Device Graphing by Example

Keith Funkhouser

comScore
kfunkhouser@comscore.com

Phillip Poon
comScore
ppoon@comscore.com

ABSTRACT

Datasets that organize and associate the many identifiers produced
by PCs, smartphones, and tablets accessing the internet are referred
to as internet device graphs. In this paper, we demonstrate how
measurement, tracking, and other internet entities can associate
multiple identifiers with a single device or user after coarse associ-
ations, e.g., based on IP-colocation, are made. We employ a Bayesian
similarity algorithm that relies on examples of pairs of identifiers
and their associated telemetry, including user agent, screen size,
and domains visited, to establish pair-wise scores. Community de-
tection algorithms are applied to group identifiers that belong to
the same device or user. We train and validate our methodology
using a unique dataset collected from a client panel with full visi-
bility, apply it to a dataset of 700 million device identifiers collected
over the course of six weeks in the United States, and show that
it outperforms several unsupervised learning approaches. Results
show mean precision and recall exceeding 90% for association of
identifiers at both the device and user levels.

CCS CONCEPTS

- General and reference — Measurement; « Mathematics of
computing — Bayesian computation; « Information systems —
Online advertising; « Computing methodologies — Supervised
learning by classification;

KEYWORDS

Internet measurement, device graph, naive Bayes

ACM Reference Format:

Keith Funkhouser, Matthew Malloy, Enis Ceyhun Alp, Phillip Poon, and Paul
Barford. 2018. Device Graphing by Example. In KDD ’18: The 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
August 19-23, 2018, London, United Kingdom. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3219819.3219852

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 18, August 19-23, 2018, London, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5552-0/18/08....$15.00
https://doi.org/10.1145/3219819.3219852

Matthew Malloy
comScore
mmalloy@comscore.com

Enis Ceyhun Alp

comScore
ecalp@comscore.com

Paul Barford
comScore, University of Wisconsin
pbarford@comscore.com

1 INTRODUCTION

Web publishers, advertising networks, and measurement and ana-
lytics companies collect diverse information from devices as they
access internet services. The information they collect is used in a
variety of ways including targeted advertising, reporting, auditing,
and fraud detection. There are two primary types of identifiers
used by third-parties to track user activity across the internet: OS-
level advertising identifiers (e.g., Apple’s Identifier For Advertisers
(IDFA) and Android’s Advertising ID) and third-party web cookies.
We refer to both types of identifiers generically as IDs.

From the perspective of a third-party measurement, advertising,
or tracking entity, the online activity of a single user is rarely
captured by a single ID, primarily for two reasons. First, users
increasingly access the internet from multiple devices (e.g., a smart
phone and a laptop), each of which presents a unique ID with
no immediate indicators that the IDs are related. Learning the
relationships between IDs across devices shared by the same user is
termed cross-device identification. Second, a single device presents
multiple IDs depending on how and when the internet is accessed.
A smartphone accessing resources on the internet may present one
cookie when using the default web browser, a different cookie for
each web browser embedded in an app (e.g., Facebook’s embedded
browser), and an advertising ID when using other applications.
Often this intra-device ID multiplicity is by design, with the aim
of limiting and preventing tracking. Apple’s latest release of iOS
11 (September 2017) includes “Intelligent Tracking Prevention” [4],
which both actively deletes third-party cookies and creates first-
party-specific third-party cookies. The result is an increasing number
of increasingly ephemeral IDs from a single device. We term the
problem of associating multiple IDs with a single device intra-device
identification.

Datasets that capture relationships between IDs at scale are
called internet device graphs. Over the past several years, device
graphs have become ubiquitous in the digital advertising ecosys-
tem; facilitating targeted advertising, content customization, and
tracking of media consumption. Approaches for generating internet
device graphs are typically classified as deterministic or probabilis-
tic. Deterministic graphs refer to approaches that directly relate
login, email, or other personally identifiable information to IDs.
Probabilistic graphs are derived using algorithms that ingest data
such as IP-address information, geo-location, or other information
to infer an underlying relationship between IDs.

In this paper, we address the problem of relating multiple IDs
to the same device or user. Our work complements and extends
techniques for probabilistic internet device graphing such as [24].


https://doi.org/10.1145/3219819.3219852
https://doi.org/10.1145/3219819.3219852

KDD ’18, August 19-23, 2018, London, United Kingdom

We describe a learning algorithm for grouping related IDs after
coarse groupings, such as household-level groupings (i.e., IDs that
belong to users of the same residential household), are made. The
approach is generalizable in that it can be used to address both
cross-device and intra-device identification (i.e., create device- and
user-level groupings) depending on the features employed and the
training data available. The learning algorithm proceeds in two
phases. First, a naive Bayesian similarity scoring algorithm relies
on labeled example pairs of IDs and their associated telemetry. The
pairs of IDs are labeled in that a ground truth indicator identifies the
IDs as belonging to the same group (i.e., device or user) or different
groups. The features employed are chosen to discriminate between
different groupings. In the case of device-level groupings, features
containing information specific to the device, such as user agents
(UA) and screen resolution, are utilized by the algorithm. For user-
level groupings, behavior-based features specific to a user, such
as a list of recent domains and mobile applications, are used. The
algorithm scores the likelihood that an unlabeled pair of IDs belong
to the same group by comparing features to the labeled examples.
A high scoring pair of IDs corresponds to two IDs from the same
group. After pair-wise scores between IDs are established, the IDs
can be clustered into small groups that correspond to individual
users and devices using community detection algorithms. We apply
a modified Louvain Modularity community detection algorithm [8]
to the pair-wise scores, producing small groups of IDs representing
devices or users.

We demonstrate our methodology at internet scale with an im-
mense dataset! from comScore’s digital census network. comScore’s
census network consists of web page, advertisement, and appli-
cation tags deployed by publishers across the internet. The tags
generate server logs of client requests to publisher web pages, re-
quests for advertisements, and applications that request resources
on the internet. This dataset, collected over a period of 6 weeks in
the United States, includes 700 million IDs, hashed IP addresses, and
supplemental signals including the UA and screen resolution. Im-
plementations of the algorithms in a Hadoop environment process
the entire dataset in hours. We report the results of the application
of our method to the digital census network data in Section 3.2.

We train and validate our methodology using data from user
panels that are operated by comScore. These panels are realized
through specialized monitoring software and customized in-home
hardware, and are opt-in (i.e., users provide explicit permission
prior to installation). The user panels provide training data that
includes a unique device hardware identifier (e.g., its Media Access
Control (MAC) address) and the IDs associated with that device.
Using leave-one-out cross-validation, we generate receiver oper-
ating characteristic (ROC) curves that capture the error rates of
the approach. The results are compared to unsupervised classifi-
cation approaches and greatly outperform them, highlighting the
ability of our methodology to accurately associate pairs of IDs that
belong to the same device or user. After validating the pairs of
IDs, we validate the clustering of IDs. We generate precision/recall
curves for ID clustering based on a modified Louvain Modularity
algorithm. The results show mean precision and recall rates above

!We plan to make an anonymized subset of this data available to the research commu-
nity on publication.

K. Funkhouser et al.

91% are possible at the device level. At the user level, precision and
recall rates exceed 94%. However, this analysis belies the difficulty
of user-level grouping, illustrated by the comparatively lower true
positive and true negative rates observed in leave-one-out cross-
validation testing (Figs. 3 and 4). Section 3.3 details the validation
of our approach.

Lastly, in light of a rapidly changing digital advertising, tracking,
validation and measurement ecosystem, we discuss privacy and
ethics in learning device- and user-level relationships between
identifiers at scale. We note that our consideration of this problem
respects the privacy settings of a device, including exclusion of
IDs associated with incognito browsing and rejected third-party
cookies. It is not our aim to associate IDs that are actively reset
by a user. Instead, we aim to group IDs that are generated by the
multiple ways in which a single device or user accesses the internet.
We advocate these properties as key characteristics of a privacy-
respectful device graph dataset?.

In summary, this paper makes the following contributions. First,
to the best of our knowledge, this is the first study of the problem
of grouping multiple IDs to an individual device or user at scale.
Second, we describe a general ID-to-device and ID-to—user match-
ing method based on Bayesian learning and Louvain Modularity.
We demonstrate the efficacy of our approach on unique datasets of
immense scale and report on basic characteristics of device- and
user-level groupings.

2 METHODOLOGY
2.1 Preliminaries

While our methodology applies to internet data at scale, our starting
point is coarse groupings of related IDs, such as the household-level
groupings described in [24]. Coarse groupings, which we refer to
generically as cohorts, can be created from internet measurements
in a variety of ways. For example, cohorts can be comprised of all
IDs observed on the same residential IP address over some period of
time, or all IDs that access a particular web resource (e.g., a web site)
over some period of time. Ultimately, cohorts consist of IDs that
are predisposed to belong to a fine-scale grouping of interest. In
this context, cohorts are coarse groupings, comprised of a number
of smaller fine-scale device- and user-level groupings. Our objective
is to divide a cohort into these fine-scale groups.

While the methodology in this paper can be used with a wide
range of cohorts as input, the evaluation and implementation builds
upon [24], which creates cohorts that approximate residential house-
holds. More specifically, [24] begins by building a large graph data
structure by creating edges between IDs observed on the same
IP address at similar times, a technique termed IP-colocation. IP-
colocation occurs when devices share an IP address, commonplace
when connecting to the internet via the same WiFi router. After cre-
ation of the graph data structure, community detection algorithms
are applied to group the IDs into cohorts of different sizes, and the
cohorts corresponding to residential households are validated. Both
steps are highlighted in the top half of Fig. 1 (outside the dotted
box). The graph and the groupings reported in [24] consist of more
than 700 million IDs and 100 million cohorts.

2Users can reset or block IDs by adjusting OS and browser privacy settings. Privacy-
related concerns of user tracking are treated in Section 5



Device Graphing by Example

Before describing our methodology, we formalize notation. A
weighted graph G = (V, E) is a set of nodes V and a set of weighted
edges E. A weighted edge e € E is a two element subset of V and a
weight: e = (i, j,w) € V. XV X R. In a device graph, anode i € V is
an ID (e.g., a web cookie or advertising ID). Cohorts are a set of one
or more nodes, C = {i, ...} c V. The set of cohorts is denoted by
% ={C1,Cy...} and ¥ is a partitioning of V, i.e, Cp, N Cp, = {}
foranym # n,and | JCp, = V.

Our objective is to subdivide cohorts into smaller groups of
IDs corresponding to devices and users based on information, or
features, pertaining to each ID. Let X; denote the features associated
with node i and let U be a set of one or more IDs that represent a
device or a user. We assume U is a non-overlapping subset of one
cohort: U ={i,...} cCcV,and U, NU, = {} forall m # n.

The goal of our work is to answer the following questions: Given
as input (i) a set of cohorts and (ii) feature sets X; associated with
each ID i, how can one subdivide the cohorts into groups of IDs

corresponding to devices and users? Given a cohort C = {iy, i, ...}
and features X;,, Xj,, ..., how can one learn Uy, Uy ... ?
—' test data collection |

input data | (ID, IP address, timestamp)
v

| IP-colocation device graph |

graph | G = (V,E)

(sermyeay ‘(Qq)

community detection |

cohorts | ¢; ={i,...}cV, j=1....

—>| Bayesian similarity learning |<—{

cohort graphs Gj = (Cj«,{S(i,i') forall (i,1") € CJ’%}> L j=1...

training data |

I community detection |

users and devices 1Uk ={i,..}cGcV, k=1,...

Figure 1: Block diagram representing a combination of IP-
colocation-based device graphing described in in [24] and
the user/device identification method proposed in this paper
(highlighted by dotted box).

We address these questions in two steps in the following sections.
First, a similarity score for each pair of IDs that share a cohort is
calculated. The similarity score between two IDs that share a cohort
is denoted by S(i, i"), and for each cohort, these scores comprise
a weighted graph (denoted by G; in Fig. 1). The similarity score
reflects the likelihood that the IDs share a common grouping, i.e.,
belong to the same device or user. The second phase of our approach
relies on a variant of Louvain Modularity community detection that
accounts for negatively weighted edges to group the IDs. The dotted
frame of Fig. 1 captures these two steps.

2.2 Naive Bayes Similarity Scoring

For each pair of IDs that share a cohort, a naive Bayes similarity
score (NBSS) is derived. We selected naive Bayes as our classifier for
similarity scoring due to the sparsity of the feature space, limited
training data, and the need for a highly scalable implementation
since our application is for very large datasets. The similarity score

KDD ’18, August 19-23, 2018, London, United Kingdom

measures the likelihood that two IDs belong to the same fine-scale
group (e.g., the same device or user). The score can be used to
determine a binary hypothesis: a large positive score between two
IDs is indicative of the same device or user; conversely, a large
negative score implies evidence against the IDs belonging to the
same device or user. Scoring is based on the features of the pairs
of IDs, and whether examples from training data suggest these
features are indicative of IDs belonging to the same grouping.

More specifically, consider two IDs i and i’,i # i’. Let X =
{x1,x2,...,xp} C Z and X’ = {x{,xé, .. ,x;l,} c 4 be feature
sets (or feature bags) associated with devices i and i’ and let 2 be
a countable set. In the case of device-level groupings, x; could be a
particular UA string, or screen resolution, e.g. 1920x1080, observed
with ID i. In the case of user-level groupings, x; could represent
a domain or a URL, for example xyz.com, visited by ID i. Let Y be
an indicator of the true class: if IDs i and i’ belong to the same
grouping, Y = 1, otherwise Y = 0.

The NBSS is based on a proxy for the posterior probability ratio
of the two classes. A scaled sum of the log posterior probability
ratios from all pairs of features x¢, x}, is calculated. The premise
for this expansion is that information pertinent to classification is
well captured by pairs of features, one from each device. NBSS is
computed as follows:

’

1 & & P (Y =1|x¢, x},)
S(i.1") = —= log ——— ~¢Xm) 1
i) \/F;,nzl 8 5 T ok x) (1)

where k is the number of non-zero terms in the sum, P (Y|x¢, x},,)
is the posterior probability of the class given observation of ID i
with feature x, and i’ with feature x;,,. As such, the similarity score
involves the posterior probability given each pair of features, one
from each ID, derived from counts of examples in training data.
The leading constant of 1/Vk accounts for the power law increase
in the number of terms as the number of informative feature pairs
increase.

The NBSS approach does not assume the prior probability of the
classes is available, as the posterior ratio can be replaced by the
likelihood function, and a non-uniform prior can be incorporated
into the score by adding a universal scaling constant, which we
explore in Section 3.3.

The posterior probability ratio of the classes is estimated as the
number of same group ID pairs with features x¢, x;, divided by
the number of different group ID pairs with features x¢, x;, in the
training set. More specifically,

P(Y = 1lxz, x},) - Ni(xg,xp,) +

= 2
P(Y =0|x¢g,x7,)  Nol(xg,xp,) +a @

where Ni(x¢, x},) is the number of same group ID pairs with fea-
tures x¢, x},,, No(x¢, x},,) is the number of different group ID pairs
with features xg, x},, and « is an additive smoothing constant.
The constant is included to smooth the ratio when Nj(x¢, x,,) or
No(x¢, x},) is small.

Once the quantity S(i, i’) is determined, a threshold can be im-
plemented to classify the pair of IDs, i and i’, as belonging to the
same group or different groups.



KDD ’18, August 19-23, 2018, London, United Kingdom

2.3 Unsupervised Approaches

In addition to NBSS, three unsupervised learning approaches were
implemented for comparison. In particular, we explored (i) an ap-
proach based on the size of the intersection of the two feature sets,
(ii) an approach based on n-grams, and (iii) an approach that relies
on the IP-colocation score. All approaches are compared to random
scoring, where each pair of IDs is assigned a score S(i, i’) € [-1, 1]
uniformly at random.

The approach based on the size of the intersection can be con-
sidered a baseline approach for matching feature sets. In this case,
the similarity between the pairs of feature sets from the two IDs
is defined as the size of their intersection: S(i, i’) = |X N X’|. The
second unsupervised approach is based on extracting trigrams from
each bag of words and counting the intersection. More specifically,
the trigram of a string is the set of all three character sequences
occurring in that string. Let T and T’ be the trigrams of the feature
sets associated with device i and i’ (the feature set is converted to a
string by ordering alphabetically and concatenating). The trigram
score is computed as S(i,i’) = |T N T’|/min(|T], |T’]).

Third, we explore the use of the IP-colocation score defined as
S(i,i") = w;, i from [24] . The IP-colocation score is computed as
follows: for each pair of devices i, i’ observed on IP k, on day ¢, a
score wj,j7(t, k) = 1/N; i is assigned, where Ny i is the number
of IDs observed on IP k on day t. Scores are summed across IP
addresses and days: w; 7 = Xk s wi, i/ (t, k). The IP-colocation score
does not rely on the features required by the other approaches.

2.4 Grouping Based on Pair-wise Scores

The scored pairs of IDs constitute a weighted graph, with nodes
defined by IDs and weighted edges defined by the score S(i, i’).
Grouping nodes of a graph, a problem termed community detection,
is well studied and we appealed to the vast body of work on this
problem. We employed a variant of the Louvain Modularity commu-
nity detection algorithm [31], which groups nodes by optimizing
graph modularity, a measure of the strength of the community
structure.

Since the NBSS can be negative, we use a modified Louvain
community detection algorithm that can accommodate both pos-
itively and negatively weighted edges [18]. The approach treats
the negative and positive edges as separate graphs when comput-
ing modularity. The negative graph repels nodes from sharing a
community, while the positive graph attracts. In general, Louvain
Modularity is an iterative process in which the communities gen-
erated from the first step are treated as nodes on the second step
creating a hierarchy of communities as output. Our approach termi-
nates after the first step, outputting the finest scale of communities,
but otherwise follows exactly the procedure in [18].

Adding a universal constant to the scores controls the size of the
output groupings. In the extreme case, when a large negative value
is added, all edges become negative and repulsive, and each ID is
grouped only with itself. Adding a large positive constant forces all
connected IDs to be grouped together. We note that adding a con-
stant to S(i, i) has the same effect as including a prior probability
in the computation of the similarity score.

K. Funkhouser et al.

Figure 2 shows a small example cohort to which the NBSS ap-
proach and the modified Louvain Modularity algorithm were ap-
plied. The cohort consists of 6 IDs and the technique groups these
IDs into three devices.

Figure 2: A small example cohort C; with 6 IDs. The NBSS
learning algorithm is applied to all (g) = 15 pairs of IDs.
Black edges indicate positive scores, while red edges indicate
negative scores. The magnitude of the score is proportional
to the width of the edge. After scoring, community detection
is applied to group the IDs into Uj, U; and Us.

3 EVALUATION

This section describes the application of our approach detailed in
Sec. 2 to an internet-scale dataset. Our goal is to demonstrate the
efficacy of the approach, highlight potential shortcomings, and
provide a framework for reference.

3.1 Data

comScore’s digital measurement networks are amongst the largest
in the world, collecting logs of more than 60 billion internet events
per day>. comScore collects data through digital tagging of websites,
videos, mobile apps, advertisements, web widgets, and distributed
content. Tagging refers to placing code alongside web content that
directs a device to contact comScore’s web servers. Tagging is im-
plemented through two means: JavaScript/HTML tags and SDK tag
implementations. In both implementations, a client device executes
the tag code locally and makes a web request directly to a comScore
web server. The request is logged and stored in a warehouse in the
form of a record.

Training and test data were collected from comScore’s digital
census network during a 42 day (6 week) period from August 14,
2017 through September 24, 2017. Data collection was restricted
to the US. Over 2 trillion records of internet events in the US were
logged over the six week collection period. While the information
reported in a record varies depending on the client and the tag
implementation, information critical to our study can be divided
into two categories: data used to define cohorts, and features utilized
by the machine learning approach to further classify IDs.

The first category of data required to define the cohorts used
in our study consist of: (i) an ID, (ii) a hashed IPv4 address, and

3In an independent web crawl, 18.19% of the Alexa top 100,000 domains placed third-
party cookies of comScore [10], the second largest percent among third-party hosts.



Device Graphing by Example

(iii) a timestamp. This telemetry is used to make the coarse associa-
tions between IDs using the method described in [24]. Critically,
as detailed in Section 2, IP address-based association serves as the
starting point for our assessment by reducing the space of possible
ID pairs and enabling our method to be applied at scale.

Application of the method in [24] to generate coarse associations
resulted in 694 million unique IDs grouped into 102 million cohorts,
well aligned to residential households. By considering only pairs of
IDs that share a cohort, this resulted in over 3 billion ID pairs to
which the Bayesian similarity approach was applied.

3.1.1 Device-Level Features. The features used as input to derive
the NBSS were chosen to discriminate between IDs that belong to
the same/different groups. In particular, for device-level groupings,
features describing the hardware, browser, and operating system
were chosen. For user-level groupings, browsing behavior as indi-
cated by URLs visited and apps used were chosen.

At the device level, we explored inclusion of two types of fea-
tures: (i) the UA string and (ii) the screen resolution of the device. A
UA string is included in a client HTTP call and in general indicates
the type and version of the client web browser and operating system
(see [20] for a recent study of UAs). UA strings are available with
telemetry associated with web page tags. An example of a typical
UA is: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36, which cor-
responds to Chrome browser running on Windows 10. In the case
of an application that sends telemetry via the comScore SDK, the
UA is also recorded. While UAs returned by applications (including
the comScore SDK) often follow a standard format — for example,
an iPhone application — App/2 iPhone5,2 i0S/11.1 CFNetwork/808.3
Darwin/16.3.0 — the space of UAs returned by applications is vast.
We note that our approach requires no classification of the UA into
platform and browser information. Instead, training data simply
characterizes pairs of UAs as likely or unlikely to belong to the
same devices, by learning from example.

The second type of feature employed for the device-level group-
ings is screen resolution. The screen resolution, reported in vertical
pixels by horizontal pixels is collected by both the JavaScript tag
and the SDK tag. Screen resolution is standard telemetry included
in web requests. We note that mobile devices often return a reduced
resolution, hence direct comparison of collected screen sizes may
not be suggestive of device-level associations.

The screen size information and the UA for each ID are stored as
a set. Values observed over the course of the six weeks are included.
A typical feature set contains multiple distinct UAs and/or screen
sizes. For example, the feature set associated with an observed ID
was: X = {‘Mozilla/5.0..., ‘App/2 iPhone5,2...,1080x1920, 540x960}.
The feature set was limited to the top ten features (by count of days
observed) for each ID.

The corpus of test data collected over the six week period con-
sisted of 3,489,655,490 ID pairs corresponding to 740,805,009 distinct
IDs and 2,489,359,280 distinct (ID, feature) pairs, implying an aver-
age of 3.36 features per ID.

3.1.2  User-Level Features. To learn groupings of IDs that are
shared by a single user, the features were chosen to capture as-
pects of user behavior. For each ID i, the set of top-level domains
and applications used was collected. As cookie IDs are primarily

KDD ’18, August 19-23, 2018, London, United Kingdom

associated with web browsing, the feature sets of these IDs were
sets of top-level domains on which the ID was observed, for ex-
ample, X; = {websitel.com, website2.com, ... }. Advertising IDs,
conversely, are available to applications running on a mobile device,
including applications which incorporate the comScore SDK. For
advertising IDs, a set of applications used by the ID comprised the
feature set, for example, X;» = {App 1,App 2, ... }.

The corpus of test data collected over the six week period con-
sisted of 3,117,687,944 ID pairs corresponding to 694,409,939 distinct
IDs and 4,062,302,884 distinct (ID, feature) pairs, implying an aver-
age of 5.85 features per ID.

3.1.3 Device-Level Training Data. comScore collects detailed
measurements from a client panel (CP) that deploys instrumented
routers in each client’s home. The routers are gateways to/from the
internet and capture browsing statistics for all connected devices
in the household. The router also records an obfuscated version
of the media access control (MAC) address and the IDs associated
with any device that connects to the internet via the router.

The data required to model the posterior class probabilities given
pairs of features, P(Y|x¢, x}, ), are informed by the CP. More pre-
cisely, pairs of IDs that share a universal hardware identifier are
known to belong to the same device, hence they can provide exam-
ple feature pairs belonging to the same machine, i.e., Y = 1. Likewise,
pairs of IDs that do not share a universal hardware identifier do not
belong to the same device, therefore they present examples of pairs
of features belonging to different devices, i.e., Y = 0. The corpus of
training pairs was limited to ID pairs that belong to the same CP
household.

After data normalization and cleaning, the training dataset col-
lected from the CP consisted of 88,376 IDs associated with 42,650
MAC addresses, partitioned into 13,068 households. IDs associated
with more than one MAC address were excluded from considera-
tion. By considering only the pairs of IDs that belong to the same
household, the dataset was used to define 336,087 pairs of IDs. Of
the 336,087 pairs, 76,125 corresponded to ID pairs with a shared
MAC address, and 259,962 corresponded to ID pairs with a different
MAC address.

Combining the 336,087 labeled pairs with their associated fea-
tures resulted in 1,813,278 distinct feature pairs. If Ny (x¢, x;,) +
No(x¢, x;,) < 2, then the feature pair was not included as a valid
training example. This reduced the total number of feature pairs in
the resulting training set to 354,685. We refer to these pairs as the
set of training pairs.

3.1.4  User-Level Training Data. A third-party dataset was used
as training data for user-level groupings. This dataset consisted of
pairs of IDs that are associated with the same user and pairs of IDs
associated with different users*. The pairs of IDs were limited to
those that shared a cohort (a residential household) produced by
the methodolgy in [24], resulting in a dataset consisting of 3 million
pairs of IDs that belonged to the same users, and 20 million pairs
that belonged to different users.

4Qur terms of use with the third-party prevents us from sharing their name. The
third-party uses a variety of means to generated the user-level pairings, including
login information.



KDD ’18, August 19-23, 2018, London, United Kingdom

Device
(y =0.0)

User
(y = -6.0)

ID pairs with one or more
feature pairs in training data

1,922,784,915

2,889,346,629

pairs with S(i,i") > y

1,283,027,741

931, 455,977

pairs with S(i, i) <y

639,757,174

1,957,890,652

Table 1: Summary of NBSS statistics. Counts are the number

of pairs, i # i’.

Device User
scored ID pairs 1,922,784,915 | 2,889,346,629
distinct IDs 619,607,578 667,494,232
identified groups 322,006,060 273,795,191
average IDs per group 1.92 2.44

Table 2: Statistics on ID pairs and identified groupings result-

ing from the community detection algorithm.

. Count
Number of IDs per device/user Devices Teers

(y=0.00 | (y=-6.0)
1 164,906,331 | 150,383,873

2 80,839,391 41,647,927

3-4 60,676,942 42,417,496

5-8 14,845,135 29,430,469

> 8 738,261 9,915,426

Table 3: Distribution of the number of IDs per user or device.

3.2 Results

We applied NBSS to all pairs of IDs that shared a cohort in the
input dataset. Of these 3.1 billion pairs under test, in the case of
device-level learning, 1.9 billion ID pairs had at least one pair of
features that existed in the set of training pairs, and were scored
by the NBSS approach. For user-level groupings, 2.9 billion pairs
under test had one or more feature pairs in the training set. Recall
that a large score provides evidence that the IDs belong to the same
device/user, while a small (negative) score indicates the IDs belong
to different devices/users. Table 1 summarizes the results.

Next, at the device level, the 1.9 billion pairs of IDs scored by
NBSS were clustered using a variant of Louvain Modularity (see
Section 2.4). The 1.9 billion pairs contained 620 million distinct IDs,
which were grouped into 322 million small groups corresponding
to devices. Each small group was assigned a group ID, i.e., a device
ID. Table 2 shows summary statistics on ID pairs and identified
groupings resulting from the community detection algorithm. Table
3 shows a distribution of the number of IDs per group.

At the user level, the 2.9 billion pairs of IDs consisting of 667
million unique IDs were grouped into 274 million small groups
corresponding to users. These groups average 2.44 IDs, with the
distribution of group sizes given in Table 3.

K. Funkhouser et al.

3.3 Validation

Validation of the scores produced by the NBSS approach and the set
of groupings produced by the community detection algorithm was
completed using leave-one-out cross-validation. Leave-one-out cross-
validation individually tests each labeled example by withholding
that example from the training set.

Scores produced by the NBSS algorithm were verified as follows.
As noted, the client panel was used to create 336,087 pairs, each with
alabel indicating if the pair of IDs belong to the same MAC address,
or a different MAC address. Each pair of IDs belong to one of 13,068
households. The pairs were then scored using the other 13,067
households. In particular, the quantities N1(x¢, x;,,) and No(x¢, x},,)
in equation (2) are the count of example pairs with feature pair
x¢, Xy, excluding the pairs sharing the same CP household identifier
as the pair under test. If exclusion of data from the household under
test resulted in Nj(x¢, x7,) + No(x¢, x;,,) < 2, then the feature pair
x¢, X}, was not used in holdout scoring.

At the device level, the resulting dataset was comprised of 199,318
ID pairs, an associated leave-one-out NBSS score defined by (1), and
a label indicating if the pair of IDs belonged to the same device. We
note this implies that a significant number (136,769) of pairs had
no examples in training data after holdout of the household under
test, and were thus not scored by the algorithm. We investigated
assigning unscored pairs a score using an unsupervised approach,
but we omit those results for brevity.

The same process of exclusion of a household under test was
followed for user-level scoring. A much smaller fraction of ID pairs
had no examples in training data after holdout of the household
under test, largely due to the significantly larger scale of the training
data.

In both cases, the score was compared against a threshold, de-
noted y, to derive the ROC curves shown in Fig. 3 and Fig. 4. A true
positive is declared if S(i,i’) > y and ground truth indicates IDs
i and i’ belong to the same device/user. Likewise, a true negative
is declared if S(i,i’) < y and ground truth indicates IDs i and i’
belong to different devices/users. S(i, i’) is defined in (1) for NBSS
and Sec. 2.3 for trigram, intersection, and the IP-colocation score.
Two traces are shown for the NBSS approach: one restricted to the
subset of pairs scored by the algorithm (i.e., the 199,318 pairs with
one or more examples in training data), and one which includes all
pairs under test (i.e, all 336,087 pairs). In the latter case, any pair
that was not scored by the algorithm was assigned a score of zero.

The results show, perhaps not surprisingly, that NBSS outper-
forms the other approaches. The unsupervised approach based on
trigrams performs second best. In the case of user-level groupings,
inside a cohort, the IP-colocation score is negatively correlated
with devices belonging to the same user and perform worse than
random score assignment. We postulate this may be a result of
cookie resetting behavior or bias in training data.

We also note that the true positive and false positive rates are
better for device-level groupings than user-level groupings. This
reflects the underlying difficulty of the problem: users have a vari-
ety of usage behaviors that ultimately might be less predictive of
user/ID association. Conversely, hardware characteristics such as
the UA and screen size are very much indicative of the relationships
between device/ID association.



Device Graphing by Example

1.0 ’w&
S ®0 @
o o R®-0o
Ooo o ° oo %
o
%
0.8 o
o
o

(] °°
3 %
= 0.6+ R
£ o NBSS
g 04 o NBSS (all pairs)
g o Trigram
= Intersection

0.21 IP Colocation Score

IP Colocation Score (all pairs)
o Random
0.0 T T T
0.0 0.2 0.4 0.6
True Positive Rate
Figure 3: Device-level receiver operating characteristic

(ROC) curve showing true positive and true negative rates
of pairs under test using leave-one-out cross-validation.

1.0
OO‘-"OO @
Oo o
[o) o
o o
0.8 % (-}
o] o
] oo 0
E % s
o] o
o 0.6 % )
E= %% 00
P o NBSS 3 g
Y ,
g 04 o Trigram o‘:
= Intersection > [>)
IP Colocation Score % D
0.2 Jolocation Score °°o (A
IP Colocation Score (all pairs) % %
; [}
o Random ooj
0.0 J
0.0 0.2 0.4 0.6 0.8 1.0

True Positive Rate

Figure 4: User-level ROC curve showing true positive and
true negative rates of pairs under test using leave-one-out
cross-validation.

For each scoring approach highlighted above, community detec-
tion as described in Section 2.4 was applied to the 336,087 ID pairs
at the device level. Unscored pairs were assigned a score of zero.
The same process was followed at the user level.

Precision and recall analysis was implemented as follows. A
ground truth device was defined as a group of IDs that share a
common MAC address in the training set. A ground truth user
was defined as a group of IDs that share a common user ID in the
user-level training set. Application of the community detection
algorithm to scored pairs return a potentially different group of IDs
that approximate the ground truth device/user. For each ground
truth group, the smallest test group with maximal intersection of
IDs was used to compute precision and recall. Precision is defined
as the number of IDs the two groups have in common, divided by
the number of IDs in the produced group. Recall is the number of
device IDs the two groups have in common, divided by the number
of IDs that belong to the ground truth group. The mean precision

KDD ’18, August 19-23, 2018, London, United Kingdom

and recall values were computed across all ground truth devices
and users.

By applying a universal additive scalar to the similarity scores
prior to implementing community detection, a precision/recall
curve can be generated. The additive scalar serves as a tuning pa-
rameter, and can be interpreted as adjusting the prior probability of
the classes. Ultimately, the additive scalar allows gross adjustment
of the size of the groupings output by the community detection
algorithm.

1.00
m°°8<9 o o
0.95 1 oo o
)
o ° 0,
0.90 ° %Q},
o
?2 0.85 1 ° 9
[a=1 °6 ° "
0s0{ © NBSS
o Trigram o
Intersection -]
0.75 1 IP Colocation Score ° Q
o Random o g
0.70 T T T T -
0.5 0.6 0.7 0.8 0.9 1.0
Precision

Figure 5: Device-level precision recall curve derived using
leave-one-out cross-validation.

1.00

0.99 A
o
)
0.98 1 o® P
° e
= 0971 ° o, ®
¢ ) % °
0,96 o _
o NBSS o
0954 ©  Trigram A °
Intersection o o ?
0.94 4 IP Colocation Score ) ?
o Random ° 3
0.93 -
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Precision

Figure 6: User-level precision recall curve derived leave-one-
out cross-validation.

The precision and recall results using leave-one-out cross-validation
for device-level community detection are shown in Fig. 5. For device-
level groupings, mean precision and recall exceed 91%. Notably, the
lower right most point on the plots shows the mean precision and
recall when all IDs are grouped by themselves. This highlights the
approximately ten fold bias in the training data towards pairs of IDs
that do not belong to the same users - at the user level, 93% recall
can be achieved by grouping IDs alone. Lastly, we note that the
validation approach does not test the quality of the cohorts used as



KDD ’18, August 19-23, 2018, London, United Kingdom

input. Both the ROC curve and the precision/recall plots only show-
case the performance of our approach for grouping users/devices
presented here.

Positive predictive value (or accuracy) is the fraction of identified
positives that are true positives. A plot of accuracy vs. scale can
be established by plotting accuracy from the leave-one-out cross-
validation against the number of pairs identified as positive in the
test set. Results indicate scale of 500 million pairs with an accuracy
of 85% for device-level groupings (Fig. 7), and scale of 300 million
pairs with an accuracy of 70% for user-level groupings (Fig. 8).

1.0
o NBSS
0000 0 ¢ o Trigram
0.8 %o Intersection
3 % .
= IP Colocation Score
': X o Random
=z 0.6
= 00
[y
< 0.4 °o°°°%°
E (X< >}
7 °0o0, 00, 00000
&020000000000000000000%‘35-
0.0

0.25 050 075 100 125 150 175 2.00
Scale (billions) x10°

Figure 7: Device-level accuracy vs. scale. Accuracy is deter-
mined by using leave-one-out cross-validation, while scale
is derived from counts of total pairs in the test set.

1.0

o NBSS
o Trigram
o 0.8 Intersection
’T: @oo0 o IP Colocation Score
z . o Random
= 0.6
k] o
3 o
&
(a9
> 0.4 4 °
£ °
o
v oo o
0.2 ©000.00.0.0 00 oo
Q. 0 0 0.0 0 0. 0 0 0 -0
0.0

02 04 0.6 0.8 1.0
Scale (billions) x10?

Figure 8: User-level accuracy vs. scale. Accuracy is deter-
mined by using leave-one-out cross-validation, while scale
is derived from counts of total pairs in the test set.

Our results from validation and testing can be summarized as
follows: Using leave-one-out cross-validation on ground truth data
provided by a client panel, we find that our methodology is able to
associate sets of IDs with individual devices with high accuracy. We
find that the accuracy on user-level assignments is less accurate.

K. Funkhouser et al.

4 IMPLEMENTING DEVICE/USER
IDENTIFICATION AT SCALE

Our objectives in implementing our methodology were to create
an efficient, extensible and quality-assured processing pipeline that
could be run on a daily basis at a scale of billions of measurements.
To accomplish this, we implemented our methodology in Pig [33],
an open source parallel processing language maintained by the
Apache Foundation that is designed to run on Hadoop clusters [1].
The total codebase is several thousand lines of code, roughly half
of which is devoted to data integrity checks on input and output
streams. We take advantage of the substantial overlap between
device- and user-level classification taks, sharing code when possi-
ble. Input to the implemented pipelines are aggregates of the feature
bags described in Sections 3.1.1 and 3.1.2, which are processed daily.
Training and validation tasks are performed on a weekly basis, re-
sulting in device- and user-level groupings that inform downstream
pipelines.

5 PRIVACY

Over the past decade, there have been growing concerns over user
privacy related to IDs. Many articles on this subject have been
published in the popular press including calls for government reg-
ulation on tracking (e.g., [16, 23, 30]). Indeed, it is illegal to track
users via cookies and advertising IDs in the EU without explicit
consent [34] and the impending General Data Protection Regu-
lation in the EU will have an impact on third-party tracking [3].
These privacy concerns have sparked the development of tools that
facilitate cookie management and removal (e.g., [29]). Finally, a
number of studies have focused on understanding the prevalence
and characteristics of tracking via IDs and the related issue of in-
formation leakage (e.g., [11, 21, 22, 27]). We are informed by all of
these studies and are sensitive to privacy concerns. However, our
work differs from prior studies in its specific focus on the problem
of relating multiple IDs to a single device or user.

While steps to improve privacy and reduce unwanted tracking
on the internet are laudable, the issue is complex. Incomplete and
inaccurate third-party device graphs result in inefficiencies that
propagate through the digital advertising ecosystem. Features such
as 10S 11’s Intelligent Tracking Prevention further tip the scale
in favor of entities with access to large first-party deterministic
graphs based on login information (i.e, Facebook, Google, Apple,
and others). Third-party measurement and validation entities, such
as comScore, face increased difficulty in providing independent and
accuracte tools for validation of delivery of digital advertisements
and measurement of audience size. Advertisers not privy such
graphs estimate the resulting loss of ad revenue into the hundreds of
millions of dollars [6]. Regardless of perspective, third-party device
graphs will continue to play a role in online advertising. Making
accurate probabilistic graphs in spite of tracking prevention and
the multiplicity of IDs is a challenging and timely problem. We
posit that by describing techniques for making these associations,
we can expand the conversation about how best to describe and
implement privacy policies to protect the users.



Device Graphing by Example

6 RELATED WORK

While there is limited academic literature using the taxonomy ‘in-
ternet device graphs’ beyond [24], the problem of identification
in the internet has a rich history. The value of persistent identifi-
cation has led to development of a variety of techniques that go
beyond standard cookies and advertising IDs. An example is the
Evercookie, which, as the name suggests, is cookie that cannot be
easily cleared by a client [19]. Evercookies are enabled by storing
cookie data in a number of different client-accessible locations.
Adobe and Microsoft created similar functionality, which has since
been discontinued due to security and privacy concerns [13, 26].

Another example of an alternative to cookies and advertising
IDs are device fingerprinting techniques that use features readily
accessible for unique association at both the browser level [14, 28]
and device level (also termed cross-browser identification) [9, 12].
Cross-browser identification has relied on direct association of
observed features, either IP address-based [9] or hardware and
OS features exposed by some web protocols [12], as opposed to
learning-based methods. These techniques have been shown to have
varying levels of accuracy [32] and there are a number of online
services that will test the “trackability” of a user’s browser (e.g., [15]).
In contrast to the device fingerprinting techniques, the signals we
use (i.e., the features) are extremely limited and easily gathered in
web measurements. This is both to demonstrate the feasibility of
our method without complex signals, and for practicality. A large
feature space dilutes the power of the training set. Nonetheless,
many of the features suggested in the fingerprinting literature could
be included in implementations of the methodology presented here.

Our method for determining whether two IDs are related falls
into a larger class of Bayesian learing, similarity learning, and dis-
tance metric learning methods [7, 37]. Bayesian learning and naive
Bayes has a rich history dating back more than 50 years [25]. The
naive Bayesian similarity learning approach presented here can be
seen as a straightforward extension of standard naive Bayes, where
one takes a cross product between the individual feature sets to
create a single features set.

Much of the work in distance metric learning focuses on regression-
based methods. Yang et al. describe a Bayesian framework for active
distance metric learning that bears some similarity [38]. Other
methods are used for measuring the similarity between two objects
to organize them into disjoint clusters [39]. In [17], the authors
propose new algorithms to compute the similarity between sets
of overlapping clusters. In [36], the authors develop a similarity
metric and show success on text document clustering. Nonetheless,
our formulation and application are unique.

Finally, as discussed in Section 2, our work assumes that a coarse
association of IDs in cohorts has already been made. Recent work
by Malloy et al. describes a method for generating a basic device
graph from internet measurements [24]. Commercial device graph
offerings are widely available e.g., [2, 5, 35]. The method in [24]
utilizes IP-colocation i.e., the observation of two or more IDs on a
given IP address, to establish relations between IDs. It then describes
a community detection method for creating household groupings.
While this method is useful in our work, we only require that some
kind of coarse association is made — households cohorts are not
required. With a perspective focused on application, this work can

KDD ’18, August 19-23, 2018, London, United Kingdom

be viewed as a logical extention and improvement to [24] that
produces fine-grained device and user groupings of IDs.

7 SUMMARY AND FUTURE WORK

In this paper, we investigate the problem of associating multiple
IDs (i.e., web cookies and advertising IDs) with a single device or
user. This problem is important for entities that track user behavior
(both first- and third-parties) and in understanding related privacy
implications. We develop a methodology that can be implemented
after IDs are grouped into small coarse groups called cohorts. The
methodology follows two steps. First, we apply a Bayesian similarity
algorithm that uses examples of pairs of devices and their associated
telemetry, including the IP address and UA. After pair-wise scores
between device identifiers are derived, the second step is to apply
a variant of the Louvain Modularity community detection to group
identifiers that belong to the same device or user. We trained and
assessed our method using a unique dataset collected from a client
panel. Results from leave-one-out cross-validation show sensitivity
and specificity rates of 90% for device-level groupings and 64% for
user-level groupings, indicating the relative difficulty of the task at
the user level. Next, we apply our methodology to a dataset con-
sisting of 700 million device identifiers collected over the course of
six weeks in the United States. We train and validate our methodol-
ogy using a unique dataset collected from a client panel with full
visibility. Results from leave-one-out cross-validation show mean
precision and recall of 91% and 92% for association of identifiers at
the device level, and precision and recall of 94% and 95% at the user
level. In total, processing of the training, validation, and evaluation
phases for the roughly 700 million IDs complete in hours in a large
Hadoop cluster. The pipeline remains very general - all that must be
provided is an input partitioning of IDs and a method of extracting
features for a given ID.

REFERENCES

[1] 2017. Apache Pig. https://pig.apache.org/. (2017).

[2] 2017. Drawbridge. http://www.drawbridge.com/c/graph/. (October 2017).

[3] 2017. The EU General Data protection Regulation. (October 2017). http:
//www.eugdpr.org/

[4] 2017. Intelligent Tracking Prevention.
intelligent-tracking-prevention/. (October 2017).

[5] 2017. Lotame Cross Device. http://www.lotamecrossdevice.com. (October 2017).

[6] 2018. Apple Tracking Block Costs Advertising Companies Millions. The Guardian
(January 2018).

[7] A. Bellet, A. Habrard, and M. Sebban. 2015. Metric Learning. Morgan and
Claypool.

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast Unfolding of Communities in Large Networks. Journal of Statistical
Mechanics: Theory and Experiment 2008, 10 (2008), P10008.

[9] Karoly Boda, Adam Maté Foldes, Gabor Gyérgy Gulyas, and Sandor Imre. 2011.

User tracking on the web via cross-browser fingerprinting. In Nordic Conference

on Secure IT Systems. Springer, 31-46.

Aaron Cahn, Scott Alfeld, Paul Barford, and S Muthukrishnan. 2016. An Empirical

Study of Web Cookies. In Proceedings of the 25th International Conference on World

Wide Web. International World Wide Web Conferences Steering Committee, 891—

901.

[11] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan. 2016. An Empirical Study

of Web Cookies. In Proceedings of the World Wide Web Conference (WWW ’16).

Montreal, Canada.

SL Yinzhi Cao and E Wijmans. 2017. Browser Fingerprinting via OS and Hardware

Level Features. In Proceedings of the 2017 Network & Distributed System Security

Symposium, NDSS, Vol. 17.

Electronic Privacy Information Center. 2017. Local Shared Objects — Flash

Cookies. (October 2017). https://epic.org/privacy/cookies/flash.html

P. Eckersley. 2010. How Unique is Your Web Browser?. In In Proceedings of the

International Symposium on Privacy Enhancing Technologies. Berlin, Germany.

https://webkit.org/blog/7675/

[10

=
)

(13

[14


https://pig.apache.org/
http://www.drawbridge.com/c/graph/
http://www.eugdpr.org/
http://www.eugdpr.org/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
http://www.lotamecrossdevice.com
https://epic.org/privacy/cookies/flash.html

KDD ’18, August 19-23, 2018, London, United Kingdom K. Funkhouser et al.

[15] Electronic Frontier Foundation. 2017. Panopticlick. (October 2017). https:
//panopticlick.eff.org/

[16] V. Goel. 2014. California Urges Websites to Disclose Online Tracking. The New
York Times (May 2014).

[17] Mark K. Goldberg, Mykola Hayvanovych, and Malik Magdon-Ismail. 2010. Mea-
suring Similarity Between Sets of Overlapping Clusters. In Proceedings of the
2010 IEEE Second International Conference on Social Computing (SOCIALCOM ’10).
IEEE Computer Society, Washington, DC, USA, 303-308.

[18] Sergio Gomez, Pablo Jensen, and Alex Arenas. 2009. Analysis of community
structure in networks of correlated data. Physical review. E, Statistical, nonlinear,
and soft matter physics 80, 1 (July 2009), 016114.

[19] S. Kamkar. 2017. Evercookie. (October 2017). https://github.com/samyk/
evercookie/commits/master

[20] Jeffery Kline, Aaron Cahn, Paul Barford, and ] Sommers. 2017. n the Structure
and Characteristics of User Agent Strings. In Proceedings of the ACM Internet
Measurement Conference, IMC.

[21] B. Krishnamurthy, D. Malandrino, and C. Wills. 2007. Measuring Privacy Loss
and the Impact of Privacy Protection in Web Browsing. In Proceedings of the
Symposium on Usable Privacy and Security. Pittsburgh, PA.

[22] B.Krishnamurthy and C. Wills. 2006. Generating a Privacy Generating a Privacy
Footprint on the Internet. In Proceedings of the ACM Proceedings of the Internet
Measurement Conference. Rio de Janerio, Brazil.

[23] E.Lee. 2011. Sen. Rockefeller: Get Ready for a Real Do-Not-Track Bill for Online
Advertising. AdAge (May 2011).

[24] Matthew Malloy, Paul Barford, Enis Ceyhun Alp, Jonathan Koller, and Adria
Jewell. 2017. Internet Device Graphs. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 1913—
1921.

[25] Melvin Earl Maron and John L Kuhns. 1960. On relevance, probabilistic indexing
and information retrieval. Journal of the ACM (JACM) 7, 3 (1960), 216-244.

[26] J. Mayer. 2011. Tracking the Trackers: Microsoft Advertising. (August 2011). http:
//cyberlaw.stanford.edu/blog/2011/08/tracking- trackers-microsoft-advertising

[27] J. Mayer and J. Mitchell. 2012. Third-Party Web Tracking: Policy and Technology.
In Proceedings of the IEEE Symposium on Security and Privacy. San Francisco, CA.

[28] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. 2011. Fingerprinting Infor-
mation in JavaScript implementations. In Proceedings of Web 2.0 Security and
Privacy Workshop (W2SP). Oakland, CA.

[29] Mozilla. 2017. BetterPrivacy. (2017). https://addons.mozilla.org/en-US/firefox/
addon/betterprivacy/

[30] M. Murgia and D. Robinson. 2016. Google faces EU curbs on how it tracks users
to drive adverts. The Financial Times (December 2016).

[31] M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community
structure in networks. Phys. Rev. E 69 (Feb 2004), 026113. Issue 2. https://doi.
org/10.1103/PhysRevE.69.026113

[32] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
2013. Cookieless Monster: Exploring the Ecosystem of Web-Based Device Fin-
gerprinting. In In Proceeding of the IEEE Symposium on Security and Privacy. San
Francisco, CA.

[33] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. 2008. Pig latin: a not-so-foreign language for data processing. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data. ACM, 1099-1110.

[34] Optanon. 2017. The Cookie Law Explained. (October 2017). https://www.
cookielaw.org

[35] TAPAD. 2017. The TAPAD Device Graph. (October 2017). https://www.tapad.

com/device-graph/

G. Torres, R. Basnet, A. Sung, S. Mukkamala, and B. Ribiero. 2008. A Similarity

Measure for Clustering and its Applications. Proceedings of World Academy of

Science, Engineering and Technology 31 (2008), 490-496.

[37] L. Yang and R. Jin. 2017. Distance metric learning: A comprehensive survey.

(October 2017). https://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf

L. Yang, R. Jin, and R. Sukthankar. 2007. Bayesian Active Distance Metric Learn-

ing. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial

Intelligence. Vancouver, Canada.

[39] Ying Zhao and George Karypis. 2005. Data clustering in life sciences. Molecular
Biotechnology 31, 1 (2005), 55-80.

[36

[38


https://panopticlick.eff.org/
https://panopticlick.eff.org/
https://github.com/samyk/evercookie/commits/master
https://github.com/samyk/evercookie/commits/master
http://cyberlaw.stanford.edu/blog/2011/08/tracking-trackers-microsoft-advertising
http://cyberlaw.stanford.edu/blog/2011/08/tracking-trackers-microsoft-advertising
https://addons.mozilla.org/en-US/firefox/addon/betterprivacy/
https://addons.mozilla.org/en-US/firefox/addon/betterprivacy/
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://www.cookielaw.org
https://www.cookielaw.org
https://www.tapad.com/device-graph/
https://www.tapad.com/device-graph/
https://www.cs.cmu.edu/~liuy/frame_survey_v2.pdf

	Abstract
	1 Introduction
	2 Methodology
	2.1 Preliminaries
	2.2 Naïve Bayes Similarity Scoring
	2.3 Unsupervised Approaches
	2.4 Grouping Based on Pair-wise Scores

	3 Evaluation
	3.1 Data
	3.2 Results
	3.3 Validation

	4 Implementing Device/User Identification at Scale
	5 Privacy
	6 Related Work
	7 Summary and Future Work
	References

