated. Specifically, we required a representative corpus
of core Internet routers with disambiguated interfaces (to the
extent possible using available techniques) that could act as
ground truth for our work.

A. Core Router Definition

In this work we adopt a pragmatic definition of which
routers constitute the Internet’s core. Consider the result of
performing a traceroute probe from an end host in a stub
network with prefix A to a host in a stub network with prefix
B. In the ordered list of routers obtained from tracing the
route, the first router considered part of the core is the one
with the last occurrence of an address in prefix A. The last
router considered part of the core is the first one responding
with prefix B. The attempt is to avoid considering any router
as part of the core that is fully within a network with the same
prefix as an end host.

This approach is conservative in the sense that it is likely to
omit some core routers from consideration, (e.g., routers that
connect to actual core nodes within a single AS). However, as
stated above, our intent is not to focus on exactly identifying
the core boundary, but rather to accurately capture the gross
characteristics of the core, and to develop a core topology
inference framework. In the future, the methods developed in
this paper may find application in boundary identification from
our set of candidate core nodes.

B. Core Router Identification

In order to identify as many core router IPv4 addresses
as possible, we leveraged high-quality data provided by an
on-going measurement project and collected additional data
using the Planetlab [30] infrastructure. The existing data
was provided by the iPlane project [9], which performs a
traceroute probe from all available Planetlab hosting sites
to a set of target prefixes obtained through the Routeviews
project [31]. We used four weeks of iPlane data collected over
the period of 12 December 2008 to 8 January 2009.

In addition to the iPlane data, we collected traceroute
data between a full mesh of Planetlab hosting sites. At the
time of our measurement collection there were over 900 hosts
that are part of Planetlab, but there were only about 375
distinct sites. Of these sites, only a subset are available at
any given time due to host maintenance or other issues. To
perform each traceroute, we used the Paris traceroute
tool [32]. Informed by the study by Luckie et al. [33], we
invoked the tool once using UDP-based probes and a second
time using ICMP-based probes for each destination in order
to discover as many core routers as possible through active
probing. We set options in the Paris traceroute tool so
that an individual measurement between hosts took longer,
but produced a low rate of probe traffic. We collected the full
mesh of Planetlab traceroute probes three times (roughly
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evenly distributed) over the same period that we obtained the
iPlane data set. Due to Planetlab site and host transience, we
were able to use approximately 216 Planetlab sites for each
of the three rounds of full mesh probing. We gathered three
complete measurement data sets beginning on December 11,
2008, December 22, 2008 and January 6, 2009.

Using these two data sets, we were able to discover 125,146
unique core router IPv4 addresses. The total number of hops
(links) observed between all of these nodes was 519,273. A
standard problem in traceroute-based topological studies
is the issue of IP interface disambiguation, which is also
referred to in the literature as alias resolution. That is, Internet
routers are typically assigned multiple IP addresses (e.g.,
each interface on a router may have a unique IP address
assigned to it). Identifying which addresses correspond to
the same physical router is the role of alias resolution. To
identify the core routers (i.e., de-alias) our data set, we used
a router alias database published by the iPlane project, which
builds on previously published alias resolution methodologies,
including those used by the Rocketfuel project [2]. After alias
resolution, we identified 114,815 core routers. Indeed our main
reason for using the iPlane data (as opposed to other widely
available topology datasets) was that an IP alias database is
also published.

We make no explicit assertions about the extent to which
this data set represents the actual core of the Internet since
there is no authoritative source for that information. While
the limitations of using Planetlab for investigations of Internet
topology are known, we argue that both the scope and content
of the data are appropriate for our analysis since the goal of
this work is primarily methodological in nature. Furthermore,
it is important to note that since the objective of our study
is accurate identification of the router-level connectivity (i.e.,
the topology) of the Internet’s core, the fact that our data are
gathered over multiple days is of less importance than it would
be if our goal was to identify changes in the topology. That
is a subject for future work.

IV. INFERRING UNSEEN COMPONENTS OF THE CORE

Our methodology for inferring the unseen components of
the core of the Internet is divided into three components. Prac-
tically speaking, these components are predicated on having
an initial set of source/destination hop count data from which
core topology estimates can be made and a measurement
infrastructure from which additional probes can be sent. The
components of our discovery methodology are:

1) Estimate the population size of unseen routers. Use the
initial data set to predict the number of additional core
routers that would be discovered using additional probes.

2) Estimate the unseen connectivity between observed core
routers. Use the massively incomplete set of observed
hop counts between core routers to estimate unseen route
lengths and infer unseen links between observed core
routers.

3) Specify where additional probes will improve estimates.
By fusing the methodologies of step #1 and #2, we
develop the TargetComplete probing methodology to

determine which host in the measurement infrastructure
should send further probes (to a specified destination
host) in order to discover unseen routers and unseen
links.

We describe each component in the following sections.
Toward our goal of being able to discover the core accurately
and to maintain core maps over time, we envision these
components being run on an on-going basis. It is important
to note that in terms of practical deployment and use, the
computational complexity of all of our algorithms is such that
the unseen core estimates can be made with a probe load on the
order of tens of thousands in total, which for a large distributed
infrastructure is minimal.

V. ESTIMATING THE NUMBER OF UNSEEN CORE ROUTERS

Consider sending a series of traceroute probes through
the network and observing a collection of core routers1. How
complete is this set of core routers? Are there significantly
more core routers in the network that have not been observed
by the traceroute probing set? Determining this missing
set size is analogous to the problem of predicting the number
of unseen species in an environment given some sample
set of observations, or estimating the size of Shakespeare’s
vocabulary based on the number of unique words appearing
in his known works [20], [21]. Using the set of traceroute
probes between Planetlab nodes and other points in the net-
work, we can use properties of the occurrence of routers to
predict how many more routers will be found in the network
given increased probing. The prediction idea we employ is
based on a more sophisticated version of the following simple
idea. Suppose we randomly split the traceroute dataset
into two halves. A certain number of routers are discovered
by the routes in one half of the dataset, and a certain number
of additional “new” routers are discovered in the other half.
This gives us a rough idea of how many new routers might
be discovered, were we to double the original size of the
traceroute measurement campaign.

Now let us consider the problem of predicting the number
of additional routers found in the core of the Internet as the
result of increased measurements, based on the number we
discover through the initial traceroute campaign. Consider
traceroute probing the Internet from a set of sources
to a set of destinations. Let ni denote the number of core
routers that appear in exactly i routes in this traceroute
dataset. While the methodologies in [22], [23] have both
examined the problem of unseen species estimation in the
context of networking, their results are directed towards find-
ing the total number of routers/links in a network given
limited observations. For the purposes of this work we are
interested in leveraging the methodology from [20] and [21],
where the number of unseen routers will be estimated for a
fractional increase in the number of destinations probed. We
consider this a more practical problem than the previously
framed unseen networking research, as it is important to have
knowledge of what it is possible to discover using a feasible
amount of additional probing of the network.

1We will refer to disambiguated interfaces as core routers
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Missing Species Estimator - Given the values n1, n2, ...nk

where ni is the number of routers that occur in exactly i routes
in the traceroute dataset, the number of additional routers
found by increasing the destination points by some fraction
t ∈ [0, 1] can be estimated as,

r̂(t) :=
k∑

i=1

(−t)
i
ni , (1)

where the value t represents the percent increase in the
number of probes, with t = 1 being a doubling of the probing
infrastructure.

This estimator proposed in [21] relies on extrapolating the
information from the observed data to a fractional increase
of the number of observations. The rationale of the estimator
hinges on two key assumptions. The first underlying premise
is that the number of times a given router is observed increases
roughly linearly as a function of the number of traceroute
measurements, modulo a bit of randomness in this growth rate
depending on the specific set of traceroute measurements
employed. To test the validity of the first assumption, we
observe the behavior of the growth of the number of times
a router is encountered as a function of the number of probes.
This observation is compared to a linear function fit to the
observations. The agreement with a linear trend can be gauged
by the R2 coefficient of determination metric [34], which
measures the linear relationship between observed average
values and the best linear fit of these observed values. By
definition, R2 = 1 if there is perfect correlation between the
observed values and the best linear fit, and R2 = 0 if the
two sets of sequences are uncorrelated. The average R2 across
all observed routers in our iPlane/Planetlab probe dataset was
found to be = 0.9986 (with standard deviation = 0.0013),
this indicates that the average router observations are almost
perfectly correlated with the best linear fit.

The second assumption is that all traceroute mea-
surements, past and future, are independent and identically
distributed. This is reasonable in our situation because the
sources and destinations in our measurement campaign are
widely distributed end hosts in the Internet, and therefore the
traceroute dataset is a fairly random sampling of paths
through the Internet core.

A. Experimental Performance

From the Planetlab/iPlane probing infrastructure described
in Section III, we observe 114,815 core routers. From the
Missing Species Estimator, we can predict that from knowl-
edge of core router occurrence characteristics, we will discover
an additional 46,032 core routers given a doubling (i.e., t = 1)
of the traceroute probing infrastructure. Next, we would
like to assess the accuracy of this estimate. We can test the
accuracy by taking ten random realizations of probing only
half of our dataset (taken by maintaining the same number of
traceroute sources, but probing to only a randomly chosen
half partition of the traceroute destinations). Across these
ten experiments, these reduced probing sets resulted in finding
on average only 91,018 core routers (in contrast to 114,815

core routers found in the full probing set). By the simple
formula in Equation 1 and the characteristics of the routers
found using these reduced probing sets, we would predict to
find an average additional 38,582 core routers given the full
probing set, for an average total of 129,600 core routers. This
is only a 13% deviation from the actual total observed number
of routers found using the complete set of destinations.

VI. ESTIMATING UNSEEN CONNECTIVITY

Given that we can now estimate how many core routers
were not observed, we now look to examine what can be said
about the unseen topology associated with the core routers
that have been observed. Specifically, given an observed set
of core routers, we focus on accurately estimating the hop
length between every pair of observed core routers. Our
estimation method is based on the leveraging of traceroute
measurements with disambiguated interfaces. The focus of the
analysis below is similar to unseen core router estimation,
namely to estimate the unseen connectivity between core nodes
given traceroute measurements.

A natural way to represent the router-level topology of the
Internet is by using a hop count matrix H(I). For the entire
IPv4 Internet, H(I) is a 232 × 232 matrix with each element
H

(I)
i,j representing the number of routers between IP address

i and IP address j. If the matrix H(I) is known, then the
router-level topology of the Internet in all places is completely
resolved. In this paper, we will focus on reconstructing a
portion of this full hop count matrix, denoted as the N ×N
matrix H, given N observed core routers from the core
measurement data. To fill in even this portion of the hop count
matrix completely would require an infeasible N2 probing of
the Internet. Instead, we reconstruct this matrix by using the
set of core measurements from Section III. We examine how
the traceroute measurements (i.e., containing labels of
intermediate nodes) can be used to improve our connectivity
estimates.

To construct the hop count matrix from traceroute
measurements, consider a single traceroute probe sent
between two nodes (p1, p2) returns the path,

p1 → r1 → r2 → r3 → r4 → p2 (2)

From this single path, many hop elements of H can be
observed (assuming interface disambiguation), with r1 being
one hop away from r2, two hops away from r3, etc. Intuitively,
this has a multiplicative effect on our ability to populate the
hop count matrix H versus a single ping-style hop count
measurement. In this fashion, we can use the large set of
traceroute measurements to extract the hop count matrix.

It is obvious from Table I that many of the matrix elements
have no information (indicated here as a “-”). Using only
traceroute probes to fill in the core-router-to-core-router
hop elements will result in a hop count matrix that could be
highly incomplete depending on the perspective afforded by
the Traceroute campaign. Given this assumed incomplete hop
count observation matrix, our first objective is to impute (or
“fill in”) the missing observations to resolve the router-level
topology of the observed core routers.
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TABLE I
AN EXAMPLE HOP COUNT MATRIX USING OBSERVED HOP ELEMENTS

FROM THE SINGLE traceroute PATH p1 → r1 → r2 → r3 → r4 → p2
(WHERE “-” REPRESENTS AN UNKNOWN ELEMENT).

p1 p2 r1 r2 r3 r4

p1 0 5 1 2 3 4
p2 - 0 - - - -
r1 - 4 0 1 2 3
r2 - 3 - 0 1 2
r3 - 2 - - 0 1
r4 - 1 - - - 0

A. Matrix Completion Algorithm

Given the observed elements of the hop count matrix, H,
we will now estimate the unseen hop elements. We appeal
to recent work on Matrix Completion methodologies in [24],
[25] that frames the estimation of incomplete matrices as the
problem of inferring the matrix Ĥ with the lowest rank (the
number of nonzero eigenvalues) that agrees with the observed
elements.

minimize rank
(
Ĥ
)

subject to Ĥi,j = Hi,j s.t. Hi,j was observed

Motivation for using Matrix Completion to impute hop
counts is two-fold. First, given k observations from the N×N
matrix H (for N number of end hosts), it was found in [24]
that using the Matrix Completion algorithm, we can exactly
reconstruct the matrix given the number of observations
satisfy O (rN logN) (where r is the rank of the matrix).
Therefore, even for massively incomplete matrices, given low
rank structure we may be able to accurately reconstruct the
unseen elements. Second, prior work in [18] shows that a
hop count matrix can be accurately represented by a low-rank
approximation, indicating Matrix Completion should perform
well on these matrices.

B. Experimental Performance of Matrix Completion

A hop matrix is constructed using 10,276 core routers
found by probing between 216 active Planetlab nodes and 375
Planetlab node destinations using the methodology described
in Section III. This dataset is massively incomplete, with only
1.94% of the hop elements observed. To assess an accurate
estimation error rate, 100,000 observed core router to core
router hop elements (chosen completely at random) were held
out of the dataset and used to validate the performance of
the Matrix Completion procedure. The error metric used to
assess the estimation accuracy is the Root Mean Squared Error
(RMSE) defined as:

RMSE(Ĥ) =

√√√√ 1

|y|
∑

{i,j}∈y

(
Hi,j − Ĥi,j

)2

(Where y denotes the holdout set of coordinates and |y| is
the size of the holdout set). If our estimator has an RMSE
of 1, then we can estimate the hop distance (on average)
within a single hop of the true hop distance. In addition to
the Matrix Completion algorithm results, we look to compare
the hop estimation results against a baseline hop estimation
methodology.

1) Mean Hop Estimation: To provide a benchmark for
comparison, we consider the following simple approach to
impute the missing hop counts. One can estimate each missing
hop count using the mean of the hop counts that have been
observed.

Ĥi,j =
1

|P (H)|
∑
x

∑
y

P (Hx,y)

where P (Hx,y) is equal to Hx,y if the hop length between
routers x and y was observed and 0 if no information was
observed, and |P (H)| denotes the total number of observed
hop counts.

2) Missing Hop Count Estimation Results: For estimat-
ing the held-out hop elements in the 10,276×10,276 core
router hop count matrix, we find that the mean methodology
estimates hop counts with RMSE of 5.96, while the new
Matrix Completion approach has a RMSE of 2.03. Therefore,
the new Matrix Completion algorithm estimates the missing
elements with accuracy almost 4 hops better than the mean hop
estimation procedure on average. The empirical cumulative
distribution of the errors can be seen in Figure 1, this shows
the probability that the imputation deviation (absolute value of
the difference between the true hop value and the estimated
hop value) is less than or equal to the deviation value on
the x-axis for both imputation methodologies. In Table II, the

Fig. 1. Empirical Cumulative Probability for the imputation error using both
Matrix Completion and Mean imputation.

deviation of the estimated held-out hop element values from
the true hop element values are shown with respect to both the
Matrix Completion method and the mean imputation method.
As evident in the table, while the hold out data for the Matrix
Completion method is slightly biased by the 4.7% of the hold
out data that is estimated with deviation of greater than 4 hops
from the observed value, this is in comparison to the mean
imputation method that has over 43% of the hold out data
estimated with deviation over 4 hops. Meanwhile, over 60%
of the unobserved hop elements can be estimated within 1 hop
with the Matrix Completion method. This level of accuracy in
estimation directly motivates classifying unseen links in the
topology using this new Matrix Completion methodology.

C. Inferring Unseen Core Links

Using our hop-based Matrix Completion approach, we
now have an estimated hop count matrix Ĥ, containing the
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TABLE II
DIVISION OF MATRIX COMPLETION ERRORS FOR HOLDOUT DATA

Error Range Matrix Completion Mean Imputation
Percent Percent

Less than one hop off 60.2% 15.8%
Less than two hops off 82.7% 30.7%
Less than three hops off 91.3% 44.5%
Less than four hops off 95.3% 56.4%
More than four hops off 4.7% 43.6%

predicted hop counts between all the core routers found by
probing. We now infer the existence of unseen links between
routers given our estimated matrix. We wish to identify links,
source-destination pairs {i, j} where Hi,j = 1 but Hi,j was
not observed.

Given an estimated hop count matrix Ĥ, one simple method-
ology for estimating unseen links would be to threshold the
estimated hop count values. This methodology would classify
all estimated hop values below a certain threshold (λ) as a
link. This results in the creation of a hop count thresholding
adjacency matrix A(hop),

A
(hop)
j,k =

{
1 : if ĥj,k < λ
0 : otherwise

(3)

Where the chosen value of λ gives an explicit trade-off
between the number of links missed and the number of false
links erroneously declared as existing (i.e., the false alarm
rate).

A deficiency of this hop thresholding methodology is that
there is no consideration for the variance of our hop estimate.
For areas of the network with high uncertainty, this method
could possibly erroneously classify links. Instead, we consider
the statistical inference methodology of bootstrapping [35] to
systematically decide which pairs of observed routers have
connected links in the topology by considering the variance
of our hop count estimate.

The bootstrap thresholding methodology will be executed
as follows. Consider repeatedly subsampling the observed hop
count data, where each subsample H(i)

B (for i = {1, 2, ...,M}),
contains 95% of the observed hop counts chosen at random
(with the other 5% of the observed hop counts held out
from consideration). By performing the Matrix Completion
algorithm on each subsampling matrix, we obtain M estimates
of the full hop count matrix Ĥ

(i)
B . Using this repeated subsam-

pling when M = 40, for each unobserved hop count we will
have the set of 40 estimates, {ĥ(1)

j,k, ĥ
(2)
j,k, ..., ĥ

(40)
j,k }. To estimate

the stability of these estimates, we find the empirical bootstrap
confidence limits

[
ĥL
j,k, ĥ

U
j,k

]
by sorting the set of estimates

and taking the second smallest hop count value (ĥL
j,k) and the

second largest estimated hop count value (ĥU
j,k). These are the

empirical 95% bootstrap confidence limits on our estimation
of this hop count value, where given our observed data we
are 95% confident that the true hop value, hj,k lies between[
ĥL
j,k, ĥ

U
j,k

]
.

These confidence limits help to inform which elements
are links. Consider the empirical bootstrap confidence limit[
ĥL
j,k, ĥ

U
j,k

]
. If the confidence upper bound, ĥU

j,k, was close to
one, this would imply that we are confident that the true value

of hj,k is one due to the confidence region containing no other
possible hop count value. Therefore, we would very likely
infer that there is a link in the topology between routers j and
k. On the other hand, if the confidence upper bound was much
larger than one, this would imply that we are not confident that
the true value hj,k is one, and therefore no link likely exists
between core routers j and k. This intuition gives rise to a
thresholding methodology to find the bootstrap thresholding
adjacency matrix A(boot) where an unseen adjacency (core
link) is implied to exist if the confidence upper bound, ĥU

j,k is
below some value λ, and an adjacency is assumed not to exist
if the confidence upper bound is greater than λ:

A
(boot)
j,k =

{
1 : if ĥU

j,k < λ

0 : otherwise
(4)

The complete bootstrap thresholding methodology is described
in Algorithm 1.

Fig. 2. Percentage of total links correctly classified plotted against threshold
of confidence upper bound (λ) for both bootstrap upper bound estimate and
hop count estimate.

D. Experimental Performance of Unseen Link Inference

Using the probing set of 10,726 core routers found between
Planetlab nodes, we tested the performance of our unseen
link classification methodology. After holding out 500,000
randomly-chosen hop count values containing 6,116 links
(where we have observed hi,j = 1) and 493,884 non-
links (where we have observed hi,j > 1). This hop count
estimation was repeated 40 times and the Unseen Core Link
Estimation methodology was tested. This behavior can be seen
in Figure 2, which shows the percentage of correctly classified
links (out of all the links classified) against the threshold
value for both the bootstrap thresholding methodology and
the hop count thresholding methodology. The results show
that the bootstrap thresholding methodology is more accurate
at classifying true unseen links than the more simple hop
count thresholding methodology, with almost 10% more edges
classified correctly for values of the threshold λ < 2. For the
bootstrap thresholding methodology, the results in Figure 2
indicate that performance of link classification is good for
λ ≤ 2, with a majority (roughly 70%) of identified links being
true links with performance degrading as the threshold value
λ > 2. The threshold λ ≤ 2 can be interrupted as follows:
given the observed data we are confident that there are no
intermediate hops between pairs of core routers classified as
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directly linked. For λ > 2, meaning that our 95% confidence
bounds contains possible hop values greater than one, the
performance of the classifier degrades significantly as λ is
increased. Note the sharp knee in the curve at λ = 2, indicating
that immediately past this point the fraction of correctly
identified links drops off precipitously. Therefore, the logical
choice for the threshold using the bootstrap methodology is
λ = 2.

Algorithm 1 - Unseen Link Estimation Algorithm - Bootstrap
Thresholding

1) Obtain 40 subsampled versions of the observed hop
count matrix H

(i)
B (i = {1, 2, ..., 40}). Where each

matrix contains a randomly chosen 95% of the total
observed elements.

2) Perform Matrix Completion of each of the subsampled
hop count matrices. Obtaining the estimated matrices,
Ĥ

(i)
B (i = {1, 2, ..., 40})

3) For every unobserved hop count element hj,k

a) Using the vector of bootstrap estimates,
{ĥ(1)

j,k, ĥ
(2)
j,k, ..., ĥ

(40)
j,k }, sort the estimated values

from smallest to largest, {ĥI(1)
j,k , ĥ

I(2)
j,k , ..., ĥ

I(40)
j,k }.

Such that ĥI(i)
j,k ≤ ĥ

I(i+1)
j,k

b) Eliminate the smallest and largest values
(ĥI(1)

j,k , ĥ
I(40)
j,k ) to obtain the 95% empirical

bootstrap confidence bounds.
c) The remaining largest value is now the bootstrap

confidence upper bound, ĥU
j,k = ĥ

I(39)
j,k .

d) If ĥU
j,k < λ, then establish an link between core

routers j, k. Otherwise, no link exists.

The results for this Unseen Link Classification Algorithm
on our 10,726 core router dataset can be seen in Table III
for multiple values of the threshold λ on the two thresholding
algorithms. As seen in the table, using the desired threshold
(i.e., λ = 2), the bootstrap methodology discovers 2,196 of the
true links in the topology, with only 37.4% of the classified
links being false alarm links2. This is in comparison to the hop
count thresholding method (with λ = 2) which finds a greater
number of true links (3,388 links classified) but more than
half of the classified links using this methodology (50.7%)
are false links. This significantly higher accuracy motivates
the application of the bootstrap thresholding methodology over
the simple hop estimate thresholding methodology.

VII. TARGETCOMPLETE - ADAPTIVELY TARGETED CORE
PROBING

Given the unseen core router and unseen core link es-
timation procedures describe above, we now focus on a
combination of these two algorithms in order to illuminate
unseen areas of the Internet core. Our approach is to use
our previous techniques for identifying unseen areas of the
network to target for further probing. Specifically, consider

2With the false negative links being the number of undetected links on this
network.

the problem of trying to discover the core of the Internet
using a series of traceroute probes between a set of pos-
sible traceroute end host sources, S = {s1, s2, ..., sN},
and a set of possible traceroute end host destinations,
D = {d1, d2, ..., dM}. The path found by each traceroute
probe between source si and destination dj can be denoted
by the subgraph Gi,j . Therefore, the complete router topology
that is visible from this full set of sources and destinations can
be represented as,

G =
∪
i∈S

∪
j∈D

Gi,j , (5)

Where G is the union of all the traceroute paths between
end hosts in the source set to the end hosts in the destination
set.

The key problem with this idea is that using all possible
sources and all possible destinations requires performing all
N ·M possible traceroute probes, which in cases where
N or M are very large may be infeasible. Also, there are likely
redundant probes sent out where particular Gi,j subgraphs
contribute little to no new information about the full graph
G due to a majority of their vertices and edges already
having been observed by a previous path. This realization
motivates the following modification of the problem: given
a set of possible traceroute end host sources and a set of
possible traceroute end host destinations, our goal is to
use the measurement data to determine the source-destination
probes that best further exposes the core topology. In our
methodology, exposing the core topology is defined as finding
a significant percentage of unique core routers and a significant
percentage of unique core router edges with respect to the core
topology found using the entire source set S and the entire
destination set D.

A. Random Selection Probing

If we make no assumptions or inferences about the utility
of probing each source-destination pair, then the only method-
ology available is to probe by arbitrarily selecting source-
destination pairs. We will consider this method as the baseline
performance to compare the performance against our targeted
methodology

B. TargetComplete Probing Algorithm

Given the methodologies on unseen router estimation in
Section V and the techniques on unseen edge estimation in
Section VI, we can combine estimates to inform the user as to
which source-destination pair will reveal the most information
about the core.

1) Unseen Species Selection: Consider the case where we
have already probed some subset of destinations from each
traceroute source in the network. Therefore, for each
source Si, we have a source subgraph G∗

Si
, consisting of the

set of routers and links found probing from source Si to
the selected destinations. We can state the current combined
probing subgraph,

G∗ =
∪

i=1,2,...,k

G∗
Si



9

TABLE III
PERFORMANCE OF UNSEEN LINK CLASSIFICATION ALGORITHM WITH VARIOUS THRESHOLD VALUES USING λ THRESHOLDING ON BOTH THE

BOOTSTRAP THRESHOLDING AND THE HOP COUNT THRESHOLDING METHODOLOGIES.

Hop Count Thresholding Bootstrap Thresholding
λ = 1 λ = 2 λ = 3 λ = 1 λ = 2 λ = 3

Number of Classified True Links 1422 3388 4769 526 2196 3959
Number of Classified False Links 911 3484 10744 235 1315 6660

Percentage of True Links out of all Classified Links 60.9% 49.3% 30.7% 69.1% 62.6% 37.3%
Percentage of False Links out of all Classified Links 39.1% 50.7% 69.3% 30.9% 37.4% 62.7%

Which source-destination probe pair will return the largest
number of unique core routers with respect to the combined
probing subgraph G∗? Given the limited information about
the core topology in the combined subgraph G∗, we do not
have enough data to make an informed decision to solve
this problem. A problem that can be solved is the slightly
modified problem of which source will return the largest
number of unique core routers with respect to the specific
source subgraph G∗

Si
? Reframing the problem in this manner

indicates that it is very similar to the unseen species problem
of Section V. Given a source subgraph, G∗

Si
, we estimate the

number of unique unseen routers that would be observed given
a fractional increase in the number of destinations (analogous
to the probing of another destination from this source) in
this source subgraph. We argue that the source subgraph
that is estimated to have the largest increase in the number
of observed unique core routers with respect to its source
subgraph should be considered the best choice for increasing
the number of unique core routers with respect to the combined
probing subgraph G∗.

2) Matrix Completion Selection Algorithm: The unseen
species method selects the best source to probe from, but
what destination should be chosen? Another possible probing
strategy arises from the unseen core connectivity estimation
techniques in Section VI. Consider the N × M probe hop
count matrix HP representing the hop distances between the
traceroute end host sources S and the traceroute
end host destinations D. From the traceroute probes,
we receive the number of hops between the sources and
destinations, thus filling in the probe hop count matrix (with
the unprobed pairs having unknown hop count values). Instead
of estimating the size of the changes on the subgraph (as the
previous Unseen Species method), we send probes based on
determining which unobserved source-destination pair has the
most uncertainty in the probe hop count matrix with respect
to the observed hop counts. To determine the uncertainty of
the hop counts in each of the missing source-destination pairs,
we consider performing K-fold cross-validation (CV) [35] on
the observed hop count values, similar to our unseen link
estimation methodology.

Using K-fold CV, the Matrix Completion algorithm is
performed on the incomplete probe hop count matrix HP ,
yielding K estimates for each unknown source-destination pair
hop count element ({h(1)

i,j , h
(2)
i,j , ..., h

(K)
i,j }). These collections of

estimates are used to obtain the variance of each unobserved
hop count estimation value. The intuition is as follows, if
the variance of the hop count estimation is low, it implies
that given the current observed hop counts, we have a good
idea of the topological distance between the selected source-
destination pair. Conversely, if the variance of the hop count

estimation is high, it implies that we do not know very much
about the topological distance between the specific source and
destination, making it a candidate for probing.

3) TargetComplete Probing Algorithm: We can combine
the two methods, Matrix Completion Selection and Unseen
Species Selection, to form the TargetComplete method that of-
fers a ”best of both worlds” solution that chooses both the best
source and best destination for an additional traceroute
probe. To perform TargetComplete, we simply use the Unseen
Species selection method to find the best source to probe from
(given the prior set of source subgraphs GSi ), and then use the
Matrix Completion selection methodology to find the destina-
tion for that chosen source that has the highest uncertainty
(i.e., average variance) given K-fold cross-validation and the
Matrix Completion algorithm. An outline of the approach is
shown in Algorithm 2.

Algorithm 2 - TargetComplete Probing Algorithm

Initialize:
• From every source, randomly probe some number of

destinations.
• Fill in the observed source-destination pair elements in

the probe hop matrix, H.
Main Body

1) Using Equation 1 find î, the source that the unseen
species estimator predicts will find the most unseen
routers given an increase in probing.

2) Using K-fold Cross Validation and Matrix Completion,
find the K cross validation estimates for each destination
j for source î, {h(1)

î,j
, h

(2)

î,j
, ..., h

(K)

î,j
}

3) Find the destination for source î with the highest cross
validation variance.

ĵ = argmax
j

(
var

(
{h(1)

î,j
, h

(2)

î,j
, ..., h

(K)

î,j
}
))

(6)

4) Probe the chosen source-destination pair
(̂
i, ĵ

)
. Adding

the observed hop count value, hî,̂j to hop count matrix
H.

5) If there are still more source-destination pairs to probe,
go to 1.

C. Targeted Probing Experiments

Using the 216 active Planetlab nodes as sources, we sent
traceroute probes to a destination set of 360 Planetlab
nodes. Those measurements identified a set of 10,276 core
routers with 34,859 links found between them. To initialize the
probing algorithm, we performed five traceroute probes
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to randomly selected destinations from each Planetlab node in
the source set. Using the two probing methodologies pertaining
to selecting source-destination pairs to probe (TargetComplete,
random selection), we examine the performance of the probing
methodologies on discovering the unseen core topology using
further probing. In this analysis, we compare performance by
considering the number of unique core routers and unique core
edges found by each probing methodology.

Figure 3 shows the results with respect to the number of
traceroute probes needed to find both previous unseen
core routers and unseen core links given the two probing
methodologies, showing considerably more core infrastructure
being discovered by our TargetComplete procedure compared
with the random probing approach. Table IV and Table V
show the number of probes needed to discover a specified
number of unique routers and links, respectively. The tables
show that for both routers and links, the TargetComplete
probing methodology uses less than half (50%) of the number
of source-destination pair probes compared with a random
methodology to obtain the same number of observed core
routers/links. This suggests that the TargetComplete method-
ology correctly selects areas of the network about which the
structure is uncertain, showing the power of both the unseen
core router and matrix completion methodologies on revealing
unseen areas of the network.

TABLE IV
UNSEEN ROUTER OBSERVATIONS - REQUIRED NUMBER OF traceroute

PROBES NEEDED TO OBSERVE A SPECIFIED NUMBER OF UNIQUE ROUTERS.

Random Probing TargetComplete Probing
# Routers Found # Probes # Probes Percentage of

Required Required Random Probes
250 545 185 33.95%
500 1,632 537 32.90%
750 2,511 913 36.36%

1,000 3,356 1,636 48.75%

TABLE V
UNSEEN LINK OBSERVATIONS - REQUIRED NUMBER OF traceroute

PROBES NEEDED TO OBSERVE A SPECIFIED NUMBER OF UNIQUE LINKS.

Random Probing TargetComplete Probing
# Links Found # Probes # Probes Percentage of

Required Required Random Probes
500 391 183 46.80%

1,000 1,465 413 28.19%
1,500 2,027 745 36.75%
2,000 2,712 1,197 44.14%

VIII. CONCLUSIONS AND FUTURE WORK

Generating timely and accurate maps of the Internet has
been a compelling objective for some time, but remains
beyond our grasp. The scope, diversity and dynamics of
the infrastructure along with the fact that service providers
often actively thwart measurement by standard methods all
complicate the issue. In this paper we address a subset of
the Internet mapping problem by restricting our focus to
discovering unseen portions of the core. We argue that unseen
core inference is important since the core carries a large
amount of application and service traffic and that it is tractable
since it excludes the hundreds of millions of end hosts and
their associated links. We address the unseen core problem by

developing a novel unseen discovery inference methodology.
Our methodology consists of estimating unseen core nodes,
inferring unseen links in the network, and TargetComplete, a
targeted probing methodology that efficiently reveals unseen
areas of the Internet.

We demonstrate the capabilities of our methodology using
traceroute datasets collected in PlanetLab and by the
iPlane project [9]. We show that our unseen core node tech-
nique estimates the number of additional core nodes found
given increased probing with only a 13% deviation from
the actual observed number. We also show that a matrix
completion algorithm is able to estimate over 60% of the core
links within one hop of actual and roughly 82% of the core
links within two hops of their actual value. We further develop
an unseen core link classification algorithm, which finds over
35% of the true unseen core links with limited false alarm
links. Finally, we validated the performance of both unseen
router and unseen link estimation methodologies by merging
the techniques in the TargetComplete algorithm. In comparison
with a baseline random probing procedure, TargetComplete
discovers more topology components (i.e., routers and links)
while requiring less than half the number of traceroute
probes.

Our novel, efficient TargetComplete technique points to new
capabilities for timely large-scale Internet map generation. In
addition to expanded network discovery through efficient, tar-
geted probes, the individual components of our methodology
estimate how much additional unseen topology still exists in
the network, allowing for an intelligent stopping criteria for
probing campaigns. In future work, we plan to investigate
the problem of understanding how the core maps evolve by
conducting measurements over longer time frames. We will
also look to perform Internet core boundary identification on
other Internet data sets using our established candidate core
nodes from this study.
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