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ABSTRACT
Service level agreements (SLAs) define performance guarantees
made by service providers,e.g, in terms of packet loss, delay, delay
variation, and network availability. In this paper, we describe a new
active measurement methodology to accurately monitor whether
measured network path characteristics are in compliance with per-
formance targets specified in SLAs. Specifically,(1) we describe a
new methodology for estimating packet loss rate that significantly
improves accuracy over existing approaches;(2) we introduce a
new methodology for measuring mean delay along a path that im-
proves accuracy over existing methodologies, and propose amethod
for obtaining confidence intervals on quantiles of the empirical de-
lay distribution without making any assumption about the true dis-
tribution of delay;(3) we introduce a new methodology for mea-
suring delay variation that is more robust than prior techniques;
and (4) we extend existing work in network performance tomog-
raphy to infer lower bounds on the quantiles of a distribution of
performance measures along an unmeasured path given measure-
ments from a subset of paths. We unify active measurements for
these metrics in a discrete time-based tool called SLAM. The uni-
fied probe stream from SLAM consumes lower overall bandwidth
than if individual streams are used to measure path properties. We
demonstrate the accuracy and convergence properties of SLAM in
a controlled laboratory environment using a range of background
traffic scenarios and in one- and two-hop settings, and examine its
accuracy improvements over existing standard techniques.
Categories and Subject Descriptors:C.2.3 [Network Operations]:
Network management, Network monitoring, C.2.5 [Local and Wide-
Area Networks]: Internet (e.g., TCP/IP), C.4 [Performanceof Sys-
tems]: Measurement Techniques
General Terms: Algorithms, Experimentation, Management, Mea-
surement, Performance
Keywords: Active Measurement, Network Congestion, Network
Delay, Network Jitter, Packet Loss, Service-Level Agreements, SLAM

1. INTRODUCTION
Network service level agreements (SLAs) detail the contractual

obligations between service providers and their customers. It is
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increasingly common for SLAs to specify transport-level perfor-
mance assurances using metrics such as packet loss, delay, delay
variation, and network availability [2, 3,4,33]. Meeting SLA guar-
antees results in revenue for the ISP. However, failing to meet SLA
guarantees can result in credits to the customer. The implications
of not meeting SLA guarantees are therefore serious: a disruption
in service can result in significant revenue loss to both the customer
and provider.SLA compliance monitoring, assessing whether per-
formance characteristics are within specified bounds, is therefore
critical to both parties.

Compliance monitoring is a critical challenge for SLA engineer-
ing. SLAs must be designed that can be accurately and efficiently
monitored, while simultaneously limiting the risk of non-compliance.
For example, assuring a low loss rate might be possible only if loss
rates can be estimated with sufficiently high confidence. Although
passive measurements (e.g., SNMP MIB counters) may provide
high accuracy for a metric such as loss on a link-by-link basis, they
may be insufficient for estimating the performance experienced by
customer traffic. Thus, although there are situations whereactive
measurements may be too heavyweight or may yield inaccuratere-
sults [10,31,35], they nonetheless remain a key mechanism for SLA
compliance monitoring.

In this paper, we address the following questions: can SLA com-
pliance along a path be accurately monitored with a single lightweight
probe stream? and can this stream be the basis for efficient network-
wide compliance monitoring? There have been a large number of
active measurement methodologies proposed to estimate transport-
level performance characteristics. Nonetheless, there has been little
work to directly address the specific problem of SLA compliance
monitoring. In this context, measurement accuracy, ability to re-
port confidence bounds, ability to quickly adapt to changingnet-
work conditions, and ability to efficiently assess performance on a
network-wide basis are of great importance.

The first contribution of this paper is the introduction of a new
active measurement methodology to accurately assess whether mea-
sured network path characteristics are in compliance with specified
targets. We describe a heuristic technique for estimating packet
loss rate along a path that significantly improves accuracy over ex-
isting approaches. Second, we introduce a new method for mea-
suring mean delay along a path that is more accurate than exist-
ing methodologies. We also develop a mathematical foundation
for obtaining confidence intervals for the quantiles of the empirical
delay distribution. Third, we introduce a new method for mea-
suring delay variation that is more robust than prior techniques.
These probe algorithms are unified in amulti-objectivediscrete-
time based tool called SLAM (SLA Monitor), which was sketched
in an earlier workshop paper [36]. That paper was limited to intro-
ducing SLAM ’s architectural framework and outlining the loss rate



measurement heuristic used by SLAM.
The second contribution of this paper is to extend prior workin

the area of performance tomography toward the goal of network-
wide SLA compliance monitoring. In particular, we develop a
methodology to infer lower bounds on the quantiles of a distri-
bution of path performance measures using measurements from a
subset of network paths.

We demonstrate the properties of SLAM in a controlled labora-
tory environment using a range of background traffic scenarios and
using both one- and two-hop topologies. We compare SLAM ’s de-
lay and loss estimation accuracy with standard IPPM probe method-
ologies [7, 8] of the same rate, and examine the convergence and
robustness of SLAM estimates of delay, delay variation, and loss.
Our experiments show that our estimates of mean delay are within
one msec of the true mean delay, while the standard probe method-
ology [7] can suffer inaccuracies up to about a factor of two.We
also show that for a confidence level of 90%, SLAM ’s estimated
bounds on a wide range of delay quantiles, with few exceptions,
include the true quantile value. We show that in a simple two-hop
topology, the inferred bound on the delay distribution is tight, and
close to the actual distribution. Our experiments also reveal that
SLAM estimates the end-to-end loss rate with high accuracy and
with good confidence bounds. For example, in a scenario using
self-similar background traffic, the true loss rate over a 15minute
period is 0.08% and the SLAM estimate is 0.07%. In contrast,
the standard method for estimating loss rate [8] can have errors of
more than two orders of magnitude. We demonstrate the robustness
of SLAM ’s delay variation monitoring methodology, showing how
the existing standard RTP jitter metric [32] may be too sensitive
to network path conditions, and that SLAM performs well in our
more complex two-hop scenario.

2. RELATED WORK
General aspects and structure of SLAs have been discussed in[27,

33]. Performance assurances provided by SLAs range from net-
work path availability, to transport-level metrics, to application-
specific metrics. These guarantees may be based on a variety of
statistics of the particular metric, such as the mean, median, or a
high quantile, computed over various time scales. Examplesof the
kinds of guarantees offered by service providers are available on-
line [2,3,4].

To ensure that SLA performance targets are met with high proba-
bility, service providers collect measurements either passively within
the network, by injecting measurement probes into the network,
or by using a combination of both [6, 13, 18, 42]. While active
measurement-based compliance monitoring has received some at-
tention in the past,e.g., [18], there has been little validation in
realistic environments where a reliable basis for comparison can
be established. There has been limited work addressing the ac-
curacy of some active measurement approaches; exceptions are
found in [10, 31, 35]. The issue of accuracy clearly has serious
implications for SLA compliance monitoring. Other effortshave
been limited in focus to estimation and optimization of a single
metric, e.g., [16, 19]. Our work takes an active measurement ap-
proach, focusing on simultaneous, or multi-objective, measurement
of transport-level performance metrics. We further differentiate our
work through validation in a controlled, realistic testbed.

In general, there has been a great deal of work on active mea-
surements of end-to-end delay, delay variation, and loss,e.g., [7,
8, 11, 19, 21, 28, 29, 30, 40, 41]. IETF standardization efforts for
active measurement of delay, delay variation, loss, and reordering
have taken place within the IETF IPPM working group [7,8,21,30].
Regarding delay, our method for distribution quantile estimation is

distinguished from the earlier work of Choiet al. [16] in that we
do not require the quantile of interest to be specifieda priori, and
that we do not make any assumption regarding the underlying de-
lay distribution. As a result, our method is robust to abruptchanges
in underlying network conditions. Lastly, we note that our formu-
lation of a delay variation measurement methodology standsapart
from the related IPPM [21] and real-time protocol (RTP) [32]spec-
ifications in that rather than considering highly localizedvariations
in delay (e.g., between consecutive probe packets), we consider de-
lay variations over streams of packets.

3. PATH-ORIENTED SLA COMPLIANCE
MONITORING

We now describe the basic assumptions and methods for estimat-
ing delay, delay variation, and loss along a single end-to-end path.
Our objective is to develop accurate, robust estimators based on a
discrete-time probe process. Moreover, we seek to improve on the
best known standard IPPM methodologies [7,8,32]. Another met-
ric that is often part of SLA specifications is network availability.
Availability can be loosely defined as the capability of the network
to successfully transmitany end-to-end probe over an interval of
time, e.g., 60 seconds [26]. Although availability may be consid-
ered as a special case of loss, we have yet to examine this metric in
detail.

3.1 Delay
Both mean delay and high quantiles of the empirical delay dis-

tribution are used in SLAs. We first consider estimation of mean
delay along a path, which we model as a continuous functionf (t)
whose independent variable is the time that a probe packet issent
and the dependent variable is measured one-way delay. Basedon
this model, a natural approach to mean delay estimation is touse
Simpson’s method for numerical integration. The Simpson’sfor-
mulation is straightforward: once the domain of integration is par-
titioned, the integral of the functionf over the subintervalI j is
estimated by1

6( f (a j)+ f (b j )+4 f (c j )), with a j ,b j the endpoints
of I j , and withc j its midpoint. The error of the Simpson estimate

is known to beej =
f (4)(ξ j)
2880 |I j |

5, with ξ j some point in the interval
I j . Thus, if the fourth derivative off exists and is not too large, it is
safe to state that the local error is of order 5;i.e., if we double the
number of samples, the error in the estimate will be reduced locally
by a factor of 32, and globally by a factor of 16.

To apply Simpson’s method to a discrete-time probe process for
estimating mean end-to-end delay, we do the following: at time slot
i, we draw a valuek from a geometric distribution with parameter
pdelay. The geometric distribution is the discrete analog of the ex-
ponential distribution and should yield unbiased samples.Probes
representing the endpointsa j and b j are sent at time slotsi and
i +2(k+1) with the midpoint probe sent a time sloti +(k+1). At
time sloti +2(k+1) the next subinterval begins, thus the last probe
of a given subinterval is the first probe of the next one. Simpson’s
estimates from each subinterval are summed to form the totalarea
under the delay function. The mean delay estimate is then obtained
by dividing the integral estimate by the number of subintervals.

With the above formulation, the subintervals are not of equal
lengths (the lengths form a geometric distribution). Thus,we can
either directly apply Simpson’s method to estimate the meande-
lay, or we can apply relative weights to the subintervals according
to their lengths. In our results described below, we use weighted
subintervals which we found to give more accurate results, though
the absolute differences were small.

There are several considerations in using this approach. First,



probes may be lost in transit. We presently discard subintervals
where probe loss occurs. Second, while the assumption that delay
largely behaves as a smooth function seems reasonable, it may be
more accurate to account for random spikes in delay by modeling
the process as the sum of two processes, one smooth and one ran-
dom. For example, if the functionf (t) is written asf1(t)+ f2(t),
with f1 smooth andf2 random, then our numerical integration does
much better onf1 and slightly worse onf2 as compared to straight
averaging. The Simpson’s approach should be effective for this
model as well: if the values of the random part are quite small
compared to the smooth part, then our estimate should be better
than simple averaging (i.e., the sampling method advocated in RFC
2679 [7]). Note that there is little risk in using Simpson’s method:
even if delay is a completely random process (which is not likely),
the variance of the Simpson’s rule estimator for mean delay is in-
creased only slightly as compared to simple averaging.
Distribution-Free Quantile Estimation. Besides using mean delay
as the basis of service-level guarantees, ISPs also use highquantiles
of the delay distribution, such as the 95th percentile [16].

Let {xi : i = 1, . . . ,n} be n independent samples drawn at ran-
dom from a common distributionF , sorted in increasing order. For
simplicity, assumeF is continuous. LetQp denote thepth quantile
of that distribution,i.e., the unique solution ofF(Qp) = p.

We wish to obtain confidence intervals forQp based on{xi}.
One approach would be to start with the empirical distribution func-
tion: F̂(x) = n−1#{i : xi ≤ x} and use a quantile estimate of the form
Q̂p = max{x : F̂(x)≤ p}. Analysis of the variance of this estimator
might give us asymptotic confidence intervals asn becomes large.
Instead, we seek rigorous probabilistic bounds onQp that hold for
all n.

Now {xk ≤ x} is the event that at leastk of the samples are less
than or equal tox, an event which has probabilityG(n,F(x),k),

whereG(n, p,k) = ∑ j≥k p j (1− p)n− j
(

n
j

)
. Takingx= Qp we have

Pr[xk ≤ Qp] = G(n, p,k).
Based on thexi , we now wish to determine a levelX+(n, p,ε)

that the true quantileQp is guaranteed to exceed only with some
small probabilityε. Thus, we choseX+(n, p,ε) = xK+(n,p,ε) with
K+(n, p,ε) = min{k : G(n, p,k) ≤ ε}.

Similarly, Pr[xk ≥ Qp] = 1−G(n, p,k). Based on thexi , we
now wish to determine a levelX−(n, p,ε) that the true quantile
Qp is guaranteed to fall below only with some small probabilityε.
Thus, we choseX−(n, p,ε)= xK−(n,p,ε) with K−(n, p,ε)= max{k :
1−G(n, p,k) ≤ ε}.

Put another way,K+(n, p,ε) is the 1−ε quantile of the binomial
Bn,p distribution, whileK−(n, p,ε) is theε quantile of the binomial
Bn,p distribution. TheK± can be computed exactly; examples are
given in Table 1.

1: Example quantile IndicesK± for various sample sizesn, and
quantilesp. Confidence level is 1− ε = 90%. Also shown is the
reference quantile indexK0 = np. — indicates that no upper bound
K+ was available, which can occur when the top atom has mass
greater than the desired significance level,i.e., pn > ε.

Quantile
50 90 99

n K− K0 K+ K− K0 K+ K− K0 K+

100 44 50 57 86 90 95 98 99 —
1000 480 500 521 888 900 913 986 990 995
10000 4936 5000 5065 8961 9000 9039 9887 9900 9914

3.2 Delay Variation
Characterizing delay variation in a complex setting and in acom-

pact and robust way is a challenging problem. In looking for asuit-

able model for delay variation (DV), we found that the notionitself
is defined in multiple ways. For example, IPPM RFC 3393 [21]
refers on the one hand to the variation of delay with respect to some
reference metric, such as the average or minimum observed delay,
and on the other hand to the dynamics of queues along a path or at
a given router. DV samples in RFC 3393 are defined as the differ-
ence in one-way delays of packeti and packetj , Di −D j . These
two packets may be consecutive packets of a probe stream, butthey
need not be. A statistic of interest identified by the RFC is the em-
pirical distribution of DV samples, the mean of which is sometimes
used in SLAs. Maximum DV is also of importance, as it may be
useful for sizing playout buffers for streaming multimediaapplica-
tions such as voice and/or video over IP [24].

An alternative definition of delay variation is found in the Real-
time Protocol (RTP) standard, RFC 3550 [32]. It uses an exponen-
tially weighted moving average over the absolute one-way delay
differences,j(i) = j(i−1)+(|Di −Di−1|− j(i−1))/16, whereDi
is the one-way delay of packeti, and j(0) = 0. The RTP jitter value
is intended for use as a measure of congestion. Rather than being
used as a meaningful absolute value, it is meant to be used as a
mechanism for qualitative comparison of multiple RTP stream re-
ceivers, or at different points of time at a single receiver.We posit
that a DV estimator that can capture dynamic conditions has more
direct relevance to applications and is therefore more meaningful
to SLAs.

Building on these notions of delay variation, we consider a stream
of probes of lengthk, e.g., 100 probes. We denote the time differ-
ence between two probesi and j when they are sent assi, j and
the time difference between the same two probes when they are
received asr i, j . We construct a matrixM where each cellMi, j con-
tains the ratior i, j/si, j . Thus,Mi, j is 1 if the spacing between probes
i and j does not change; is greater than 1 if the measured spacing
increases; or is less than 1 if the measured spacing decreases as the
probes traverse the network path. (Ratior i, j/si, j is defined as 1 for
i = j and it is defined as 0 if probei or j is lost.) Note that com-
puting the above ratior i, j/si, j with respect to consecutive probes in
the stream gives a more accurate description of the instantaneous
nature of DV while probes farther apart give a description ofDV
over longer time intervals.

Next, we compute the eigenvalues of this matrixM, resulting in
a vectore of lengthk, with values sorted from largest to smallest.
If the probe stream traverses the network undisturbed, we would
expect that matrixM would consist entirely of 1s, with the largest
eigenvalue ask and all other eigenvalues as 0; we denote the vector
of these “expected” eigenvalues ase′. We subtracte′ from e, tak-
ing theL1 norm of the resulting vector:∑k

i=1 |ei −e′i |. We refer to
this L1 norm as ourDV matrix metric. As with RTP, it is not in-
tended to be meaningful in an absolute sense but useful for relative
comparisons over time.

The DV matrix formulation relies on and is motivated by the
fact that we have a notion of what isexpectedin the absence of
turbulence along the path,i.e., that probe spacings should remain
undisturbed. By looking at the eigenstructure of the DV matrix, we
extract, in essence, theamount of distortionfrom what we expect.

3.3 Loss
The loss metric specified by SLAs ispacket loss rate: the num-

ber of lost packets divided by total number of arriving packets over
a given time interval. As identified in [35], the difficulty inesti-
mating the end-to-end loss rate is that it is unclear how to measure
demandalong a path (i.e., the denominator used in calculating the
loss rate) particularly during congestion periods. Thus, we propose
a heuristic approach as outlined in an earlier workshop paper [36].



We start with the methodology in [35], which initiates a probe
pair at a given time slot with probabilityploss for estimation of the
end-to-end frequency of congestion episodesF̂ and the mean du-
ration of congestion episodeŝD. In this approach, each probe con-
sists of three packets, sent back-to-back. We measure the loss rate
l̂ of the probesduring congestion episodes. Since the methodology
of [35] does not identify individual congestion episodes, we take an
empirical approach, treating consecutive probes in which at least
one packet is lost as indication of a congestion episode (i.e., similar
to [41]). We assume that the end-to-end loss rateL is stationary and
ergodic. Given an estimate of the frequency of congestionF̂ , we
estimate the end-to-end loss rate asL̂ = F̂ l̂ .

The key assumption of this heuristic is that we treat the probe
stream as amarker flow, viz., that the loss rate observed by this flow
has a meaningful relationship to other flows along the path. We
note again that the probes in [35] consist of multiple packets (3 by
default), which has some similarity to a TCP stream where delayed
ACKs cause a sender to release two closely-spaced packets. While
we do not claim that the probe stream is, in general, the same as a
TCP stream, our results below demonstrate that such an assumption
may be reasonable in this context.

3.4 Multi-Objective Probing
We use the termmulti-objectiveprobing to refer to simultaneous

estimation of multiple performance metrics using a single probe
stream. The individual discrete-time algorithms described above
operating at the same time may schedule probes to be sent at the
same time slot. Such requests can be accommodated by tagging
probes according to the relevant estimator. Thus, a single probe
stream can be used for concurrent estimation of packet loss,delay,
delay variation, and other quantities, thereby reducing the impact
of measurement traffic on the network.

The basic architecture of our multi-objective probe scheduler is
depicted in Figure 1. The main component of the architectureis a
discrete-time scheduler that provides callback and probe schedul-
ing mechanisms. Probe modules implement the various path-oriented
estimation methods described above. This design allows forlogical
separation among multiple, simultaneously operating measurement
methods and for optimizations of network bandwidth.

time

scheduler

delay var.delay loss

discrete time probe scheduler

network interface

probe stream

probe modules

1: Multi-objective probe scheduler architecture. Algorithmic
modules interact with a discrete-time probe scheduler to perform
estimation of delay, delay variation, and loss characteristics.

4. TOWARD NETWORK-WIDE SLA
COMPLIANCE MONITORING

The previous section described a set of methodologies for effi-
cient per-path monitoring. SLA compliance monitoring, however,
requires accurate and efficient measurement on a network-wide ba-
sis. However, the measurement overhead of sending probes over a
full n2 mesh of paths is highly undesirable. In this section, we de-
scribe the mathematical foundation that enables economical moni-
toring over a subset of network paths. This new methodology en-
ables greater flexibility for specifying performance assurances in

terms of quantiles of a distribution, while attaining a highlevel of
measurement efficiency.

4.1 Routing Matrices, Measurement,
and Linear Dependence

Let G = (V,E) be a directed graph comprising vertices (nodes)
V and directed edges (links)(v1,v2) ∈ E ⊂ V ×V. Let R be a set
of paths (routes)i.e., eachr ∈ R is an ordered set ofn > 0 con-
tiguous links(v0,v1),(v1,v2), . . . ,(vn−1,vn). Therouting matrix A
associated withR is the incidence matrix of the links in the routes,
namely,Are = 1 if link eoccurs in router and zero otherwise.

We now describe what we term thescalar additive network per-
formance model. Let x : E → R be a function on the links. This
naturally gives rise to the path functiony : R→ R defined asyr =
∑e∈r xe = ∑e∈E Arexe. This relation is a prototype for additive net-
work performance models. Two examples are:
Network Delay: The latency of packet traversing the pathr is

the sum of the latencies incurred on each link
of the path. This may be understood either as
thexe being individual measurements, or asxe
being mean latencies. This is the example on
which we focus in this paper.

Network Loss: In this model,xe is the log transmission proba-
bility of traversing linke; if there is no spatial
correlation between link losses we can writeyr
as the log transmission probability along the
pathr.

Performance Tomography.
Two classes of inference problems arising from the framework

above have been studied recently. Inlink performance tomography
the aim is to infer the distribution of the link variablexe given only
path measurementsyr . Variants of this problem have been studied,
mostly depending on exploiting correlations between measurement
on different paths,e.g., either at the packet level,e.g., by using
multicast probes [12, 25] or groups of unicast probes [23, 39], or
more generally of distinct packet streams that experience common
performance impairments [9,22].

A second class of problem has more recently attracted attention
[14,15,17]: given a set of path performance measures acrossinter-
secting paths, is it possible to infer the whole set of measures if only
a subset is known? Clearly there is some relation between thetwo
problems in the sense that if all link performance measures could
be inferred from a subset of path measures, then the remaining path
measures could be determined simply.

For scalar additive performance measures, the second problem
has a simple expression in terms of the routing matrixA. Suppose
that the matrixA is not of full (row) rank,i.e., the set of row vectors
is not linearly independent. Consequently there exists a minimal set
of pathsS( R which span in the sense that such that every row of
ar = {Are : e∈ E} of A can be expressed as a linear combination
of the{ar : r ∈ S} . For the scalar additive performance model, this
translates to saying that all{yr : r ∈ R} can be determined from the
subset{yr : r ∈ S}. Recent work on this problem has focused on
understanding how the dimension of the setSdepends on network
topology. Chenet al. [15] concluded that the number of paths inS
grows asO(#V) (i.e., linear in the number of network nodes #V) in
a real router-level topology, or at worst likeO(#vlog#V) in some
simulated topologies.

Distributional Path Performance Measures.
In this work we extend the computational approach described

above to infer distributions of a set of path performance measures



from a subset. We assume in a given network setting the existence
of the setS( R with the properties detailed above has been estab-
lished. This means in particular that for every network pathin R,
every link in this path is traversed by some path in the subsetR,
and below we show how the distributions of delay in path inR can
be inferred from only those inS. This inference depends on the as-
sumption that any packet traversing a given link will experience the
same delay distribution, even if the actual delays differ. The proofs
of the results are relatively straightforward but have beenomitted
due to space limitations and will appear in a future technical report.

There are two challenges in trying to extend the scalar approach
to distributions. The first is dependence among link measurements.
Dependence is not an issue in the linear algebra of mean quantities
since the average of a linear combination of random variables is
equal to same linear combination of respective averages even when
the variables are dependent. Working with distributions ismore
complex, for example the distribution of a sum of random variables
is not equal to the convolution of their distributions unless the ran-
dom variables are independent. A second complexity is algebraic:
there is no simple subtraction operation for distributions. For ex-
ample, ifX andY are independent random variables andX = Y in
distribution, it is not the case thatX−Y is identically zero.

4.2 Delay Distributional Inference
We suppose routing (and hence the matrixA) is static over a

measurement interval. On each pathr a stream of measurement
packets labeledi = 1,2, . . . ,nr is launched along the path. Packeti
incurs a latencyXi

re on traversing the linke∈ r. The latency of the
packet on the path isYi

r = ∑e∈r Xi
re.

To motivate the following, consider the star topology network
in Figure 3b in which source nodesv1,v2 and destination nodes
v3,v4 are linked through a central nodevc. Denote the edges by
e1 = (v1,vc), e2 = (v2,vc), e3 = (vc,v3) and e4 = (vc,v4). We
consider the 4 pathsr1 = (e1,e3), r2 = (e1,e4), r3 = (e2,e3) and
r4 = (e2,e4). Let Xn be the delay on linken, andYn the delay on
pathrn. Clearly,Y1 +Y4 =d Y2 +Y3. Assume that the distributions
of Y2,Y3 andY4 are known; we focus on inferring that ofY1.

Our major statistical assumption is that allXi
re are independent.

We remark that the opposite type of assumption,i.e., the iden-
tity of certain link variables, has been employed for multicast per-
formance tomography (and some unicast variants) to describe the
propagation of multicast packets. The identity assumptionis natu-
ral in that case, since it reflects either the delay encountered by a
single multicast packet or a train of closely spaced unicastpackets
prior to branching to distinct endpoints.

In the present case, we can consider two types of dependence.In
the first case we consider dependence between different measure-
ments. Provided probe packets are dispatched at intervals longer
than the duration of a network congestion event, then probeson
the same path or on intersecting paths are unlikely to exhibit delay
dependence, even if individual packets experience thedistribution
of congestion events similarly on the same link. Thus, is seems
reasonable to model theYi

re as independent. The second case to
consider is dependence among the individual link delaysXi

re on
a given pathr. Violation of this property might occur in packet
streams traversing a set of links congested by the same background
traffic. As far as we are aware, there are no live network or testbed
studies that have investigated this property. Dependence was found
in a network simulation study, but was pronounced only in a small
network configuration with few traffic streams [25]. For thisrea-
son we believe that link delay correlation need not be significant in
a large network with a diverse traffic.

For r ∈ R let {brr ′ : r ′ ∈ S} be the coefficients of the spanning set

{ar ′ : r ′ ∈ S} in the expression ofar , i.e.,

ar = ∑
r ′∈S

brr ′ar ′ (1)

Let S+
r = {r ′ ∈ S: brr ′ > 0} andS−r = {r ′ ∈ S: brr ′ < 0}.

LEMMA 1. Assume{ar ′ : r ′ ∈S( R} is a minimal spanning set.
For each r∈ R there exist positive integers dr and {drr ′ : r ′ ∈ S}
such that

dr ar + ∑
r ′∈S−r

drr ′ar ′ = ∑
r ′∈S+

r

drr ′ar ′ (2)

For eachr ∈ R,e∈ E let X(i)
re , i = 1,2, . . . denote the sum ofi

independent copies of a single delay on linke, e.g., X1
re; likewise

let Y(i)
r denote the sum ofi independent copies ofYi

r . The symbol
=d will denote equality in distribution.

THEOREM 1.

Y(dr )
r + ∑

r ′∈S−r

Y(drr ′ )
r ′ =d ∑

r ′∈S+
r

Y(drr ′ )
r ′ (3)

One can already see in Theorem 1 a basic feature of our results
that follows merely from the partition ofSinto S−r andS+

r . Suppose
we are primarily interested in determining whetherYr often takes
some large value. Suppose measurements tell us that some of the
{Yr ′ : r ′ ∈ S+

r } tend to take large values, but that none of the{Yr ′ :
r ′ ∈ S−r } do. Then we know from the equality (3) thatYr must
also tend to take large values. If none of the{Yr ′ : r ′ ∈ S} tend to
take large values, then neither doesYr . But when someYr ′ for r ′ in
bothS+

r andS−r tend to take large values, then it is difficult to draw
conclusions aboutYr . These observations prefigure our later results
on distributional bounds forYr .

Distributions and Inversion.
Let Yr denote the common distribution of theYi

r , and Ỹr its
Laplace transform,i.e., Ỹr(s) =

∫ ∞
0 Yr(dy)e−sy. Let ∗ denote con-

volution. In terms of distributions, (3) becomes

Y
∗dr

r ∗
r ′∈S−r

Y
∗drr ′

r ′ = ∗
r ′∈S+

r

Y
∗drr ′

r ′ (4)

To what extent can we solve these convolution equations? In Laplace
transform space we obtain from (4):

Ỹ
dr

r ∏
r ′∈S−r

Ỹ
drr ′

r ′ = ∏
r ′∈S+

r

Ỹ
drr ′

r ′ (5)

Given empirical estimates of{Yr ′ : r ′ ∈ S} one can in principle use
numerical Laplace transform inversion to recover allYr . This is an
approach we intend to pursue in a subsequent work. In this paper,
we use (4) directly in order to obtain bounds on the distributions
Yr .

Convolution Bounds.
Let Vi , i = 1,2, . . . ,n be independent random variables and set

V = ∑n
i=1Vi be their sum. LetQp(Vi) denote thep-quantile ofVi ,

i.e.,

Pr[V ≤ x] ≥ p⇔ Qp(V) ≤ x (6)

The following result formalizes the perhaps obvious statement that
if you know thatV1 ≤ x a fraction p of the time, andV2 ≤ y a
fraction q of the time, then you can conclude thatV1 +V2 is less
thanx+y no less than a fractionpqof the time.



THEOREM 2. LetVi , i = 1,2, . . . ,n be independent random vari-
ables with sum V= ∑n

i=1Vi , and let pi ∈ (0,1] with p= ∏n
i=1 pi .

Qp(V) ≤
n

∑
i=1

Qpi (Vi) (7)

Network Quantile Bounds.

THEOREM 3. Denote Y±r = ∑r ′∈S+
r

Y(drr ′ )
r ′

(i) Qp(Yr) ≥ (dr)
−1Qpdr (Y

(dr )
r ).

(ii) Qp(Y
(dr )
r ) ≥ Qpq(Y+

r )−Qq(Y−
r )

(iii) Q p(Yr) ≥ (dr)
−1 supq∈(0,1](Qpdr q(Y

+
r )−Qq(Y−

r ))

Theorem 3 provides a lower bound on the quantiles, or, equiv-
alently, an upper bound on the cumulative distribution. Thus, it
underestimates the frequency with which a given level is exceeded.
This may or may not be desirable if the measured quantiles areto be
used for detecting SLA violations (i.e., raising alarms). On the one
hand false positives will be reduced, while at the same time some
high quantiles may be underestimated. Following a network exam-
ple below, we describe how knowledge of the topology of measured
paths may be used to adjust alarm thresholds in order to mitigate
the effects of quantile underestimation.

Computation of Quantiles.
We use the measured end-to-end latencies on the pathsr ∈ S,

the Ωr = {Yi
r : i = 1,2, . . . ,nr}, to estimate the required quantiles

on the RHS of Theorem 3(iii). To compute the distribution ofY±
r

we might construct the sets of values{∑r ′∈S±r ∑drr ′

i=1 yrr ′ : yrr ′ ∈ Ωr}.

However, this gives rise ton±r = ∏r ′∈S±r ndrr ′

r ′ member of each set,
which may require prohibitively large amounts of memory. Instead,
memory can be controlled by discretizing the distributionsbefore
convolution.

Discrete Mass Distributions and Their Convolution.
A positive discrete mass distribution is specified by a tuple(ε,n,m=

{mi : i = 0, . . . ,n}) whereε is the bin width, with a massmi in bin
[iε,(i + 1)ε) for i = 0,1, . . . ,n− 1, and massmn in [nε,∞). Two
such distributions(ε,n,m) and(ε ′,n′,m′) the have convolution

(ε,n,m)∗ (ε ′,n′,m′) = (ε + ε ′,1+(n−1)(n′ −1),m′′) (8)

wherem′′
j = ∑ j

i=0 mim′
j−i . Givenε,n, an set of measurements{Yi

r :
i = 1,2, . . . ,nr} gives rise to a empirical discrete mass distribution
(ε,n,m) with mi = #{Yi

r : Yi
r ∈ [iε,(i +1)ε)} for i = 0,1, . . . ,n−1

andmn = #{Yi
r :Yi

r ≥nε}. The distribution of each{∑r ′∈S±r ∑drr ′

i=1 yrr ′ :
yrr ′ ∈ Ωr} is then estimated by taking the grand convolution over
r ′ ∈ S±r of the drr ′ -fold convolutions of the empirical mass distri-
bution generated from each #{Yi

r ′ : Yi
r ′ ∈ [iε,(i + 1)ε)}. A target

resolutionε in the final distribution is achieved by choosing resolu-
tionsε ′ for the constituent distribution that sum toε, for example,
ε ′ = ε/∑r ′∈S±r drr ′ . Finally, we normalize to a probability distribu-
tion by dividing each mass element byn±r . We call the resulting
variableŝY±

r , and use them in place of theY±
r in Theorem 3.

Network Example.
In the above formalism, we haveS+

1 = {2,3}, S−1 = {4} with
d12 = d13 = d14 = 1 andY+

1 = Y2 +Y3 andY−
1 = Y4. Suppose now

that Xi are exponentially distributed with distinct meansµi . Then
Y+

1 has a mixed exponential distribution with PDF

y+
1 (x) =

4

∑
i=1

e−x/µi µ2
i

∏ j∈{1,2,3,4}, j 6=i(µi −µ j)
(9)

while Y−
1 has a mixed exponential distribution with PDF

y−1 (x) =
e−x/µ2 −e−x/µ4

µ2−µ4
(10)

For the optimization of Theorem 3, elementary calculus shows that
whenY±

r have densitiesy±r , the stationary points ofq 7→Qpdr q(Y
+
r )−

Qq(Y−
r )) obey

y+
r (Qpdr q(Y

+
r )) = pdr y−r (Qpdr q(Y

−
r )) (11)

We use the above expression to compute the bounds and con-
sider four cases. For cases (a)–(c) we plot the actual CDF on the
unmeasured path, together with the CDF bound in Figure 2.

(a) Homogeneous Delay. m1 = 1.0, m2 = 1.1, m3 = 1.2, m4 =
1.3. The delay on pathr1 is somewhat underestimated, but
then large delays only very rarely occur.

(b) High Delay on Unmeasured Path, Low Delay Elsewhere. m1 =
10, m2 = 1.1, m3 = 1.2, m4 = 1.3. The low delays on links
not included in the unmeasured path allow fairly close esti-
mation of the delay distribution onr1.

(c) High Delay on Unmeasured Path, Some High Delay Else-
where. m1 = 10, m2 = 11, m3 = 1.2, m4 = 1.3. Although
elevation of delay onr1 is detected, the amount is somewhat
underestimated due to the presence of high delay on one of
the measured paths; this parallels the remarks following The-
orem 1.

(d) Low Delay on Unmeasured Path, Some High Delay Else-
where. m1 = 1.0, m2 = 11, m3 = 1.2, m4 = 1.3. The results
are similar to the homogeneous case; the presence of high
delay elsewhere in the network does not further perturb the
delay bound.

If this delay bound estimates are to be used for raising alarms
based on crossing threshold levels, it may be desirable to adjust
alarm thresholds based on the spatial distribution of measured path
delays. Specifically, case (c) above illustrates that when higher de-
lays are encountered on a path inS−r , a lower alarm threshold may
be used in order to compensate for the partial “obscuring” ofthe
delay on the unmeasured path. In situations exemplified by cases
(a) and (b), no adjustment to the threshold is needed, since there are
no measured paths with high delay (so in particular, none inS−r ).

5. EXPERIMENTAL TESTBED
We implemented a tool to perform multi-objective probing, called

SLAM (SLA Monitor). SLAM sends UDP packets in a one-way
manner between a sender and receiver. It consists of about 2,000
lines of C++, including code to implement the loss, delay, and de-
lay variation probe modules. The implementation is extensible and
can accommodate other discrete-time probe algorithms. In this sec-
tion, we describe the controlled laboratory environment inwhich
we evaluated SLAM. We considered two topologies, shown in Fig-
ure 3. Each setup consisted of commodity workstation end hosts
and commercial IP routers.

The first topology (Figure 3a) was set up in a dumbbell-like con-
figuration. We used 10 workstations on each side of the bottleneck
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2: Example bounds on the inferred delay distribution. (a) Left: homogeneous delay; (b) Center: high delay on unmeasuredpath; (c) Right:
high delay on unmeasured path and some others.

OC3 for producing background traffic and one workstation at each
side to run SLAM. Background traffic and probe traffic flowed over
separate paths through a Cisco 6500 enterprise router (hop A) and
was multiplexed onto a bottleneck OC3 (155 Mb/s) link at a Cisco
GSR 12000 (hop B). Packets exited the OC3 via another Cisco GSR
12000 (hop C) and passed to receiving hosts via a Cisco 6500 (hop
D). NetPath [5] was used between hops C and D to emulate prop-
agation delays for the background traffic hosts in the testbed. We
used a uniform distribution of delays with a mean of 50 msec, mini-
mum of 20 msec, and maximum of 80 msec. The bottleneck output
queue at the Cisco GSR at hop B was configured to perform tail
drop with a maximum of about 50 msec of buffer space.

The second topology (Figure 3b) was set up in a star-like con-
figuration. We used 12 hosts on each side of the setup (6 at top,
6 at bottom) to generate traffic over linkse1 (OC12–622 Mb/s),e2
(OC48–2.488 Gb/s),e3 (OC3) , ande4 (OC3) making up the star.
An additional host configured at each corner ran SLAM. Aggre-
gation routers (Cisco 6500’s at hops A and E) were configured to
direct traffic over four primary configured paths,r1–r4, as shown
in the figure. In addition, traffic flowed over path(e1,e2) to create
sufficient load one1 to include queueing delay and loss. SLAM

probes flowed over the four primary traffic paths to monitor delay,
loss, and delay variation. SLAM was also configured to monitor
paths(e1,e6), (e2,e6), (e5,e3), and(e5,e4). Only probe traffic tra-
versed linkse5 ande6, thus it was assumed that these additional
probe measurements were sufficient to separately measure charac-
teristics on linkse1, e2, e3, ande4. As with the dumbbell topol-
ogy, NetPath [5] was used to emulate propagation delays for the
background traffic hosts in the testbed. We used a uniform distri-
bution of delays with a mean of 50 msec, minimum of 20 msec,
and maximum of 80 msec. Each queue was configured to perform
tail drop. Using the notation(r,e) = B to denote the output queue
at routerr on to linke in msec, buffer size configurations were fol-
lows: (v1,e1)≈ 25 msec,(v2,e2)≈ 12.5 msec,(vc,e3) ≈ 50 msec,
and(vc,e4) ≈ 100 msec.

Each workstation used in our experiments had a Pentium 4 pro-
cessor running at 2GHz or better, with at least 1 GB RAM and an
Intel Pro/1000 network interface card and was configured to run
either FreeBSD 5.4 or Linux 2.6. The SLAM hosts were config-
ured with a default installation of FreeBSD 5.4. The SLAM work-
stations used a Stratum 0 NTP server configured with a TrueTime
GPS card for synchronization. We used the software developed by
Corell et al. [20] to provide accurate timestamps for SLAM. All
management traffic for the two topological configurations flowed
over separate network paths (not pictured in either figure).

A critical aspect of our laboratory environment is the ability to
measure a reliable basis for comparison for our experiments. For
the dumbbell topology, optical splitters were attached to the links
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3: Laboratory testbeds.

between hops A and B and to the link between hops B and C and
synchronized Endace DAG 4.3 (Gigabit Ethernet) and 3.8 (OC3)
passive monitoring cards were used to capture packet tracesenter-
ing and leaving the bottleneck node. For the star topology, optical
splitters were attached to the Gigabit ethernet links entering the
core star topology (just after hop A), and exiting the star (just be-
fore hop E). We used synchronized DAG 4.3 passive monitoring
cards to capture packet traces entering and leaving the starsetup.
By comparing packet header information, we were able to identify
which packets were lost along each path. Furthermore, thesecards
provide synchronization of better than one microsecond allowing
precise delay measurement through the bottleneck router.

We used four background traffic scenarios for experiments using
the dumbbell setup. For the first scenario, we used Iperf [38]to
produce constant-bit rate (CBR) UDP traffic for creating a series
of approximately constant duration (about 65 msec) loss episodes,
spaced randomly at exponential intervals with a mean of 10 sec-
onds over a 10 minute period. We found that short loss episodes
were difficult to consistently produce with Iperf, thus the duration
we used was a compromise between a desire for short episodes and
the ability to predictably produce them. The second scenario con-
sisted of 100 long-lived TCP sources run over a 10 minute period.
For the final two scenarios, we used Harpoon [34] with a heavy-
tailed file size distribution to create self-similar trafficapproximat-
ing a mix of web-like and peer-to-peer traffic commonly seen in



today’s networks. We used two different offered loads of 60%and
75% of the bottleneck OC3. Since good performance cannot be
guaranteed when resources are oversubscribed, SLAs often contain
clauses to allow discarding performance measurements if utiliza-
tion exceeds a given threshold [33]. Thus, we chose these offered
loads to reflect relatively high, yet acceptable average loads in light
of this practice. Experiments using the self-similar traffic scenario
were run for 15 minutes. For all scenarios, we discarded the first
and last 30 seconds of the traces.

For the star setup, we used three background traffic scenarios in
our experiments. For the first scenario, we used Iperf [38] topro-
duce CBR UDP traffic over the four primary traffic paths to create
a series of approximately constant duration loss episodes at (vc,e3)
and(vc,e4). We used an additional Iperf flow over path(e1,e2) to
produce a series of loss episodes at(v1,e1). All loss episodes were
spaced at exponential intervals with a mean of 10 seconds, and the
test duration was 10 minutes. The second scenario consistedof
long-lived TCP sources configured to use all four primary traffic
paths plus path(e1,e2). There were at least 100 traffic sources con-
figured to use each path, and the test duration was 10 minutes.In
the third scenario, we used Harpoon [34] with a heavy-tailedfile
size distribution to create self-similar traffic as in scenarios three
and four for the dumbbell topology. Traffic sources were config-
ured to produce approximate average loads of 65% on linke1, 15%
on link e2, 75% on linke3, and 60% on linke4, and the test duration
was 15 minutes. For all scenarios, we discarded the first and last 30
seconds of the traces. Finally, we note that while maximum queue-
ing delays at(v2,e2) were non-zero for all three traffic scenarios,
no loss occurred at(v2,e2).

6. EVALUATION
We now describe the experimental evaluation of SLAM using

the testbed described above. We examine the accuracy of SLAM ’s
delay and loss estimates, comparing its results with estimates ob-
tained using standard IPPM methodologies [7, 8], which are based
on Poisson-modulated probes. We also compare the DV matrix
metric with other standard methodologies [21,32].

6.1 SLAM Measurement Overhead
Two important implementation decisions were made in the SLAM

probe sender. First, the scheduler must accommodate estimation
techniques that use multi-packet probes, such as the loss rate esti-
mation method we use. Second, the scheduler must arbitrate among
probe modules that may use different packet sizes. At present, the
smallest packet size scheduled to be sent at a given time slotis used.

An effect of the implementation decision for probe packet sizes
is that the overall bandwidth requirement for the multi-objective
stream is less than the aggregate bandwidth requirement forindi-
vidual probe modules if used separately. One concern with this
implementation decision is the issue of packet size dependence in
the measurement technique. For delay and delay variation, packet
sizes should be small to keep bandwidth requirements low. For de-
lay variation, the packet size should closely match that used by a
codec referred to in the G.107 and related standards so that the E-
model formulas can be directly used [1]. We use 48 bytes at an
interval of 30 msec in our evaluation below, which approximates
the G.723.1 codec. For delay, another concern is the relative differ-
ence between end-to-end transmission and propagation delays. In
situations where propagation delay is large relative to transmission
delay, the packet size can be small since the transmission delays
along a path contribute little to the overall delay. In caseswhere
the opposite situation holds, packet sizes should be large enough
to estimate delays experienced by packets of average size. In our

evaluation described below, we use 100 byte packets for delay es-
timation. For loss estimation packet sizes, the key consideration
is that multi-packet probes should admit accurate instantaneous in-
dications of congestion. In previous work [35], a packet size of
600 bytes was used and was found to be a reasonable balance be-
tween limiting measurement impact while still obtaining accurate
congestion indications. We verified this previous finding and leave
a detailed analysis for future work.

In the experiments below, we fix SLAM probe parameters as
shown in Table 2. In prior work,ploss= 0.3 was found to give good
loss characteristic estimates [35]. We verified the resultsregarding
the setting of the parameterploss but omit detailed results in this
paper. We experimented with a range of values forpdelay from 0.01
to 0.5 (mean probe intervals from 5 msec to about 500 msec) and
found that estimation accuracy for SLAM is virtually unchanged
over the range of parameter settings except those below about 0.02
(above about 200 msec mean probe spacing). We do not include
detailed results in this paper due to space limitations. Fordelay
variation, we used a packet size of 48 bytes sent at periodic intervals
of 30 msec. We used a stream lengthk of 100 probes in computing
the DV matrix metric.

2: SLAM parameters used in evaluation experiments. For all ex-
periments, we set the discrete time interval for the scheduler to be
5 msec.

Loss Delay Delay Variation

Packet size ploss Packet size pdelay Packet size Interval
600 bytes 0.3 100 bytes 0.048 48 bytes 30 msec

With the parameters of Table 2, the bandwidth savings due to
multi-objective probing is about 100 Kb/s. Separately, theloss
probe stream is about 490 Kb/s, the delay probe stream is about
20 Kb/s, and the delay variation is about 60 Kb/s: a sum of about
570 Kb/s. With SLAM, the probe stream is actually about 470
Kb/s. Note that for the dumbbell topology, the SLAM parameters
used in our experiments result in only about 0.3% of the bottleneck
OC3 consumed for measurement traffic. For the star topology,three
SLAM streams traverse linkse3 ande4 (namely, for linke3, paths
r1, r3 and(e5,e3) are monitored, resulting in three streams travers-
ing e3). The measurement traffic consumption on these OC3 links
is still less than 1% of the capacity.

6.2 Delay
Table 3 compares the true delay measured using the DAG-collected

passive traces with the mean delay estimate produced by SLAM

and the estimates produced using standard RFC 2679 [7] (Poisson-
modulated probes), sent at the same rate. Values are shown for
each traffic scenario and are averages over full experiment dura-
tion. Note that the differences in true values are due to inherent
variability in traffic sources, but the results are representative of
tests run with different random seeds. First, we see in Table3a
that the SLAM results are close to the true values. We also see
that while results for the standard stream are close for the CBR and
long-lived TCP traffic scenarios, they are less accurate forthe more
realistic self-similar traffic scenarios, with with relative errors rang-
ing from about 25% to 120%. Second, we see that in Table 3b that
the SLAM results are close to the true values, though somewhat
less accurate than for the simple dumbbell topology. The accuracy
of the mean delay estimate for the RFC 2679 stream varies overthe
range of traffic scenarios and paths, but is generally betterthan in
the dumbbell topology. A possible explanation for this behavior is
that the increased level of aggregation of traffic sources inthe star
topology leads to an improvement in mean delay estimates.

Figure 4 shows true mean delay and the SLAM-estimated mean



3: Comparison of mean delay estimation accuracy for SLAM and
RFC 2679 (Poisson) streams using the (a) dumbbell and (b) star
testbed topologies. Values are in seconds and are averages over the
full experiment duration.

(a) Delay accuracy using the dumbbell topology.

Probe stream→ SLAM RFC 2679 (Poisson)
Traffic scenario ↓ true estimate true estimate

CBR 0.0018 0.0018 0.0018 0.0022
Long-lived TCP 0.0387 0.0386 0.0386 0.0391

Harpoon self-similar (60% load) 0.0058 0.0059 0.0071 0.0092
Harpoon self-similar (75% load) 0.0135 0.0135 0.0060 0.0132

(b) Delay accuracy using the star topology.

Probe stream→ SLAM RFC 2679 (Poisson)
Traffic scenario (route) ↓ true estimate true estimate

CBR (r1) 0.0066 0.0064 0.0066 0.0047
CBR (r2) 0.0087 0.0075 0.0087 0.0056
CBR (r3) 0.0053 0.0048 0.0053 0.0036
CBR (r4) 0.0073 0.0063 0.0073 0.0043

Long-lived TCP (r1) 0.0598 0.0601 0.0598 0.0612
Long-lived TCP (r2) 0.1168 0.1172 0.1162 0.1189
Long-lived TCP (r3) 0.0362 0.0364 0.0362 0.0364
Long-lived TCP (r4) 0.0936 0.0936 0.0936 0.0935

Harpoon self-similar (r1) 0.0508 0.0503 0.0542 0.0505
Harpoon self-similar (r2) 0.0108 0.0112 0.0123 0.0112
Harpoon self-similar (r3) 0.0414 0.0417 0.0446 0.0428
Harpoon self-similar (r4) 0.0019 0.0027 0.0028 0.0024

delay over the duration of experiments using CBR traffic (top) in
the dumbbell topology, and for self-similar traffic on router1 in
the star topology. Results for other experiments are consistent with
plots shown in Figure 4. True delay estimates are shown for 10
second intervals and estimates for SLAM are shown for 30 sec-
ond intervals. We see that in each case after an initial convergence
period, the SLAM estimate tracks the true delay quite well.
Distribution-Free Quantile Estimation. Figure 5 compares the
true delay distribution with the SLAM-estimated delay distribution
with 90% confidence bounds. Representative plots are shown for
the long-lived TCP traffic scenario in the dumbbell topology(Fig-
ure 5a) and for the CBR UDP traffic scenario in the star topology
(Figure 5b). We see that for these vastly different traffic and topo-
logical setups that the delay distribution is estimated quite well and
that with few exceptions, the confidence bounds include the true
delay distribution for the range of estimated quantiles shown.
Delay Distribution Inference. We now examine the problem of
inferring the delay distribution along a path given measured delay
distributions along a subset of paths. Specifically, given measure-
ments along pathsr2, r3, andr4, we wish to infer the delay distri-
bution for pathr1.

Figure 6 shows representative results for two traffic scenarios
considered using the star topology. For these results, we used a bin
width ε of 100 µsec for the input discrete mass distributions. The
computed bound and the actual CDF measured using SLAM are
shown for the CBR UDP traffic (top) and self-similar TCP traffic
(bottom). We see that for each traffic scenario the computed bound
is relatively tight, with the closest qualitative match forthe more re-
alistic self-similar traffic scenario. The skewed distribution arising
from the CBR UDP traffic scenario results in an underestimation of
the high delay values along pathr1. For the self-similar TCP traffic
scenarios, the delay distributions are somewhat smoother (though
not homogeneous along paths in the star topology), and the result-
ing bounds are tighter.

6.3 Delay Variation
Evaluation of measured delay variation is complicated by the fact
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4: Comparison of true mean delay with SLAM estimates over
time. True mean delays are plotted using 10 second intervals.
SLAM estimates are plotted using 30 second intervals. Plots
shown for CBR traffic in the dumbbell topology (top), and self-
similar traffic on router1 in the star topology (bottom).
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5: Delay distribution quantile estimates, with 90% confidence
interval.

that there is no clear basis by which to compare estimates. Asdis-
cussed in§ 3, there are multiple definitions of delay variation, for
example in the RTP standard RFC 3550 and in the IPPM standard
RFC 3393. Therefore, we focus on a comparative analysis among
these two IETF standards and our DV matrix formulation.

We first look at theone-way-ipdv metric of RFC 3393. Each
one-way-ipdv sample is produced by choosing consecutive pack-
ets of a probe stream identical to the SLAM stream (48 byte packets
sent at 30 msec intervals). Histograms ofone-way-ipdv samples
for the long-lived TCP traffic scenario (left) and for the self-similar
traffic scenario at 60% offered load (right) in the dumbbell topol-
ogy are shown in Figure 7. The plots show that while there is a
narrower range of values for the long-lived TCP source scenario
the shapes of each distribution are qualitatively similar.The nar-
row range for the long-lived TCP scenario arises because thequeue
is often close to full. Also, the left tail of the long-lived TCP plot
and both left and right tails of the self-similar plot show that there
are some largeone-way-ipdv values. Beyond simple qualitative
observations of these plots, however, it is not clear how queuingdy-
namicsalong the path are captured by this metric since it only cap-
tures local differences in delays. It is also not clear how one might
infer application performance,e.g., for a VoIP stream, since large
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6: Computed bounds for the delay distribution on pathr1, given
measured delay distributions for pathsr2, r3, andr4. Results are
shown for the UDP CBR scenario (top), and self-similar TCP traf-
fic (bottom).
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similar traffic scenario at 60% offered load (right) using the dumb-
bell topology. EachOne-way-ipdv sample is produced by choos-
ing consecutive packets of a periodic stream.

values ofone-way-ipdv do not necessarily translate into packet
losses because of underbuffering at an application playoutbuffer.

Figure 8a plots 60 second periods of the RTP jitter metric along
with a time series of queuing delays (top) and the DV matrix metric
along with a time series of queuing delays (bottom). The back-
ground traffic used for these plots is the self-similar traffic at a
60% offered load using the dumbbell topology. We calculate the
two metrics using a probe stream identical to the SLAM stream. In
these plots we observe first that although the RTP jitter and DV ma-
trix metrics are calculated in very different ways, they have similar
qualitative characteristics over time with the DV matrix exhibiting
a somewhat smoother profile.

In order to expose additional aspects of the RTP and DV matrix
metrics, we introduced a CBR traffic source that was sent in addi-
tion to the self-similar traffic at a 60% load, also using the dumb-
bell topology. Over periods of approximately 30 seconds, the CBR
source alternated between on/off periods, each of about 500msec.
The addition of the CBR source results in a period of oscillation of
the queue between full and empty as shown in Figure 8b. As with
Figure 8a, the top plot shows the RTP jitter metric along witha time
series of queuing delays and the bottom plot shows the DV matrix
metric along with the same time series of queuing delays. We ob-
serve in these two plots that at the onset of the CBR on/off bursts,
the RTP jitter metric oscillates in a similar way as the queue. The

DV matrix metric, however, remains smooth and at an increased
level, suggesting that relative to the other DV matrix measurements
over this 60 second time interval, queuing turbulence alongthe path
is greatest during the period of CBR bursts. In contrast, over the
CBR burst period the RTP jitter values are often smaller thanmany
other jitter values during the trace segment. Also, relative to the
range of jitter values observed over the 60 second segment, the jit-
ter values during the CBR burst period do not stand out—they stand
out only in their oscillatory behavior. This effect is explained by the
fact that although an EWMA filter with a small value forα is used
(1/16) in the RTP jitter formulation, the view is still of individual
delay variations rather than the behavior over a longer interval of
time. Although the CBR traffic source we used to reveal this be-
havior is somewhat pathological, our observations in this context
are consistent with the behavior of the RTP and DV matrix values
during periods of queuing turbulence in other traffic scenarios and
topologies/paths (not shown due to space limitations).

Finally, we examine the performance of the DV matrix metric
in the star topology. A desirable property of a method for measur-
ing delay variation is that, in a multihop setting, it shouldreport a
maximum over all the links comprising the path. In Figure 9, we
plot the DV matrix metric for linkse1 ande4 which make up path
r2 for the CBR UDP traffic scenario. Plots for other traffic scenar-
ios and routes are qualitatively similar to Figure 9. Observe that
the DV matrix value reported over the path over time is generally
the maximum reported for the individual links. These results are
encouraging. First, the DV matrix methodology appears to yield
reliable measures of delay variation over a single hop. Second, the
performance of the DV matrix metric in the two-hop star topology
appears to be robust. In the future we plan to examine its sensitivity
to different matrix sizes and in more complex multihop settings.

6.4 Loss
Table 4 compares the true loss rate measured using the passive

traces (true values) with the loss rate estimates of SLAM and the
standard RFC 2680 [8] (Poisson-modulated) probe stream sent at
the same rate. Values are shown for each of the traffic scenarios,
and for the two topologies and are average loss rates over thedu-
ration of each experiment. Note that differences in true values are
due to inherent variability in traffic sources. Consideringboth re-
sults for the dumbbell topology (Table 4a) and for the star topology
(Table 4b), we see that the standard stream yields very poor es-
timates of the true loss rate, and that the estimates produced by
SLAM are close to the true values. Moreover, in all but a few
cases, the RFC 2680 probe estimates are off by more than an order
of magnitude—a significant relative error. For a number of ex-
periments, the Poisson estimates are close to zero—a phenomenon
consistent with earlier experiments [35] and primarily dueto the
fact that single packet probes generally yield poor indications of
congestion along a path. (Note that these accuracy improvements
are consistent with experiments described in [35].) The estimates
produced by SLAM are significantly better, with a maximum rela-
tive error occurring in the case of the open-loop CBR background
traffic for both the dumbbell and star topologies.

Figure 10 shows the true loss rate and SLAM-estimated loss rate
over the duration of experiments using long-lived TCP traffic in the
dumbbell topology (top) and self-similar traffic on router2 in the
star topology (bottom). True loss rate estimates are shown for 10
second intervals and estimates for SLAM are shown for 30 second
intervals. Results for other experiments are consistent with plots in
Figure 10. The upper and lower bars for SLAM indicate estimates
of one standard deviation above and below the mean using the vari-
ance estimates derived from [37]. For the SLAM estimates we see
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(a) Time series plots of 60 second periods of the RTP jitter met-
ric along with a time series of queuing delays (top) and the DV
matrix metric along with a time series of queuing delays (bot-
tom). Background traffic is the self-similar traffic at a 60% of-
fered load.
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(b) Time series plots of 60 second periods of the RTP jitter met-
ric along with a time series of queuing delays (top) and the DV
matrix metric along with a time series of queuing delays (bot-
tom). Background traffic is created using periodic intervals of
CBR UDP traffic that are sent in on/off bursts each of approxi-
mately 500 msec in addition to continuous self-similar traffic at
a 60% offered load.

8: A comparison of the behavior of the RTP (RFC 3550) jitter metric and the DV matrix metric using the dumbbell topology.

4: Comparison of loss rate estimation accuracy for SLAM and
RFC 2680 (Poisson) streams using the (a) dumbbell and (b) star
testbed topologies. Values are average loss rates over the full ex-
periment duration.

(a) Loss accuracy using the dumbbell topology.

Probe stream→ SLAM RFC 2680 (Poisson)
Traffic scenario ↓ true estimate true estimate

CBR 0.0051 0.0073 0.0051 0.0017
Long-lived TCP 0.0163 0.0189 0.0163 0.0062

Harpoon self-similar (60% load) 0.0008 0.0007 0.0017 0.0000
Harpoon self-similar (75% load) 0.0049 0.0050 0.0055 0.0000

(b) Loss accuracy using the star topology.

Probe stream→ SLAM RFC 2680 (Poisson)
Traffic scenario (route) ↓ true estimate true estimate

CBR (r1) 0.0391 0.0370 0.0391 0.0087
CBR (r2) 0.0339 0.0334 0.0339 0.0064
CBR (r3) 0.0458 0.0359 0.0458 0.0068
CBR (r4) 0.0390 0.0371 0.0390 0.0089

Long-lived TCP (r1) 0.0081 0.0078 0.0092 0.0008
Long-lived TCP (r2) 0.0463 0.0446 0.0433 0.0104
Long-lived TCP (r3) 0.0021 0.0024 0.0028 0.0006
Long-lived TCP (r4) 0.0479 0.0478 0.0442 0.0072

Harpoon self-similar (r1) 0.0170 0.0205 0.0289 0.0058
Harpoon self-similar (r2) 0.0008 0.0006 0.0069 0.0000
Harpoon self-similar (r3) 0.0192 0.0178 0.0219 0.0036
Harpoon self-similar (r4) 0.0005 0.0006 0.0002 0.0000

the narrowing of variance bounds as an experiment progresses, and
that the true loss rate is usually within these bounds. We also see
that SLAM tracks the loss rate over time quite well, with its esti-
mated mean closely following the true loss mean.

7. DISCUSSION AND CONCLUSIONS
We believe that SLAM represents a significant step forward for

SLA compliance monitoring using active measurements. However,
there are a number of issues that remain. First, there are additional
issues to consider in the network-wide setting. For example, a de-
ployment strategy must be developed to coordinate probe streams
so that links internal to the network are not carrying “too much”
measurement traffic. Another key question is: given a daily (or
based on some other time scale) budget of probes that may be used
to monitor compliance with a SLA, what are the considerations for
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9: Performance of the DV matrix in a two-hop setting (r2) using
the star topology. Time series plot shown for CBR UDP traffic
scenario. Curves show DV matrix metric for router2 and sepa-
rately for linkse1 ande4 that compriser2.

optimizing the probe process? Should the probing period be over a
relatively long time scale (e.g., the entire interval of interest), thus
potentially limiting the accuracy of estimates, or should the probing
period be over a shorter time scale, potentially improving estima-
tion accuracy but at the cost of not probing over the entire interval,
thus potentially missing important events? We have assumedin this
paper that perfect accuracy is the goal for compliance monitoring.
However, for some SLAs, a tradeoff (if it is predictable) between
accuracy and measurement overhead may be appropriate. Next,
our examples of distributional inference have focussed on delay.
We plan to more closely examine loss in the future. Finally, while
measuring availability in a simple path-oriented scenariois rather
straightforward, simple application of performance tomography to
infer network-wide availability may not be sufficient in theface of
routing changes.

In summary, this paper introduces a new methodology for SLA
compliance monitoring using active measurements, including new
methods for measuring end-to-end packet loss, mean delay, and de-
lay variation. We propose a new method for obtaining confidence
intervals on the empirical delay distribution. We also describe a
new methodology for inferring lower bounds on the quantilesof
a distribution of a performance metric along a path in a network-
wide setting from a subset of known paths. We implemented these
measurement methods in a tool called SLAM that unifies the var-
ious probe streams resulting in lower overall probe volume.We
evaluated the capabilities of the tool in a controlled laboratory en-
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10: Comparison of true loss rate with SLAM estimates over time.
True loss rates are plotted using 10 second intervals. SLAM esti-
mates are plotted using 30 second intervals. Plots shown forlong-
lived TCP traffic in the dumbbell topology (top) and self-similar
traffic on router2 in the star topology (bottom). The upper and
lower bars for SLAM indicate estimates of one standard deviation
above and below the mean using the variance formulation of [37].

vironment using a range of traffic conditions and in one- and two-
hop settings. Our results show that SLAM ’s delay and loss rate
estimates are much more accurate than estimates obtained through
standard probe methodologies. Furthermore, we illustrated the con-
vergence and robustness properties of the loss, delay, and delay
variation estimates of SLAM which make it useful in an opera-
tional setting.
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