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ABSTRACT

Service level agreements (SLAs) define performance guseant
made by service providers,g in terms of packet loss, delay, delay
variation, and network availability. In this paper, we dése a new
active measurement methodology to accurately monitor lenet
measured network path characteristics are in compliantteper-
formance targets specified in SLAs. Specificall), we describe a
new methodology for estimating packet loss rate that sicpnifiy
improves accuracy over existing approachg); we introduce a
new methodology for measuring mean delay along a path that im
proves accuracy over existing methodologies, and propossttzod
for obtaining confidence intervals on quantiles of the eiogide-
lay distribution without making any assumption about thestdis-
tribution of delay;(3) we introduce a new methodology for mea-
suring delay variation that is more robust than prior teghes;
and (4) we extend existing work in network performance tomog-
raphy to infer lower bounds on the quantiles of a distributod

performance measures along an unmeasured path given easur

ments from a subset of paths. We unify active measurements fo
these metrics in a discrete time-based tool called 8LAhe uni-
fied probe stream from SL¥ consumes lower overall bandwidth
than if individual streams are used to measure path preseriVe
demonstrate the accuracy and convergence properties ofM3hA

a controlled laboratory environment using a range of bamloygl
traffic scenarios and in one- and two-hop settings, and exaits
accuracy improvements over existing standard techniques.
Categories and Subject DescriptorsC.2.3 [Network Operations]:
Network management, Network monitoring, C.2.5 [Local anid&V
Area Networks]: Internet (e.g., TCP/IP), C.4 [Performaot8ys-
tems]: Measurement Techniques

General Terms: Algorithms, Experimentation, Management, Mea-
surement, Performance

Keywords: Active Measurement, Network Congestion, Network
Delay, Network Jitter, Packet Loss, Service-Level AgrestsieSLAv

1. INTRODUCTION

Network service level agreements (SLAS) detail the cofiigc
obligations between service providers and their customérss
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increasingly common for SLAs to specify transport-levetfpe
mance assurances using metrics such as packet loss, deliay, d
variation, and network availability [2]3,4.133]. Meeting/Sguar-
antees results in revenue for the ISP. However, failing tetrB&A
guarantees can result in credits to the customer. The iatjits
of not meeting SLA guarantees are therefore serious: aptisru
in service can result in significant revenue loss to both tiséamer
and provider.SLA compliance monitoringassessing whether per-
formance characteristics are within specified bounds, asefore
critical to both parties.

Compliance monitoring is a critical challenge for SLA eregn-
ing. SLAs must be designed that can be accurately and efficien
monitored, while simultaneously limiting the risk of nonrapliance.
For example, assuring a low loss rate might be possible 6fdgs
rates can be estimated with sufficiently high confidenceh@lgh
passive measurements.d, SNMP MIB counters) may provide
high accuracy for a metric such as loss on a link-by-link fasiey
may be insufficient for estimating the performance expegeerby
customer traffic. Thus, although there are situations whetee
measurements may be too heavyweight or may yield inaccrgate
sults [10.31..35], they nonetheless remain a key mechamis8i{A
compliance monitoring.

In this paper, we address the following questions: can SlA-co
pliance along a path be accurately monitored with a singteweight
probe stream? and can this stream be the basis for efficiembrie
wide compliance monitoring? There have been a large nunfber o
active measurement methodologies proposed to estimasptg-
level performance characteristics. Nonetheless, therbden little
work to directly address the specific problem of SLA compi@n
monitoring. In this context, measurement accuracy, ahititre-
port confidence bounds, ability to quickly adapt to changietr
work conditions, and ability to efficiently assess perfonceon a
network-wide basis are of great importance.

The first contribution of this paper is the introduction of @n
active measurement methodology to accurately assesseavimetia-
sured network path characteristics are in compliance wiglcified
targets. We describe a heuristic technique for estimatancket
loss rate along a path that significantly improves accuraey ex-
isting approaches. Second, we introduce a new method for mea
suring mean delay along a path that is more accurate thatt exis
ing methodologies. We also develop a mathematical fouonati
for obtaining confidence intervals for the quantiles of thepeical
delay distribution. Third, we introduce a new method for mea
suring delay variation that is more robust than prior teghas.
These probe algorithms are unified imaulti-objectivediscrete-
time based tool called SLW (SLA monitor), which was sketched
in an earlier workshop papér136]. That paper was limitedhtmor-
ducing SLAw’s architectural framework and outlining the loss rate



measurement heuristic used by SuA

The second contribution of this paper is to extend prior work
the area of performance tomography toward the goal of né&wor
wide SLA compliance monitoring. In particular, we develop a
methodology to infer lower bounds on the quantiles of a distr
bution of path performance measures using measurementsafro
subset of network paths.

We demonstrate the properties of SiuAn a controlled labora-
tory environment using a range of background traffic scesaand
using both one- and two-hop topologies. We compare 8IsAle-
lay and loss estimation accuracy with standard IPPM prolibade
ologies [7[8] of the same rate, and examine the convergemte a
robustness of SLM& estimates of delay, delay variation, and loss.
Our experiments show that our estimates of mean delay ahinwit
one msec of the true mean delay, while the standard probeodheth
ology [4] can suffer inaccuracies up to about a factor of twie
also show that for a confidence level of 90%, SWA estimated
bounds on a wide range of delay quantiles, with few exception
include the true quantile value. We show that in a simple hop-
topology, the inferred bound on the delay distribution ghtj and
close to the actual distribution. Our experiments also aktleat

distinguished from the earlier work of Chet al. [16] in that we

do not require the quantile of interest to be specifigutiori, and

that we do not make any assumption regarding the underlyéng d
lay distribution. As a result, our method is robust to abeignges

in underlying network conditions. Lastly, we note that ooimfiu-
lation of a delay variation measurement methodology stapdst
from the related IPPM21] and real-time protocol (RTIP) [3@¢c-
ifications in that rather than considering highly localizediations

in delay €.g, between consecutive probe packets), we consider de-
lay variations over streams of packets.

3. PATH-ORIENTED SLA COMPLIANCE
MONITORING

We now describe the basic assumptions and methods for éstima
ing delay, delay variation, and loss along a single endatbyzath.
Our objective is to develop accurate, robust estimatorscas a
discrete-time probe process. Moreover, we seek to improvib®
best known standard IPPM methodologigs [[7.8, 32]. Anothet- m
ric that is often part of SLA specifications is network aviiliy.
Availability can be loosely defined as the capability of tkework

SLAM estimates the end-to-end loss rate with high accuracy and to successfully transminy end-to-end probe over an interval of
with good confidence bounds. For example, in a scenario using time, e.g, 60 secondd[26]. Although availability may be consid-

self-similar background traffic, the true loss rate over arfibute
period is 0.08% and the SLvA estimate is 0.07%. In contrast,
the standard method for estimating loss raie [8] can haweseof
more than two orders of magnitude. We demonstrate the noesst
of SLAM'’s delay variation monitoring methodology, showing how
the existing standard RTP jitter metric [32] may be too d@resi
to network path conditions, and that Siperforms well in our
more complex two-hop scenario.

2. RELATED WORK

General aspects and structure of SLAs have been discugiat] in

33]. Performance assurances provided by SLAs range from net

work path availability, to transport-level metrics, to &pation-

specific metrics. These guarantees may be based on a vafriety o

statistics of the particular metric, such as the mean, mediaa
high quantile, computed over various time scales. Exanuflése
kinds of guarantees offered by service providers are dvailan-
line [2[3[4].

To ensure that SLA performance targets are met with highgrob
bility, service providers collect measurements eithespasy within
the network, by injecting measurement probes into the méwo
or by using a combination of botlhl[6.113.118]42]. While active
measurement-based compliance monitoring has received abm
tention in the paste.g, [18], there has been little validation in
realistic environments where a reliable basis for comparican

ered as a special case of loss, we have yet to examine thii imetr
detail.

3.1 Delay

Both mean delay and high quantiles of the empirical delay dis
tribution are used in SLAs. We first consider estimation obme
delay along a path, which we model as a continuous fundtioh
whose independent variable is the time that a probe paclsetis
and the dependent variable is measured one-way delay. Based
this model, a natural approach to mean delay estimation us¢o
Simpson’s method for numerical integration. The Simpséors
mulation is straightforward: once the domain of integnafi® par-
titioned, the integral of the functiori over the subinterval;j is
estimated by%(f(aj) + f(bj) +4f(cj)), with aj,bj the endpoints
of Ij, and withc;j its midpoint. The error of the Simpson estimate

. @ (g . L .
is known to begj = fzg(é(l)) |1;[°, with & some point in the interval

Ij. Thus, if the fourth derivative of exists and is not too large, itis
safe to state that the local error is of ordei.B;, if we double the
number of samples, the error in the estimate will be reduceally
by a factor of 32, and globally by a factor of 16.

To apply Simpson’s method to a discrete-time probe proaass f
estimating mean end-to-end delay, we do the following:na¢tslot
i, we draw a valuk from a geometric distribution with parameter
Pdelay: The geometric distribution is the discrete analog of the ex
ponential distribution and should yield unbiased sampkR®bes

be established. There has been limited work addressingahe a representing the endpoingg andb; are sent at time slotsand
curacy of some active measurement approaches; exceptiens a i+ 2(k+ 1) with the midpoint probe sent a time siof (k+1). At

found in [I0/31[3b]. The issue of accuracy clearly has serio
implications for SLA compliance monitoring. Other effotiave
been limited in focus to estimation and optimization of agken

time sloti +2(k+ 1) the next subinterval begins, thus the last probe
of a given subinterval is the first probe of the next one. Sonjss
estimates from each subinterval are summed to form thedcetal

metric, e.g, [16,[19]. Our work takes an active measurement ap- under the delay function. The mean delay estimate is thexirodat

proach, focusing on simultaneous, or multi-objective, soeament
of transport-level performance metrics. We further ddfetiate our
work through validation in a controlled, realistic testbed

by dividing the integral estimate by the number of subiraésy
With the above formulation, the subintervals are not of ¢qua
lengths (the lengths form a geometric distribution). Thus,can

In general, there has been a great deal of work on active mea-either directly apply Simpson’s method to estimate the nan

surements of end-to-end delay, delay variation, and less, [[Z,
8,11 1921, 28. 29,30, 40.141]. |IETF standardization &fféor
active measurement of delay, delay variation, loss, andiegimg
have taken place within the IETF IPPM working grol [I7. 8301,
Regarding delay, our method for distribution quantileraation is

lay, or we can apply relative weights to the subintervaloetiag
to their lengths. In our results described below, we use hite
subintervals which we found to give more accurate resuitajgh
the absolute differences were small.

There are several considerations in using this approactst, Fi



probes may be lost in transit. We presently discard suhiaker

where probe loss occurs. Second, while the assumption ¢hey d
largely behaves as a smooth function seems reasonabley ibena
more accurate to account for random spikes in delay by magleli

able model for delay variation (DV), we found that the notitzelf

is defined in multiple ways. For example, IPPM RFC 3393 [21]
refers on the one hand to the variation of delay with respestine
reference metric, such as the average or minimum obsertay, de

the process as the sum of two processes, one smooth and ene rarand on the other hand to the dynamics of queues along a path or a

dom. For example, if the functiofi(t) is written asfy(t) + fa(t),
with f1 smooth and, random, then our numerical integration does
much better orf; and slightly worse orf, as compared to straight
averaging. The Simpson’s approach should be effectivehiisr t
model as well: if the values of the random part are quite small
compared to the smooth part, then our estimate should berbett
than simple averaging.¢., the sampling method advocated in RFC
2679 [i]). Note that there is little risk in using Simpson’stmod:
even if delay is a completely random process (which is netyik

the variance of the Simpson’s rule estimator for mean dedag-i
creased only slightly as compared to simple averaging.
Distribution-Free Quantile Estimation. Besides using mean delay
as the basis of service-level guarantees, ISPs also usquegtiles

of the delay distribution, such as the 95th percenifilé [16].

Let {x : i =1,...,n} benindependent samples drawn at ran-
dom from a common distributioR, sorted in increasing order. For
simplicity, assumé- is continuous. LeQp denote thep™ quantile
of that distributionj.e., the unique solution df (Qp) = p.

We wish to obtain confidence intervals fQ, based on{x;}.
One approach would be to start with the empirical distrirufiinc-
tion: F(x) = n~1#{i : x; <x} and use a quantile estimate of the form
@p =max{x: F(x) < p}. Analysis of the variance of this estimator
might give us asymptotic confidence intervalsnazecomes large.
Instead, we seek rigorous probabilistic bound<Qynthat hold for
all n.

Now {x¢ < x} is the event that at leaktof the samples are less
than or equal tok, an event which has probabili(n, F(x),k),
whereG(n, p,k) =3 -k p!(1—p)"~! (T) Takingx = Qp we have
Prlx < Qp] = G(n, p.k).

Based on theg, we now wish to determine a lev™ (n, p, €)
that the true quantil€p, is guaranteed to exceed only with some
small probabilitye. Thus, we chos&™ (n, p,€) = XK+ (n,p,e) With
K*(n, p,&) = min{k: G(n, p,k) < €}.

Similarly, Pr[x¢ > Qp] = 1—G(n, p,k). Based on the;, we
now wish to determine a leve{™(n, p, €) that the true quantile
Qp is guaranteed to fall below only with some small probabitity
Thus, we chosX ™ (N, p, &) = Xk (n,p,¢) With K™ (n, p, £) = max{k:
1-G(n,p.k) < e}.

Put another wayK ™ (n, p, €) is the 1— & quantile of the binomial
Bn,p distribution, whileK™(n, p, €) is thee quantile of the binomial
Bn,p distribution. TheK* can be computed exactly; examples are
given in TabledL.

1: Example quantile Indicel§* for various sample sizes, and
guantilesp. Confidence level is + € = 90%. Also shown is the
reference quantile indd&® = np. — indicates that no upper bound

a given router. DV samples in RFC 3393 are defined as the differ
ence in one-way delays of packeand packetj, Dj —Dj. These
two packets may be consecutive packets of a probe streanfdyut
need not be. A statistic of interest identified by the RFC ésam-
pirical distribution of DV samples, the mean of which is sdimes
used in SLAs. Maximum DV is also of importance, as it may be
useful for sizing playout buffers for streaming multimedjaplica-
tions such as voice and/or video over [PI[24].

An alternative definition of delay variation is found in thed®-
time Protocol (RTP) standard, RFC 35501[32]. It uses an espon
tially weighted moving average over the absolute one-wdgyde
differences,j(i) = j(i— 1)+ (|Dj — Dj_1| — j(i—1))/16, whereD;
is the one-way delay of packetandj(0) = 0. The RTP jitter value
is intended for use as a measure of congestion. Rather tlag be
used as a meaningful absolute value, it is meant to be used as a
mechanism for qualitative comparison of multiple RTP straa-
ceivers, or at different points of time at a single recei¥¥e posit
that a DV estimator that can capture dynamic conditions harem
direct relevance to applications and is therefore more mgéui
to SLAs.

Building on these notions of delay variation, we considereesn
of probes of lengtlk, e.g, 100 probes. We denote the time differ-
ence between two probésand j when they are sent & and
the time difference between the same two probes when they are
received as; ;. We construct a matrikl where each cel; j con-
tains the ratiaj j /s j. Thus,M; j is 1 if the spacing between probes
i and j does not change; is greater than 1 if the measured spacing
increases; or is less than 1 if the measured spacing desraatiee
probes traverse the network path. (Rafip/s j is defined as 1 for
i = j and it is defined as 0 if prohieor j is lost.) Note that com-
puting the above ratig j/s j with respect to consecutive probes in
the stream gives a more accurate description of the instaotes
nature of DV while probes farther apart give a descriptioDbf
over longer time intervals.

Next, we compute the eigenvalues of this maixresulting in
a vectore of lengthk, with values sorted from largest to smallest.
If the probe stream traverses the network undisturbed, waddvo
expect that matri® would consist entirely of 1s, with the largest
eigenvalue ak and all other eigenvalues as 0; we denote the vector
of these “expected” eigenvalues els We subtrace’ from e, tak-
ing theLy norm of the resulting vectorsX_; | — €/|. We refer to
this L1 norm as ouDV matrix metric As with RTP, it is not in-
tended to be meaningful in an absolute sense but useful lfdives
comparisons over time.

The DV matrix formulation relies on and is motivated by the
fact that we have a notion of what éxpectedn the absence of
turbulence along the pathg., that probe spacings should remain

K* was available, which can occur when the top atom has mass yngisturbed. By looking at the eigenstructure of the DV imawe

greater than the desired significance leiel, p" > €.

Quantile
50 90 99
n K~ KO K+ K~ KO K+ K~ KO K+
100 44 50 57 86 90 95 98 99 —
1000 | 480 500 521 | 888 900 913 | 986 990 995
10000 | 4936 5000 5065 8961 9000 9039 9887 9900 9914

3.2 Delay Variation

Characterizing delay variation in a complex setting anddora-
pact and robust way is a challenging problem. In looking feui&

extract, in essence, tla@nount of distortiorfrom what we expect.

3.3 Loss

The loss metric specified by SLAsimcket loss ratethe num-
ber of lost packets divided by total number of arriving paslaer
a given time interval. As identified in[_[85], the difficulty iesti-
mating the end-to-end loss rate is that it is unclear how tasuee
demandalong a pathi(e., the denominator used in calculating the
loss rate) particularly during congestion periods. Thuspnopose
a heuristic approach as outlined in an earlier workshop 3t}



We start with the methodology i IB5], which initiates a peob
pair at a given time slot with probabilityoss for estimation of the
end-to-end frequency of congestion episoBieand the mean du-
ration of congestion episod&s In this approach, each probe con-
sists of three packets, sent back-to-back. We measureghedte
1 of the probegluring congestion episodeSince the methodology
of [B5] does not identify individual congestion episodes, take an
empirical approach, treating consecutive probes in whideast
one packet is lost as indication of a congestion episbdeggimilar
to [41]). We assume that the end-to-end loss katestationary and
ergodic. Given an estimate of the frequency of congedtipwe
estimate the end-to-end loss ratd_as F1.

The key assumption of this heuristic is that we treat the @rob
stream as aarker flowviz., that the loss rate observed by this flow
has a meaningful relationship to other flows along the pate W
note again that the probes [n]35] consist of multiple paxkadtby
default), which has some similarity to a TCP stream wherayasl
ACKs cause a sender to release two closely-spaced packbie W
we do not claim that the probe stream is, in general, the samae a
TCP stream, our results below demonstrate that such an pisam
may be reasonable in this context.

3.4 Multi-Objective Probing

We use the terrmulti-objectiveprobing to refer to simultaneous
estimation of multiple performance metrics using a singiebp
stream. The individual discrete-time algorithms desctibbove
operating at the same time may schedule probes to be serg at th

terms of quantiles of a distribution, while attaining a higlel of
measurement efficiency.

4.1 Routing Matrices, Measurement,
and Linear Dependence

Let G = (V,E) be a directed graph comprising vertices (nodes)
V and directed edges (link$y1,v2) € E CV xV. LetRbe a set
of paths (routes).e., eachr € R is an ordered set afi > 0 con-
tiguous links(vp,v1), (V1,V2),..., (Vn_1,Vn). Therouting matrix A
associated witlR is the incidence matrix of the links in the routes,
namely,Are = 1 if link e occurs in route and zero otherwise.

We now describe what we term tkealar additive network per-
formance modelLet x : E — R be a function on the links. This
naturally gives rise to the path functign R — R defined as/,
Secr Xe = S eckE AreXe. This relation is a prototype for additive net-
work performance models. Two examples are:

Network Delay: The latency of packet traversing the patis

the sum of the latencies incurred on each link
of the path. This may be understood either as
thexe being individual measurements, onas
being mean latencies. This is the example on
which we focus in this paper.

In this model xe is the log transmission proba-
bility of traversing linke; if there is no spatial
correlation between link losses we can wyite
as the log transmission probability along the
pathr.

Network Loss:

same time slot. Such requests can be accommodated by tagging

probes according to the relevant estimator. Thus, a singlbep
stream can be used for concurrent estimation of packetdesasy,

delay variation, and other quantities, thereby reducirggitipact
of measurement traffic on the network.

The basic architecture of our multi-objective probe sclheris
depicted in Figurgll. The main component of the architedsiee
discrete-time scheduler that provides callback and prohedul-
ing mechanisms. Probe modules implement the various péthted
estimation methods described above. This design allowsdaral
separation among multiple, simultaneously operating nmeasent
methods and for optimizations of network bandwidth.

scheduler

loss

discrete time probe scheduler

network interface

| probe stream

| @B B8 a

time

-

1: Multi-objective probe scheduler architecture. Alglonitic
modules interact with a discrete-time probe scheduler tfopa
estimation of delay, delay variation, and loss charadiesis

4. TOWARD NETWORK-WIDE SLA
COMPLIANCE MONITORING

The previous section described a set of methodologies for ef
cient per-path monitoring. SLA compliance monitoring, lever,
requires accurate and efficient measurement on a netwalé-vé-
sis. However, the measurement overhead of sending proleesov
full n® mesh of paths is highly undesirable. In this section, we de-
scribe the mathematical foundation that enables econbmicai-
toring over a subset of network paths. This new methodology e
ables greater flexibility for specifying performance assges in

Performance Tomography.

Two classes of inference problems arising from the framkwor
above have been studied recentlyliftk performance tomography
the aim is to infer the distribution of the link variabte given only
path measuremenyg. Variants of this problem have been studied,
mostly depending on exploiting correlations between mesmsant
on different pathse.g, either at the packet leveé.g, by using
multicast probes 12, 25] or groups of unicast prohes[I2B, 80
more generally of distinct packet streams that experieno@mon
performance impairmentsl[9,122].

A second class of problem has more recently attracted attent
[T4[15[17]: given a set of path performance measures arness
secting paths, is it possible to infer the whole set of messsifionly
a subset is known? Clearly there is some relation betweetwthe
problems in the sense that if all link performance measuoedc
be inferred from a subset of path measures, then the rerggiaih
measures could be determined simply.

For scalar additive performance measures, the secondepnobl
has a simple expression in terms of the routing mairixSuppose
that the matriA is not of full (row) rank,i.e., the set of row vectors
is not linearly independent. Consequently there existaémail set
of pathsSC Rwhich span in the sense that such that every row of
a = {Are : e€ E} of A can be expressed as a linear combination
ofthe{a, :r € S} . For the scalar additive performance model, this
translates to saying that d§; : r € R} can be determined from the
subset{y; : r € S}. Recent work on this problem has focused on
understanding how the dimension of the Selepends on network
topology. Cheret al. [15] concluded that the number of pathsSn
grows aO(#V) (i.e,, linear in the number of network node¥ ¥4in
a real router-level topology, or at worst lik&#vlog#V) in some
simulated topologies.

Distributional Path Performance Measures.
In this work we extend the computational approach described
above to infer distributions of a set of path performance suezs



from a subset. We assume in a given network setting the existe
of the setSC Rwith the properties detailed above has been estab-
lished. This means in particular that for every network patR,
every link in this path is traversed by some path in the suBset
and below we show how the distributions of delay in patRican
be inferred from only those i8. This inference depends on the as-
sumption that any packet traversing a given link will expede the
same delay distribution, even if the actual delays différe Proofs
of the results are relatively straightforward but have beseritted
due to space limitations and will appear in a future techmepgort.
There are two challenges in trying to extend the scalar &gpro
to distributions. The first is dependence among link measengs.
Dependence is not an issue in the linear algebra of meanitiesint
since the average of a linear combination of random varsaisle
equal to same linear combination of respective averagesvelien
the variables are dependent. Working with distributionsizre
complex, for example the distribution of a sum of randomalalgs
is not equal to the convolution of their distributions uisléise ran-
dom variables are independent. A second complexity is addgeb
there is no simple subtraction operation for distributioRer ex-
ample, ifX andY are independent random variables ahe: Y in
distribution, it is not the case thxt—Y is identically zero.

4.2 Delay Distributional Inference

We suppose routing (and hence the matxis static over a
measurement interval. On each path stream of measurement
packets labeled=1,2,...,n, is launched along the path. Packet
incurs a latency, on traversing the linle € r. The latency of the
packet on the path %' = ¥ ecr Xe-

To motivate the following, consider the star topology netwo
in Figure[3b in which source nodes, v, and destination nodes
v3,V4 are linked through a central nodg. Denote the edges by
€ = (Vl7vC)v € = (V27VC)1 € = (VC7V3) ande4 = (VC7V4)' We
consider the 4 paths = (ey,€3), 12 = (€1,€4), r3 = (€2,€3) and
r4 = (e2,€4). LetX, be the delay on linle,, andY, the delay on
pathrp. Clearly,Y; + Yy =9Y, +Y;. Assume that the distributions
of Y2,Y3 andY, are known; we focus on inferring that .

Our major statistical assumption is that 4}, are independent.
We remark that the opposite type of assumptioa, the iden-
tity of certain link variables, has been employed for malsicper-
formance tomography (and some unicast variants) to destiniy
propagation of multicast packets. The identity assumpsaratu-
ral in that case, since it reflects either the delay encoedtby a
single multicast packet or a train of closely spaced unipaskets
prior to branching to distinct endpoints.

In the present case, we can consider two types of dependence.
the first case we consider dependence between differentuneeas
ments. Provided probe packets are dispatched at inteivadet
than the duration of a network congestion event, then probes
the same path or on intersecting paths are unlikely to extidday
dependence, even if individual packets experiencelisigibution
of congestion events similarly on the same link. Thus, isreee
reasonable to model th¥¢, as independent. The second case to
consider is dependence among the individual link delgyson
a given pathr. Violation of this property might occur in packet
streams traversing a set of links congested by the same toaridy
traffic. As far as we are aware, there are no live network dbéss
studies that have investigated this property. Dependeasdeound
in a network simulation study, but was pronounced only in alkm
network configuration with few traffic streanis [25]. For tihéa-
son we believe that link delay correlation need not be sicguift in
a large network with a diverse traffic.

Forr € Rlet{by : ' € S} be the coefficients of the spanning set

{ap : 1’ € S} in the expression o, i.e,

a = rgsbrr’ar’

LetS = {r' € S:by >0} andS = {r' € S: by < 0}.

@)

LEMMA 1. Assumga. :r’ € SC R} is a minimal spanning set.
For each re R there exist positive integers dnd {d/ : r’ € S}
such that

dray + Z Ay = Z drrray (2

res re§t

For eachr e Re€ E let X,@,i =1,2,... denote the sum of
independent copies of a single delay on ligle.g, X%; likewise
let Yr<I> denote the sum dfindependent copies Gf The symbol
=9 will denote equality in distribution.

THEOREM 1.
Y(drr/)

r

YO 4y v
res

reg

®)

One can already see in TheorEn 1 a basic feature of our results
that follows merely from the partition &into S~ andS". Suppose
we are primarily interested in determining whethgroften takes
some large value. Suppose measurements tell us that some of t
{Y,» 11’ € §"} tend to take large values, but that none of {Ne :

r' € §} do. Then we know from the equalitfl(3) th¥t must
also tend to take large values. If none of ¥ : r’ € S} tend to
take large values, then neither ddgsBut when somé,. for r’ in
bothS" andS tend to take large values, then it is difficult to draw
conclusions aboui;. These observations prefigure our later results
on distributional bounds foy;.

Distributions and Inversion. _ N
Let ¢ denote the common distribution of th¢, and % its

Laplace transformi,e., % (s) = [’ % (dy)e"%Y. Let* denote con-
volution. In terms of distributions[13) becomes

% @:"drr’ — % g/;"drr’
reg ' reg '
To what extent can we solve these convolution equations2elce
transform space we obtain frofd (4):

@;dr @rt/irr’ —
re§ re§t

Given empirical estimates ¢# : r’ € S} one can in principle use
numerical Laplace transform inversion to recover/gll This is an
approach we intend to pursue in a subsequent work. In thisrpap
we use [(¥) directly in order to obtain bounds on the distidnst
.

A (4)

-4
%

ug

©)

Convolution Bounds.

LetVi, i =1,2,...,n be independent random variables and set
V =3y, Vi be their sum. LeQp(V;) denote thep-quantile ofV;,
i.e.,

PriV <X > pe Qp(V) <x (6)

The following result formalizes the perhaps obvious staetnthat
if you know thatV; < x a fraction p of the time, andv, <y a
fraction q of the time, then you can conclude that+ V5 is less
thanx+y no less than a fractiopq of the time.



THEOREM 2. LetVf,i=1,2,...,nbeindependent random vari-
ables with sum\= 51, Vi, and let p € (0,1] with p= [, pi.

Qu(¥) < 3 QW) ™

Network Quantile Bounds.

THEOREM 3. Denote ¥ = S res v,

(i) Qp(Ye) > (dr)~1Qp (V).
(i) Qp(Yr<dr)) > Qpq(YH) — Qq(Y%y)
() Qo) = (¢) "~ suRy01)(Qpeq%) ~ Qul¥r )

Theoren{B provides a lower bound on the quantiles, or, equiv-
alently, an upper bound on the cumulative distribution. Sht
underestimates the frequency with which a given level igeged.
This may or may not be desirable if the measured quantile® de
used for detecting SLA violations.€., raising alarms). On the one
hand false positives will be reduced, while at the same tiomees
high quantiles may be underestimated. Following a netwrakre
ple below, we describe how knowledge of the topology of messu
paths may be used to adjust alarm thresholds in order toatstig
the effects of quantile underestimation.

Computation of Quantiles.

We use the measured end-to-end latencies on the paths
theQ, = {Y/ :i=1,2,...,n}, to estimate the required quantiles
on the RHS of Theoreld 3(iii). To compute the distributionYgf
we might construct the sets of valu{a§,/€$t zidg’l Yerr Ve € Qr )

However, this gives rise mri =res n?,"/ member of each set,
which may require prohibitively large amounts of memonrgtéad,
memory can be controlled by discretizing the distributibegore

convolution.

Discrete Mass Distributions and Their Convolution.
A positive discrete mass distribution is specified by a tgple,m=
{m :i=0,...,n}) wheree is the bin width, with a massy in bin
lig,(i+1)¢e) fori =0,1,...,n—1, and massmn, in [ng,»). Two
such distributionge,n,m) and(&’,n’,m’) the have convolution

(e,nm)x (', m)=(e+&,1+(n=1)(n —=1),m") (8)

Whererr'(j’ = ziJ:On]rr(jfi. Giveng,n, an set of measuremer’{t‘ez{,i :
i=1,2,...,n} gives rise to a empirical discrete mass distribution
(e,n,m) with my =#{Y; : Y € [ie,(i+1)¢e)} fori=0,1,...,n—1
andm, =#{Y; : Y} > ne}. The distribution of eaciy /cg SO Vi
yrr € Qr } is then estimated by taking the grand convolution over
r’ € §* of the dy/-fold convolutions of the empirical mass distri-
bution generated from eacHY}, : Y, € [ig,(i+1)¢)}. A target
resolutione in the final distribution is achieved by choosing resolu-
tions &’ for the constituent distribution that sum ¢pfor example,
g=¢g/ Yres: A Finally, we normalize to a probability distribu-
tion by dividing each mass element byf. We call the resulting
variablesY/*, and use them in place of thg" in TheorenfB.

Network Example.
In the above formalism, we ha® = {2,3}, S| = {4} with
dip=diz=dis=1 ande =Y, +YzandY; =Y, Suppose now

that X; are exponentially distributed with distinct megms Then
Y;" has a mixed exponential distribution with PDF

+( ) 4 eix/ui “iz (9)
Y1 (X) =
' i; Mic(1234}j2 (Hi— Hj)
while Y™ has a mixed exponential distribution with PDF
_ e X/t _ g=%/Ha
y1 (X) = (10)

H2 — Ha

For the optimization of Theoref 3, elementary calculus shihat
whenY;* have densitieg", the stationary points af— Quu (") —

Qq(Y;™)) obey

Y (Qpurg(Y)) = P¥¥r (Qpur (Vi) (11)

We use the above expression to compute the bounds and con-
sider four cases. For cases (a)—(c) we plot the actual CDRen t
unmeasured path, together with the CDF bound in Fifilre 2.

(a) Homogeneous Delay. m=1.0,mp =11, mg=12,ny =
1.3. The delay on path; is somewhat underestimated, but
then large delays only very rarely occur.

(b) High Delay on Unmeasured Path, Low Delay Elsewhere=m
10,mp =11, m3 =12, my = 1.3. The low delays on links
not included in the unmeasured path allow fairly close esti-

mation of the delay distribution on .

(c) High Delay on Unmeasured Path, Some High Delay Else-
where. m =10, mp = 11, mg = 1.2, my = 1.3. Although
elevation of delay om; is detected, the amount is somewhat
underestimated due to the presence of high delay on one of
the measured paths; this parallels the remarks followirgr Th

oremf].

Low Delay on Unmeasured Path, Some High Delay Else-

where. m =1.0,mp =11, mg = 1.2, my = 1.3. The results

are similar to the homogeneous case; the presence of high
delay elsewhere in the network does not further perturb the

delay bound.

(d)

If this delay bound estimates are to be used for raising aarm
based on crossing threshold levels, it may be desirable jtestad
alarm thresholds based on the spatial distribution of nredspath
delays. Specifically, case (c) above illustrates that whehen de-
lays are encountered on a pathSn, a lower alarm threshold may
be used in order to compensate for the partial “obscuringhef
delay on the unmeasured path. In situations exemplified bgsca
(a) and (b), no adjustment to the threshold is needed, diece are
no measured paths with high delay (so in particular, norg n

5. EXPERIMENTAL TESTBED

We implemented a tool to perform multi-objective probinglled
SLAM (SLA monitor). SLAv sends UDP packets in a one-way
manner between a sender and receiver. It consists of ala@@ 2,
lines of C++, including code to implement the loss, delayl de-
lay variation probe modules. The implementation is extdasand
can accommodate other discrete-time probe algorithmsidiséc-
tion, we describe the controlled laboratory environmenivirich
we evaluated SLA. We considered two topologies, shown in Fig-
ure[3. Each setup consisted of commaodity workstation entshos
and commercial IP routers.

The first topology (FigurEZ3a) was set up in a dumbbell-like-co
figuration. We used 10 workstations on each side of the neitle
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2: Example bounds on the inferred delay distribution. (dj:Lteomogeneous delay; (b) Center: high delay on unmeagatdd (c) Right:

high delay on unmeasured path and some others.

OC3 for producing background traffic and one workstatioreahe
side to run SLA. Background traffic and probe traffic flowed over
separate paths through a Cisco 6500 enterprise router (hapdh
was multiplexed onto a bottleneck OC3 (155 Mb/s) link at acGis
GSR 12000 (hop B). Packets exited the OC3 via another Cis¢b GS
12000 (hop C) and passed to receiving hosts via a Cisco 65@0 (h
D). NetPath[[5] was used between hops C and D to emulate prop-
agation delays for the background traffic hosts in the telsthée
used a uniform distribution of delays with a mean of 50 mseni-m
mum of 20 msec, and maximum of 80 msec. The bottleneck output
queue at the Cisco GSR at hop B was configured to perform tail
drop with a maximum of about 50 msec of buffer space.

The second topology (FiguEel3b) was set up in a star-like con-
figuration. We used 12 hosts on each side of the setup (6 at top,
6 at bottom) to generate traffic over links (OC12-622 Mb/s)e,
(OC48-2.488 Gb/sks (OC3) , andey (OC3) making up the star.
An additional host configured at each corner ran $1L.AAggre-
gation routers (Cisco 6500’s at hops A and E) were configused t
direct traffic over four primary configured pathg;—+4, as shown
in the figure. In addition, traffic flowed over pathy, ) to create
sufficient load ore; to include queueing delay and loss. SuuA
probes flowed over the four primary traffic paths to monitdage
loss, and delay variation. SLM\was also configured to monitor
paths(er,e5), (€2,€5), (65,€3), and(es, e4). Only probe traffic tra-
versed linkses and g, thus it was assumed that these additional
probe measurements were sufficient to separately measaraceh
teristics on linkse, &, €3, andey. As with the dumbbell topol-
ogy, NetPath[[5] was used to emulate propagation delayshfor t
background traffic hosts in the testbed. We used a uniforini-dis
bution of delays with a mean of 50 msec, minimum of 20 msec,
and maximum of 80 msec. Each queue was configured to perform
tail drop. Using the notatiofr,e) = B to denote the output queue
at routerr on to linkein msec, buffer size configurations were fol-
lows: (vq,€1) ~ 25 msec(vp, &) ~ 12.5 msecvc, €3) ~ 50 msec,
and(vc, e4) ~ 100 msec.

Each workstation used in our experiments had a Pentium 4 pro-
cessor running at 2GHz or better, with at least 1 GB RAM and an
Intel Pro/1000 network interface card and was configureduto r
either FreeBSD 5.4 or Linux 2.6. The SMAhosts were config-
ured with a default installation of FreeBSD 5.4. The SWAvork-
stations used a Stratum O NTP server configured with a TrueTim
GPS card for synchronization. We used the software develbpe
Corell et al. [20] to provide accurate timestamps for SikA All
management traffic for the two topological configurationsvéld
over separate network paths (not pictured in either figure).

A critical aspect of our laboratory environment is the apitb
measure a reliable basis for comparison for our experimefas
the dumbbell topology, optical splitters were attachechmlinks
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(a) Dumbbell topology. Probes and cross traffic are multigdie
onto a bottleneck OC3 (155Mb/s) link where queueing delay
and loss occurs.
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(b) Star topology. Probes and cross traffic follow pathsry, rz, andrg,
shown in the figure.

3: Laboratory testbeds.

between hops A and B and to the link between hops B and C and
synchronized Endace DAG 4.3 (Gigabit Ethernet) and 3.8 (OC3
passive monitoring cards were used to capture packet testes

ing and leaving the bottleneck node. For the star topologgcal
splitters were attached to the Gigabit ethernet links ergethe
core star topology (just after hop A), and exiting the stast(pe-
fore hop E). We used synchronized DAG 4.3 passive monitoring
cards to capture packet traces entering and leaving thesestiap.

By comparing packet header information, we were able totifjen
which packets were lost along each path. Furthermore, tess
provide synchronization of better than one microseconaliatig
precise delay measurement through the bottleneck router.

We used four background traffic scenarios for experimernitgjus
the dumbbell setup. For the first scenario, we used Ipeif {38]
produce constant-bit rate (CBR) UDP traffic for creating aese
of approximately constant duration (about 65 msec) lossoeigis,
spaced randomly at exponential intervals with a mean of t0 se
onds over a 10 minute period. We found that short loss episode
were difficult to consistently produce with Iperf, thus theration
we used was a compromise between a desire for short episodes a
the ability to predictably produce them. The second sceram-
sisted of 100 long-lived TCP sources run over a 10 minuteogeri
For the final two scenarios, we used Harpoon [34] with a heavy-
tailed file size distribution to create self-similar traffipproximat-
ing a mix of web-like and peer-to-peer traffic commonly seen i



today’s networks. We used two different offered loads of 69d

evaluation described below, we use 100 byte packets foy dela

75% of the bottleneck OC3. Since good performance cannot betimation. For loss estimation packet sizes, the key conatitm

guaranteed when resources are oversubscribed, SLAs oftésitc
clauses to allow discarding performance measurementdlifaut
tion exceeds a given threshold[33]. Thus, we chose theseecoff
loads to reflect relatively high, yet acceptable averagadaalight
of this practice. Experiments using the self-similar tafftenario
were run for 15 minutes. For all scenarios, we discarded the fi
and last 30 seconds of the traces.

For the star setup, we used three background traffic scenario
our experiments. For the first scenario, we used Ipelf [3§jrte
duce CBR UDP traffic over the four primary traffic paths to teea
a series of approximately constant duration loss episades,&s)
and(vc,e4). We used an additional Iperf flow over paita,e) to
produce a series of loss episode$wate; ). All loss episodes were
spaced at exponential intervals with a mean of 10 secondsthan
test duration was 10 minutes. The second scenario consi$ted
long-lived TCP sources configured to use all four primaryfita
paths plus patke;, e,). There were at least 100 traffic sources con-
figured to use each path, and the test duration was 10 minkites.
the third scenario, we used Harpo®nl[34] with a heavy-tdiiled
size distribution to create self-similar traffic as in sa@sthree
and four for the dumbbell topology. Traffic sources were apnfi
ured to produce approximate average loads of 65% orelink5%
on link ey, 75% on linkez, and 60% on linkes, and the test duration
was 15 minutes. For all scenarios, we discarded the firstast@0
seconds of the traces. Finally, we note that while maximueugu
ing delays afvo,e>) were non-zero for all three traffic scenarios,
no loss occurred g, ).

6. EVALUATION

We now describe the experimental evaluation of $LAsing
the testbed described above. We examine the accuracy ofi&LA
delay and loss estimates, comparing its results with ettisnab-
tained using standard IPPM methodologle$]7, 8], which ased

is that multi-packet probes should admit accurate instesatas in-
dications of congestion. In previous woik 135], a packet st

600 bytes was used and was found to be a reasonable balance be-
tween limiting measurement impact while still obtaininga@ate
congestion indications. We verified this previous findind &ave

a detailed analysis for future work.

In the experiments below, we fix SLM\ probe parameters as
shown in Tabl€R. In prior workp,qss= 0.3 was found to give good
loss characteristic estimatés[35]. We verified the resatiarding
the setting of the parametgx,ss but omit detailed results in this
paper. We experimented with a range of valuegf@iiayfrom 0.01
to 0.5 (mean probe intervals from 5 msec to about 500 msec) and
found that estimation accuracy for ShAis virtually unchanged
over the range of parameter settings except those belovi G
(above about 200 msec mean probe spacing). We do not include
detailed results in this paper due to space limitations. deday
variation, we used a packet size of 48 bytes sent at perioin/als
of 30 msec. We used a stream lengthf 100 probes in computing
the DV matrix metric.

2: SLAM parameters used in evaluation experiments. For all ex-
periments, we set the discrete time interval for the sctedol be
5 msec.

[ Loss | Delay | Delay Variation |
Packet size poss | Packetsize pgelay | Packetsize Interval
600 bytes 0.3 | 100 bytes 0.048| 48 bytes 30 mse

With the parameters of Tablg 2, the bandwidth savings due to
multi-objective probing is about 100 Kb/s. Separately, libes
probe stream is about 490 Kb/s, the delay probe stream ist abou
20 Kb/s, and the delay variation is about 60 Kb/s: a sum of fibou
570 Kb/s. With SLAv, the probe stream is actually about 470
Kb/s. Note that for the dumbbell topology, the SkAparameters
used in our experiments result in only about 0.3% of the &o#tk

on Poisson-modulated probes. We also compare the DV matrix OC3 consumed for measurement traffic. For the star topolbgge

metric with other standard methodologiés!|Z21, 32].

6.1 sLam Measurement Overhead

Two important implementation decisions were made in the 8LA
probe sender. First, the scheduler must accommodate éstima
techniques that use multi-packet probes, such as the lEssst-
mation method we use. Second, the scheduler must arbitratec
probe modules that may use different packet sizes. At pteten
smallest packet size scheduled to be sent at a given timis siegd.

An effect of the implementation decision for probe packeesi
is that the overall bandwidth requirement for the multiestive
stream is less than the aggregate bandwidth requiremeimdbr
vidual probe modules if used separately. One concern with th
implementation decision is the issue of packet size depemdm
the measurement technique. For delay and delay variatakep
sizes should be small to keep bandwidth requirements lond&o
lay variation, the packet size should closely match thatl isea
codec referred to in the G.107 and related standards sohiind-t
model formulas can be directly used [1]. We use 48 bytes at an
interval of 30 msec in our evaluation below, which approxiesa
the G.723.1 codec. For delay, another concern is the reldiffer-
ence between end-to-end transmission and propagatiopsddia
situations where propagation delay is large relative tosingission
delay, the packet size can be small since the transmissiagsde
along a path contribute little to the overall delay. In castere
the opposite situation holds, packet sizes should be largagh
to estimate delays experienced by packets of average sizsurl

SLAM streams traverse linkey andes (namely, for linkes, paths

r1, r3 and(es, e3) are monitored, resulting in three streams travers-
ing e3). The measurement traffic consumption on these OC3 links
is still less than 1% of the capacity.

6.2 Delay

Tabld(3 compares the true delay measured using the DAGetedle
passive traces with the mean delay estimate produced byvSLA
and the estimates produced using standard RFC 2679 [7(@pis
modulated probes), sent at the same rate. Values are shown fo
each traffic scenario and are averages over full experimenat- d
tion. Note that the differences in true values are due toraite
variability in traffic sources, but the results are représtre of
tests run with different random seeds. First, we see in Ta8le
that the SLA results are close to the true values. We also see
that while results for the standard stream are close for Bie &nd
long-lived TCP traffic scenarios, they are less accuratéhiomore
realistic self-similar traffic scenarios, with with relatierrors rang-
ing from about 25% to 120%. Second, we see that in Tallle 3b that
the SLAw results are close to the true values, though somewhat
less accurate than for the simple dumbbell topology. Theracy
of the mean delay estimate for the RFC 2679 stream varieslwer
range of traffic scenarios and paths, but is generally b#tger in
the dumbbell topology. A possible explanation for this hebiais
that the increased level of aggregation of traffic sourcekérstar
topology leads to an improvement in mean delay estimates.

Figure[3 shows true mean delay and the $i-Astimated mean



3: Comparison of mean delay estimation accuracy for SiLakd
RFC 2679 (Poisson) streams using the (a) dumbbell and (b) sta
testbed topologies. Values are in seconds and are averegethe
full experiment duration.

(a) Delay accuracy using the dumbbell topology.

Probe stream— SLAM RFC 2679 (Poisson

Traffic scenario | true estimate| true estimate
CBR 0.0018  0.0018 | 0.0018 0.0022
Long-lived TCP 0.0387  0.0386 | 0.0386 0.0391
Harpoon self-similar (60% load)[ 0.0058  0.0059 | 0.0071 0.0092
Harpoon self-similar (75% load)| 0.0135 0.0135 | 0.0060 0.0132

(b) Delay accuracy using the star topology.

Probe stream— SLAM RFC 2679 (Poisson

Traffic scenario (route) | ” true estimate| true estimate)‘
CBR (1) 0.0066  0.0064 | 0.0066 0.0047
CBR (2) 0.0087  0.0075| 0.0087 0.0056
CBR (r3) 0.0053  0.0048 | 0.0053 0.0036
CBR (14) 0.0073  0.0063 | 0.0073 0.0043
Long-lived TCP (1) 0.0598  0.0601 | 0.0598 0.0612
Long-lived TCP (2) 0.1168  0.1172| 0.1162 0.1189
Long-lived TCP (3) 0.0362  0.0364 | 0.0362 0.0364
Long-lived TCP (4) 0.0936  0.0936 | 0.0936 0.0935
Harpoon self-similarr}) 0.0508 0.0503 | 0.0542 0.0505
Harpoon self-similarr;) 0.0108 0.0112 | 0.0123 0.0112
Harpoon self-similarri) 0.0414 0.0417 | 0.0446 0.0428
Harpoon self-similarr() 0.0019  0.0027 | 0.0028 0.0024

delay over the duration of experiments using CBR traffic Xtiop
the dumbbell topology, and for self-similar traffic on routein
the star topology. Results for other experiments are ctamisvith
plots shown in Figur€l4. True delay estimates are shown for 10
second intervals and estimates for SuAre shown for 30 sec-
ond intervals. We see that in each case after an initial cgevnee
period, the SLAM estimate tracks the true delay quite well.
Distribution-Free Quantile Estimation. Figure[® compares the
true delay distribution with the SLi-estimated delay distribution
with 90% confidence bounds. Representative plots are shown f
the long-lived TCP traffic scenario in the dumbbell topol¢gig-
ure[Bd) and for the CBR UDP traffic scenario in the star topplog
(Figure[Bb). We see that for these vastly different traffid topo-
logical setups that the delay distribution is estimatedegwiell and
that with few exceptions, the confidence bounds include rthe t
delay distribution for the range of estimated quantilesasho

Delay Distribution Inference. We now examine the problem of
inferring the delay distribution along a path given meadutelay
distributions along a subset of paths. Specifically, givexasure-
ments along paths, r3, andry4, we wish to infer the delay distri-
bution for pathr;.

Figure[® shows representative results for two traffic sdeaar
considered using the star topology. For these results, e@ aibin
width € of 100 usec for the input discrete mass distributions. The
computed bound and the actual CDF measured using\& bre
shown for the CBR UDP traffic (top) and self-similar TCP traffi
(bottom). We see that for each traffic scenario the compubeddb
is relatively tight, with the closest qualitative match foe more re-
alistic self-similar traffic scenario. The skewed disttibn arising
from the CBR UDP traffic scenario results in an underestiomabf
the high delay values along path For the self-similar TCP traffic
scenarios, the delay distributions are somewhat smoatheugh
not homogeneous along paths in the star topology), and sudtre
ing bounds are tighter.

6.3 Delay Variation

Evaluation of measured delay variation is complicated byiat
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that there is no clear basis by which to compare estimateslisAs
cussed ir§ 3, there are multiple definitions of delay variation, for
example in the RTP standard RFC 3550 and in the IPPM standard
RFC 3393. Therefore, we focus on a comparative analysis @mon
these two IETF standards and our DV matrix formulation.

We first look at theone-way-ipdv metric of RFC 3393. Each
one-way-ipdv sample is produced by choosing consecutive pack-
ets of a probe stream identical to the SluAtream (48 byte packets
sent at 30 msec intervals). Histogramsaé-way-ipdv samples
for the long-lived TCP traffic scenario (left) and for thefsgmilar
traffic scenario at 60% offered load (right) in the dumbbefidil-
ogy are shown in Figuriel 7. The plots show that while there is a
narrower range of values for the long-lived TCP source signa
the shapes of each distribution are qualitatively similEine nar-
row range for the long-lived TCP scenario arises becausgubee
is often close to full. Also, the left tail of the long-livedCP plot
and both left and right tails of the self-similar plot shovathhere
are some largene-way-ipdv values. Beyond simple qualitative
observations of these plots, however, it is not clear howigedy-
namicsalong the path are captured by this metric since it only cap-
tures local differences in delays. Itis also not clear how oright
infer application performance.g, for a VolP stream, since large
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values ofone-way-ipdv do not necessarily translate into packet
losses because of underbuffering at an application playafter.

Figure[Bh plots 60 second periods of the RTP jitter metriaglo
with a time series of queuing delays (top) and the DV matrixrioe
along with a time series of queuing delays (bottom). The back
ground traffic used for these plots is the self-similar tcafit a
60% offered load using the dumbbell topology. We calculate t
two metrics using a probe stream identical to the $L.#ream. In
these plots we observe first that although the RTP jitter avida-
trix metrics are calculated in very different ways, theydaimilar
qualitative characteristics over time with the DV matrixhibiting
a somewhat smoother profile.

In order to expose additional aspects of the RTP and DV matrix
metrics, we introduced a CBR traffic source that was sent dir ad
tion to the self-similar traffic at a 60% load, also using thent-
bell topology. Over periods of approximately 30 seconds GBR
source alternated between on/off periods, each of aboutrE@@.
The addition of the CBR source results in a period of osaifaof
the queue between full and empty as shown in Fifitle 8b. As with
Figure8h, the top plot shows the RTP jitter metric along witime
series of queuing delays and the bottom plot shows the DVixnatr
metric along with the same time series of queuing delays. bVe o
serve in these two plots that at the onset of the CBR on/oftbur
the RTP jitter metric oscillates in a similar way as the queTiee

DV matrix metric, however, remains smooth and at an inciase
level, suggesting that relative to the other DV matrix measients
over this 60 second time interval, queuing turbulence atbagath

is greatest during the period of CBR bursts. In contrastr tve
CBR burst period the RTP jitter values are often smaller thany
other jitter values during the trace segment. Also, retativ the
range of jitter values observed over the 60 second segntenjitt

ter values during the CBR burst period do not stand out—ttasyds
out only in their oscillatory behavior. This effect is exjpled by the
fact that although an EWMA filter with a small value faris used
(1/16) in the RTP jitter formulation, the view is still of inddual
delay variations rather than the behavior over a longeniatef
time. Although the CBR traffic source we used to reveal this be
havior is somewhat pathological, our observations in tbistext
are consistent with the behavior of the RTP and DV matrix eslu
during periods of queuing turbulence in other traffic scersaand
topologies/paths (not shown due to space limitations).

Finally, we examine the performance of the DV matrix metric
in the star topology. A desirable property of a method for soea
ing delay variation is that, in a multihop setting, it shoufgbort a
maximum over all the links comprising the path. In Figlite & w
plot the DV matrix metric for linke; ande, which make up path
r, for the CBR UDP traffic scenario. Plots for other traffic saena
ios and routes are qualitatively similar to Figlile 9. Obsehat
the DV matrix value reported over the path over time is gdhera
the maximum reported for the individual links. These resalte
encouraging. First, the DV matrix methodology appears &idyi
reliable measures of delay variation over a single hop. S&dbe
performance of the DV matrix metric in the two-hop star tamyl
appears to be robust. In the future we plan to examine itstsetys
to different matrix sizes and in more complex multihop sefsi

6.4 Loss

Table[3 compares the true loss rate measured using the g@assiv
traces (true values) with the loss rate estimates of 8lakd the
standard RFC 268(1[8] (Poisson-modulated) probe streatmasen
the same rate. Values are shown for each of the traffic saenari
and for the two topologies and are average loss rates ovefuthe
ration of each experiment. Note that differences in truaeslare
due to inherent variability in traffic sources. Considerbwh re-
sults for the dumbbell topology (TalIg€l4a) and for the stpotogy
(Table[4Dh), we see that the standard stream yields very mor e
timates of the true loss rate, and that the estimates prddoge
SLAM are close to the true values. Moreover, in all but a few
cases, the RFC 2680 probe estimates are off by more than @n ord
of magnitude—a significant relative error. For a number of ex
periments, the Poisson estimates are close to zero—a pleaoom
consistent with earlier experimenis 135] and primarily doghe
fact that single packet probes generally yield poor indices of
congestion along a path. (Note that these accuracy imprewem
are consistent with experiments described.ir [35].) Thenedes
produced by SLA are significantly better, with a maximum rela-
tive error occurring in the case of the open-loop CBR bacdkgdo
traffic for both the dumbbell and star topologies.

FigureID shows the true loss rate and Si-Astimated loss rate
over the duration of experiments using long-lived TCP tcaffithe
dumbbell topology (top) and self-similar traffic on routein the
star topology (bottom). True loss rate estimates are showtG
second intervals and estimates for SiuAare shown for 30 second
intervals. Results for other experiments are consistettt plots in
Figure[I0. The upper and lower bars for SaAndicate estimates
of one standard deviation above and below the mean usingthe v
ance estimates derived froin [37]. For the SWA&stimates we see
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8: A comparison of the behavior of the RTP (RFC 3550) jittetnmeand the DV matrix metric using the dumbbell topology.

4: Comparison of loss rate estimation accuracy for $iand
RFC 2680 (Poisson) streams using the (a) dumbbell and (b) sta
testbed topologies. Values are average loss rates oveultrex{
periment duration.

(a) Loss accuracy using the dumbbell topology.

Probe stream— SLAM RFC 2680 (Poisson
Traffic scenario | ” true estimate| true estimate1
CBR 0.0051 0.0073 | 0.0051 0.0017
Long-lived TCP 0.0163 0.0189 | 0.0163 0.0062
Harpoon self-similar (60% load){ 0.0008  0.0007 | 0.0017 0.0000
Harpoon self-similar (75% load)[ 0.0049  0.0050 | 0.0055 0.0000

(b) Loss accuracy using the star topology.

Probe stream— SLAM RFC 2680 (Poisson
Traffic scenario (route) | ” true estimate| true estimate )‘

CBR (1) 0.0391  0.0370 | 0.0391 0.0087

CBR (r2) 0.0339 0.0334 | 0.0339 0.0064

CBR (r3) 0.0458 0.0359 | 0.0458 0.0068

CBR (r4) 0.0390 0.0371 | 0.0390 0.0089
Long-lived TCP (1) 0.0081  0.0078 | 0.0092 0.0008
Long-lived TCP (2) 0.0463  0.0446 | 0.0433 0.0104
Long-lived TCP (3) 0.0021 0.0024 | 0.0028 0.0006
Long-lived TCP (4) 0.0479 0.0478 | 0.0442 0.0072
Harpoon self-similarr() 0.0170  0.0205 | 0.0289 0.0058
Harpoon self-similarrg) 0.0008  0.0006 [ 0.0069 0.0000
Harpoon self-similarri) 0.0192 0.0178 | 0.0219 0.0036
Harpoon self-similarr) 0.0005 0.0006 | 0.0002 0.0000

the narrowing of variance bounds as an experiment progseasd
that the true loss rate is usually within these bounds. We sde
that SLAM tracks the loss rate over time quite well, with its esti-
mated mean closely following the true loss mean.

7. DISCUSSION AND CONCLUSIONS

We believe that SLA1 represents a significant step forward for
SLA compliance monitoring using active measurements. hHewe
there are a number of issues that remain. First, there artcadd
issues to consider in the network-wide setting. For exangptie-
ployment strategy must be developed to coordinate proearss
so that links internal to the network are not carrying “tooatmu
measurement traffic. Another key question is: given a daily (
based on some other time scale) budget of probes that mate us
to monitor compliance with a SLA, what are the consideratifon
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9: Performance of the DV matrix in a two-hop settimg)(using
the star topology. Time series plot shown for CBR UDP traffic
scenario. Curves show DV matrix metric for routeand sepa-

rately for linkse; andey that comprise;.

optimizing the probe process? Should the probing periodvbe @
relatively long time scaleg(g, the entire interval of interest), thus
potentially limiting the accuracy of estimates, or sholie probing
period be over a shorter time scale, potentially improvistinea-
tion accuracy but at the cost of not probing over the entiteriml,
thus potentially missing important events? We have assumtads
paper that perfect accuracy is the goal for compliance raond.
However, for some SLAs, a tradeoff (if it is predictable)ween
accuracy and measurement overhead may be appropriate,,
our examples of distributional inference have focussed elayd
We plan to more closely examine loss in the future. Finallyilev
measuring availability in a simple path-oriented scenarimther
straightforward, simple application of performance tomapdy to
infer network-wide availability may not be sufficient in tfece of
routing changes.

In summary, this paper introduces a new methodology for SLA
compliance monitoring using active measurements, inoydiew
methods for measuring end-to-end packet loss, mean delkhgde
lay variation. We propose a new method for obtaining confiden
intervals on the empirical delay distribution. We also ditsca
new methodology for inferring lower bounds on the quantdés
a distribution of a performance metric along a path in a ngtwo
wide setting from a subset of known paths. We implementeskthe
measurement methods in a tool called Si#hat unifies the var-
ious probe streams resulting in lower overall probe volurdée
evaluated the capabilities of the tool in a controlled labory en-

Next
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10: Comparison of true loss rate with Sifestimates over time.
True loss rates are plotted using 10 second intervals. N6 bsti-
mates are plotted using 30 second intervals. Plots showorigr
lived TCP traffic in the dumbbell topology (top) and self-gan
traffic on router; in the star topology (bottom). The upper and
lower bars for SLA indicate estimates of one standard deviation
above and below the mean using the variance formulation7f [3

vironment using a range of traffic conditions and in one- anat t
hop settings. Our results show that SuA delay and loss rate
estimates are much more accurate than estimates obtaioeglth
standard probe methodologies. Furthermore, we illustidecon-
vergence and robustness properties of the loss, delay, elag d
variation estimates of SL# which make it useful in an opera-
tional setting.

Acknowledgments

We thank the anonymous reviewers and our shepherd AnedéiShai
for their feedback. This work is supported in part by NSF gran
numbers CNS-0347252, CNS-0627102, CNS-0646256 and CCR-
0325653 and by Cisco Systems. Any opinions, findings, cenclu
sions or recommendations expressed in this material ase tbb

the authors and do not necessarily reflect the views of the dNSF

of Cisco Systems.

8. REFERENCES

[1] ITU-T Recommendation G.107, The E-model, a computaionodel for use
in transmission planning, March 2005.
AT&T Managed Internet Service (MIS).
http://new.serviceguide.att.com/mis.htm, 2007.
NTT Communications Global IP Network Service Level Agneent (SLA).
http://www.us.ntt.net/support/sla/network/, 2007.
Sprint NEXTEL service level agreements.
http://www.sprint.com/business/support/servicelLevelAgreements. jsy,
2007.
S. Agarwal, J. Sommers, and P. Barford. Scalable netwatk emulation. In
Proceedings of IEEE MASCOTS '0Beptember 2005.
M. Aida, N. Miyoshi, and K. Ishibashi. A scalable and ligleight QoS
monitoring technique combining passive and active appresdnProceedings
of IEEE INFOCOM '03 March 2003.
G. Almes, S. Kalidindi, and M. Zekauskas. A one-way detagtric for IPPM.
IETF RFC 2679, September 1999.
G. Almes, S. Kalidindi, and M. Zekauskas. A one way pad@es metric for
IPPM. IETF RFC 2680, September 1999.
D. Arifler, G. de Veciana, and B. L. Evans. ‘network tomaghy based on flow
level measurements. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc.
Montreal, Canada, May 17-21 2004.
P. Barford and J. Sommers. Comparing probe- and rda#sed packet loss
measurement$EEE Internet ComputingSeptember/October 2004.
J. Bolot. End-to-end packet delay and loss behavidnéniternet. In
Proceedings of ACM SIGCOMM '98eptember 1993.

(2]
(3]

[4

5]
(6]

[7

8]

[9

[10]

[11

[12]

[13]

[14]

(18]

[16]
[17]

(18]

[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]
[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

R. Caceres, N. Duffield, J. Horowitz, and D. Towsley.INuast-based inference
of network internal loss characteristi¢tBEEE Trans. on Information Theory
45(7):2462-2480, 1999.

M.C. Chan, Y.J. Lin, and X. Wang. A scalable monitoringpeoach for service
level agreements validation. IREE International Conference on Network
Protocols (ICNP) pages 37-48, 2000.

Y. Chen, D. Bindel, and R. Katz. Tomography-based @yerletwork
monitoring. InProceedings of ACM SIGCOMM Internet Measurement
Conference '030ctober 2003.

Y. Chen, D. Bindel, H. Song, and R.H. Katz. An algebrgip@ach to practical
and scalable overlay network monitoring.Pnoceedings of ACM SIGCOMM
'04, 2004.

B.Y. Choi, S. Moon, R. Cruz, Z.-L. Zhang, and C. Diot. Baeal delay
monitoring for ISPs. IrProceedings of ACM CoNEXT '02005.

D.B. Chua, E.D. Kolaczyk, and M. Crovella. Efficientiesation of end-to-end
network properties. IiProceedings of IEEE INFOCOM 'Q2005.

L. Ciavattone, A. Morton, and G. Ramachandran. Stadidad active
measurements on a tier 1 IP backbdi#=E Communication41(6):90-97,
June 2003.

R. Cole and J. Rosenbluth. Voice over IP Performanceitdddng. ACM
SIGCOMM Computer Communcation Reviépril 2001.

E. Corell, P. Saxholm, and D. Veitch. A user friendly T8Gck. In
Proceedings of Passive and Active Measurement Conferbtareh 2006.

C. Demichelis and P. Chimento. IP packet delay vanetietric for IP
performance metrics (IPPM). IETF RFC 3393, November 2002.

N. Duffield. Network Tomography of Binary Network Penfoance
CharacteristicdEEE Transactions on Information Theo2, 2006.

N. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Imfeg link loss using
striped unicast probes. Proceedings of IEEE INFOCOM 'QRApril 2001.

Y. Liang, N. Farber, and B. Girod. Adaptive playout sdhkng and loss
concealment for voice communication over IP netwotEEE Transactions on
Multimedia 5(4), December 2003.

F. Lo Presti, N.G. Duffield, J. Horowitz, and D. Towsl®julticast-based
inference of network-internal delay distributiohEEE/ACM Transactions on
Networking 10(6):761-775, 2002.

J. Mahdavi and V. Paxson. IPPM metrics for measuringieativity. IETF RFC
2678, September 1999.

J. Martin and A. Nilsson. On service level agreementdfonetworks. INEEE
INFOCOM '02, 2002.

A. Pasztor and D. Veitch. A precision infrastructure &ative probing. In
Passive and Active Measurement WorksIaf91.

V. PaxsonMeasurements and Analysis of End-to-End Internet DynarRic®
thesis, University of California Berkeley, 1997.

V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framéufor IP
performance metrics. IETF RFC 2330, 1998.

M. Roughan. Fundamental bounds on the accuracy of mktperformance
measurements. IACM SIGMETRICSJune 2005.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jaced8®P: A transport
protocol for real-time applications. IETF RFC 3550, Julp30

A. Shaikh and A. Greenberg. Operations and ManagenfdRtetworks:
What Researchers Should Know. Tutorial Session, ACM SIGGOB5G.
August, 2005.

J. Sommers and P. Barford. Self-configuring networKitr@eneration. In
Proceedings of ACM SIGCOMM Internet Measurement Confer&it; 2004.
J. Sommers, P. Barford, N. Duffield, and A. Ron. Impravaccuracy in
end-to-end packet loss measuremenPioceedings of ACM SIGCOMM '05
2005.

J. Sommers, P. Barford, N. Duffield, and A. Ron. A Framewfor
Multi-objective SLA Compliance Monitoring. IRroceedings of IEEE
INFOCOM (minisymposiumMay 2007.

J. Sommers, P. Barford, N. Duffield, and A. Ron. A georgedpproach to
improving active packet loss measuremdiotappear, IEEE/ACM Transactions
on Networking2008.

A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gilhpsrf 1.7.0 — the
TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf, 2007.

Yolanda Tsang, Mark Coates, and Robert Nowak. Passiast network
tomography using em algorithms. IBEE International Conference on
Acoustics, Speech, and Signal Processpages 1469-1472, Salt Lake City,
Utah, May 2001.

M. Yajnik, S. Moon, J. Kurose, and D. Towsley. Measuretrend modeling of
temporal dependence in packet lossPhoceedings of IEEE INFOCOM '99
March 1999.

Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On thestancy of Internet
path properties. IProceedings of ACM SIGCOMM Internet Measurement
Workshop '01 November 2001.

T. Zseby. Deployment of sampling methods for SLA vatida with
non-intrusive measurements.Pnoceedings of Passive and Active
Measurement Workshpp001.


http://new.serviceguide.att.com/mis.htm
http://www.us.ntt.net/support/sla/network/
http://www.sprint.com/business/support/serviceLevelAgreements.jsp
http://dast.nlanr.net/Projects/Iperf

	Introduction
	Related Work
	Path-Oriented SLA ComplianceMonitoring
	Delay
	Delay Variation
	Loss
	Multi-Objective Probing

	Toward Network-Wide SLACompliance Monitoring
	Routing Matrices, Measurement,and Linear Dependence
	Delay Distributional Inference

	Experimental Testbed
	Evaluation
	SLAm Measurement Overhead
	Delay
	Delay Variation
	Loss

	Discussion and Conclusions
	References

