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Abstract— Measurement and estimation of packet loss char-
acteristics are challenging due to the relatively rare occurrence
and typically short duration of packet loss episodes. While active
probe tools are commonly used to measure packet loss on end-to-
end paths, there has been little analysis of the accuracy of these
tools or their impact on the network. The objective of our study
is to understand how to measure packet loss episodes accurately
with end-to-end probes. We begin by testing the capability of
standard Poisson-modulated end-to-end measurements of loss
in a controlled laboratory environment using IP routers and
commodity end hosts. Our tests show that loss characteristics
reported from such Poisson-modulated probe tools can be quite
inaccurate over a range of traffic conditions. Motivated by these
observations, we introduce a new algorithm for packet loss
measurement that is designed to overcome the deficiencies in
standard Poisson-based tools. Specifically, our method entails
probe experiments that follow a geometric distribution to (1)
enable an explicit trade-off between accuracy and impact on
the network, and (2) enable more accurate measurements than
standard Poisson probing at the same rate. We evaluate the
capabilities of our methodology experimentally by developing
and implementing a prototype tool, called BADABING. The
experiments demonstrate the trade-offs between impact on the
network and measurement accuracy. We show that BADABING

reports loss characteristics far more accurately than traditional
loss measurement tools.

Index Terms— Active Measurement, BADABING, Network
Congestion, Network Probes, Packet Loss.

I. INTRODUCTION

Measuring and analyzing network traffic dynamics between

end hosts has provided the foundation for the development of

many different network protocols and systems. Of particular

importance is understanding packet loss behavior since loss

can have a significant impact on the performance of both

TCP- and UDP-based applications. Despite efforts of network

engineers and operators to limit loss, it will probably never be

eliminated due to the intrinsic dynamics and scaling properties

of traffic in packet switched network [1]. Network opera-

tors have the ability to passively monitor nodes within their

network for packet loss on routers using SNMP. End-to-end

active measurements using probes provide an equally valuable

perspective since they indicate the conditions that application

traffic is experiencing on those paths.

The most commonly used tools for probing end-to-end paths

to measure packet loss resemble the ubiquitous PING utility.

PING-like tools send probe packets (e.g., ICMP echo packets)

to a target host at fixed intervals. Loss is inferred by the sender

if the response packets expected from the target host are not

received within a specified time period. Generally speaking,

an active measurement approach is problematic because of

the discrete sampling nature of the probe process. Thus, the

accuracy of the resulting measurements depends both on the

characteristics and interpretation of the sampling process as

well as the characteristics of the underlying loss process.

Despite their widespread use, there is almost no mention

in the literature of how to tune and calibrate [2] active

measurements of packet loss to improve accuracy or how to

best interpret the resulting measurements. One approach is

suggested by the well-known PASTA principle [3] which, in

a networking context, tells us that Poisson-modulated probes

will provide unbiased time average measurements of a router

queue’s state. This idea has been suggested as a foundation for

active measurement of end-to-end delay and loss [4]. However,

the asymptotic nature of PASTA means that when it is applied

in practice, the higher moments of measurements must be

considered to determine the validity of the reported results.

A closely related issue is the fact that loss is typically a

rare event in the Internet [5]. This reality implies either that

measurements must be taken over a long time period, or that

average rates of Poisson-modulated probes may have to be

quite high in order to report accurate estimates in a timely

fashion. However, increasing the mean probe rate may lead to

the situation that the probes themselves skew the results. Thus,

there are trade-offs in packet loss measurements between probe

rate, measurement accuracy, impact on the path and timeliness

of results.

The goal of our study is to understand how to accurately

measure loss characteristics on end-to-end paths with probes.

We are interested in two specific characteristics of packet loss:

loss episode frequency, and loss episode duration [5]. Our

study consists of three parts: (i) empirical evaluation of the

currently prevailing approach, (ii) development of estimation

techniques that are based on novel experimental design, novel

probing techniques, and simple validation tests, and (iii) em-

pirical evaluation of this new methodology.

We begin by testing standard Poisson-modulated probing

in a controlled and carefully instrumented laboratory envi-

ronment consisting of commodity workstations separated by

a series of IP routers. Background traffic is sent between

end hosts at different levels of intensity to generate loss

episodes thereby enabling repeatable tests over a range of

conditions. We consider this setting to be ideal for testing

loss measurement tools since it combines the advantages of

traditional simulation environments with those of tests in the

wide area. Namely, much like simulation, it provides for a

high level of control and an ability to compare results with

“ground truth.” Furthermore, much like tests in the wide area,

it provides an ability to consider loss processes in actual router

buffers and queues, and the behavior of implementations of the

tools on commodity end hosts. Our tests reveal two important
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deficiencies with simple Poisson probing. First, individual

probes often incorrectly report the absence of a loss episode

(i.e., they are successfully transferred when a loss episode is

underway). Second, they are not well suited to measure loss

episode duration over limited measurement periods.

Our observations about the weaknesses in standard Poisson

probing motivate the second part of our study: the development

of a new approach for end-to-end loss measurement that in-

cludes four key elements. First, we design a probe process that

is geometrically distributed and that assesses the likelihood

of loss experienced by other flows that use the same path,

rather than merely reporting its own packet losses. The probe

process assumes FIFO queues along the path with a drop-

tail policy. Second, we design a new experimental framework

with estimation techniques that directly estimate the mean

duration of the loss episodes without estimating the duration

of any individual loss episode. Our estimators are proved to

be consistent, under mild assumptions of the probing process.

Third, we provide simple validation tests (that require no

additional experimentation or data collection) for some of the

statistical assumptions that underly our analysis. Finally, we

discuss the variance characteristics of our estimators and show

that while frequency estimate variance depends only on the

total the number of probes emitted, loss duration variance

depends on the frequency estimate as well as the number of

probes sent.

The third part of our study involves the empirical eval-

uation of our new loss measurement methodology. To this

end, we developed a one-way active measurement tool called

BADABING. BADABING sends fixed-size probes at specified

intervals from one measurement host to a collaborating target

host. The target system collects the probe packets and reports

the loss characteristics after a specified period of time. We also

compare BADABING with a standard tool for loss measurement

that emits probe packets at Poisson intervals. The results

show that our tool reports loss episode estimates much more

accurately for the same number of probes. We also show that

BADABING estimates converge to the underlying loss episode

frequency and duration characteristics.

The most important implication of these results is that

there is now a methodology and tool available for wide-area

studies of packet loss characteristics that enables researchers

to understand and specify the trade-offs between accuracy

and impact. Furthermore, the tool is self-calibrating [2] in

the sense that it can report when estimates are poor. Practical

applications could include its use for path selection in peer-

to-peer overlay networks and as a tool for network operators

to monitor specific segments of their infrastructures.

II. RELATED WORK

There have been many studies of packet loss behavior in the

Internet. Bolot [6] and Paxson [7] evaluated end-to-end probe

measurements and reported characteristics of packet loss over

a selection of paths in the wide area. Yajnik et al. evaluated

packet loss correlations on longer time scales and developed

Markov models for temporal dependence structures [8]. Zhang

et al. characterized several aspects of packet loss behavior [5].

In particular, that work reported measures of constancy of loss

episode rate, loss episode duration, loss free period duration

and overall loss rates. Papagiannaki et al. [9] used a so-

phisticated passive monitoring infrastructure inside Sprint’s IP

backbone to gather packet traces and analyze characteristics of

delay and congestion. Finally, Sommers and Barford pointed

out some of the limitations in standard end-to-end Poisson

probing tools by comparing the loss rates measured by such

tools to loss rates measured by passive means in a fully

instrumented wide area infrastructure [10].

The foundation for the notion that Poisson Arrivals See

Time Averages (PASTA) was developed by Brumelle [11], and

later formalized by Wolff [3]. Adaptation of those queuing

theory ideas into a network probe context to measure loss

and delay characteristic began with Bolot’s study [6] and was

extended by Paxson [7]. In recent work, Baccelli et al. analyze

the usefulness of PASTA in the networking context [12]. Of

particular relevance to our work is Paxson’s recommendation

and use of Poisson-modulated active probe streams to reduce

bias in delay and loss measurements. Several studies include

the use of loss measurements to estimate network properties

such as bottleneck buffer size and cross traffic intensity [13],

[14] . The Internet Performance Measurement and Analysis

efforts [15], [16] resulted in a series of RFCs that specify

how packet loss measurements should be conducted. However,

those RFCs are devoid of details on how to tune probe

processes and how to interpret the resulting measurements.

We are also guided by Paxson’s recent work [2] in which he

advocates rigorous calibration of network measurement tools.

ZING is a tool for measuring end-to-end packet loss in

one direction between two participating end hosts [17], [18].

ZING sends UDP packets at Poisson-modulated intervals with

fixed mean rate. Savage developed the STING [19] tool to

measure loss rates in both forward and reverse directions from

a single host. STING uses a clever scheme for manipulating

a TCP stream to measure loss. Allman et al. demonstrated

how to estimate TCP loss rates from passive packet traces

of TCP transfers taken close to the sender [20]. A related

study examined passive packet traces taken in the middle of

the network [21]. Network tomography based on using both

multicast and unicast probes has also been demonstrated to be

effective for inferring loss rates on internal links on end-to-end

paths [22], [23].

III. DEFINITIONS OF LOSS

CHARACTERISTICS

There are many factors that can contribute to packet loss

in the Internet. We describe some of these issues in detail

as a foundation for understanding our active measurement

objectives. The environment that we consider is modeled as

a set of N flows that pass through a router R and compete

for a single output link with bandwidth Bout as depicted in

Figure 1a. The aggregate input bandwidth (Bin) must be greater

than the shared output link (Bout) in order for loss to take place.

The mean round trip time for the N flows is M seconds. Router

R is configured with Q bytes of packet buffers to accommodate

traffic bursts, with Q typically sized on the order of M×B [24],
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(a) Simple system model. N flows on input links with aggregate bandwidth
Bin compete for a single output link on router R with bandwidth Bout where
Bin > Bout . The output link has Q seconds of buffer capacity.
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(b) Example of the evolution of the length of a queue over time. The queue
length grows when aggregate demand exceeds the capacity of the output
link. Loss episodes begin (points a and c) when the maximum buffer size
Q is exceeded. Loss episodes end (points b and d) when aggregate demand
falls below the capacity of the output link and the queue drains to zero.

1: Simple system model and example of loss characteristics

under consideration.

[25]. We assume that the queue operates in a FIFO manner,

that the traffic includes a mixture of short- and long-lived TCP

flows as is common in today’s Internet, and that the value of

N will fluctuate over time.

Figure 1b is an illustration of how the occupancy of the

buffer in router R might evolve. When the aggregate sending

rate of the N flows exceeds the capacity of the shared output

link, the output buffer begins to fill. This effect is seen as a

positive slope in the queue length graph. The rate of increase

of the queue length depends both on the number N and on

sending rate of each source. A loss episode begins when the

aggregate sending rate has exceeded Bout for a period of time

sufficient to load Q bytes into the output buffer of router R

(e.g., at times a and c in Figure 1b). A loss episode ends when

the aggregate sending rate drops below Bout and the buffer

begins a consistent drain down to zero (e.g., at times b and

d in Figure 1b). This typically happens when TCP sources

sense a packet loss and halve their sending rate, or simply

when the number of competing flows N drops to a sufficient

level. In the former case, the duration of a loss episode is

related to M, depending whether loss is sensed by a timeout

or fast retransmit signal. We define loss episode duration as the

difference between start and end times (i.e., b−a and d− c).

While this definition and model for loss episodes is somewhat

simplistic and dependent on well behaved TCP flows, it is

important for any measurement method to be robust to flows

that do not react to congestion in a TCP-friendly fashion.

This definition of loss episodes can be considered a “router-

centric” view since it says nothing about when any one end-to-

end flow (including a probe stream) actually loses a packet or

senses a lost packet. This contrasts with most of the prior work

discussed in § II which consider only losses of individual or

groups of probe packets. In other words, in our methodology,

a loss episode begins when the probability of some packet

loss becomes positive. During the episode, there might be

transient periods during which packet loss ceases to occur,

followed by resumption of some packet loss. The episode ends

when the probability of packet loss stays at 0 for a sufficient

period of time (longer than a typical RTT). Thus, we offer two

definitions for packet loss rate:

• Router-centric loss rate. With L the number of dropped

packets on a given output link on router R during a given

period of time, and S the number of all successfully

transmitted packets through the same link over the same

period of time, we define the router-centric loss rate as

L/(S + L).
• End-to-end loss rate. We define end-to-end loss rate in

exactly the same manner as router-centric loss-rate, with

the caveat that we only count packets that belong to a

specific flow of interest.
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2: Laboratory testbed. Cross traffic scenarios consisted of

constant bit-rate traffic, long-lived TCP flows, and web-like

bursty traffic. Cross traffic flowed across one of two routers at

hop B, while probe traffic flowed through the other. Optical

splitters connected Endace DAG 3.5 and 3.8 passive packet

capture cards to the testbed between hops B and C, and hops

C and D. Probe traffic flowed from left to right and the loss

episodes occurred at hop C.

It is important to distinguish between these two notions of

loss rate since packets are transmitted at the maximum rate

Bout during loss episodes. The result is that during a period

where the router-centric loss rate is non-zero, there may be

flows that do not lose any packets and therefore have end-to-

end loss rates of zero. This observation is central to our study

and bears directly on the design and implementation of active

measurement methods for packet loss.

As a consequence, an important consideration of our probe

process described below is that it must deal with instances

where individual probes do not accurately report loss. We

therefore distinguish between the true loss episode state and

the probe-measured or observed state. The former refers to the

router-centric or end-to-end congestion state, given intimate

knowledge of buffer occupancy, queueing delays, and packet

drops, e.g., information implicit in the queue length graph in

Figure 1b. Ideally, the probe-measured state reflects the true

state of the network. That is, a given probe Pi should accurately

report the following:

Pi =

{
0 : if a loss episode is not encountered

1 : if a loss episode is encountered
(1)

Satisfying this requirement is problematic because, as noted

above, many packets are successfully transmitted during loss
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episodes. We address this issue in our probe process in § VI

and heuristically in § VII.

Finally, we define a probe to consist of one or more very

closely spaced (i.e., back-to-back) packets. As we will see in

§ VII, the reason for using multi-packet probes is that not

all packets passing through a congested link are subject to

loss; constructing probes of multiple packets enables a more

accurate determination to be made.

IV. LABORATORY TESTBED

The laboratory testbed used in our experiments is shown

in Figure 2. It consisted of commodity end hosts connected

to a dumbbell-like topology comprised of Cisco GSR 12000

routers. Both probe and background traffic were generated and

received by the end hosts. Traffic flowed from the sending

hosts on separate paths via Gigabit Ethernet to separate Cisco

GSRs (hop B in the figure) where it transitioned to OC12

(622 Mb/s) links. This configuration was created in order

to accommodate our measurement system, described below.

Probe and background traffic was then multiplexed onto a

single OC3 (155 Mb/s) link (hop C in the figure) which formed

the bottleneck where loss episodes took place. We used a

hardware-based propagation delay emulator on the OC3 link to

add 50 milliseconds delay in each direction for all experiments,

and configured the bottleneck queue to hold approximately

100 milliseconds of packets. Packets exited the OC3 link via

another Cisco GSR 12000 (hop D in the figure) and passed to

receiving hosts via Gigabit Ethernet.

The probe and traffic generator hosts consisted of identically

configured workstations running Linux 2.4. The workstations

had 2 GHz Intel Pentium 4 processors with 2 GB of RAM and

Intel Pro/1000 network cards. They were also dual-homed, so

that all management traffic was on a separate network than

depicted in Figure 2.

One of the most important aspects of our testbed was

the measurement system we used to establish the true loss

episode state (“ground truth”) for our experiments. Optical

splitters were attached to both the ingress and egress links

at hop C and Endace DAG 3.5 and 3.8 passive monitoring

cards were used to capture traces of packets entering and

leaving the bottleneck node. DAG cards have been used

extensively in many other studies to capture high fidelity

packet traces in live environments (e.g., they are deployed in

Sprint’s backbone [26] and in the NLANR infrastructure [27]).

By comparing packet header information, we were able to

identify exactly which packets were lost at the congested

output queue during experiments. Furthermore, the fact that

the measurements of packets entering and leaving hop C

were time-synchronized on the order of a single microsecond

enabled us to easily infer the queue length and how the queue

was affected by probe traffic during all tests.

We consider this environment ideally suited to understand-

ing and calibrating end-to-end loss measurement tools. Lab-

oratory environments do not have the weaknesses typically

associated with ns-type simulation (e.g., abstractions of mea-

surement tools, protocols and systems) [28], nor do they have

the weaknesses of wide area in situ experiments (e.g., lack of

control, repeatability, and complete, high fidelity end-to-end

instrumentation). We address the important issue of testing

the tool under “representative” traffic conditions by using a

combination of the Harpoon IP traffic generator [29] and

Iperf [30] to evaluate the tool over a range of cross traffic

and loss conditions.

V. EVALUATION OF SIMPLE POISSON PROBING FOR

PACKET LOSS

We begin by using our laboratory testbed to evaluate the

capabilities of simple Poisson-modulated loss probe measure-

ments using the ZING tool [17], [18]. ZING measures packet

delay and loss in one direction on an end-to-end path. The

ZING sender emits UDP probe packets at Poisson-modulated

intervals with timestamps and unique sequence numbers and

the receiver logs the probe packet arrivals. Users specify the

mean probe rate λ , the probe packet size, and the number of

packets in a “flight.”

To evaluate simple Poisson probing, we configured ZING

using the same parameters as in [5]. Namely, we ran two

tests, one with λ = 100ms (10 Hz) and 256 byte payloads

and another with λ = 50ms (20Hz) and 64 byte payloads. To

determine the duration of our experiments below, we selected

a period of time that should limit the variance of the loss rate

estimator X̄ where Var(X̄n)≈ p
n

for loss rate p and number of

probes n.

We conducted three separate experiments in our evaluation

of simple Poisson probing. In each test we measured both

the frequency and duration of packet loss episodes. Again,

we used the definition in [5] for loss episode: “a series of

consecutive packets (possibly only of length one) that were

lost.”

The first experiment used 40 infinite TCP sources with

receive windows set to 256 full size (1500 bytes) packets.

Figure 3a shows the time series of the queue occupancy for

a portion of the experiment; the expected synchronization

behavior of TCP sources in congestion avoidance is clear. The

experiment was run for a period of 15 minutes which should

have enabled ZING to measure loss rate with standard deviation

within 10% of the mean [10].

Results from the experiment with infinite TCP sources are

shown in Table I. The table shows that ZING performs poorly

in measuring both loss frequency and duration in this scenario.

For both probe rates, there were no instances of consecutive

lost packets, which explains the inability to estimate loss

episode duration.

In the second set of experiments, we used Iperf to create a

series of (approximately) constant duration (about 68 millisec-

onds) loss episodes that were spaced randomly at exponential

intervals with mean of 10 seconds over a 15 minute period.

The time series of the queue length for a portion of the test

period is shown in Figure 3b.

Results from the experiment with randomly spaced, constant

duration loss episodes are shown in Table II. The table shows

that ZING measures loss frequencies and durations that are

closer to the true values.

In the final set of experiments, we used Harpoon to create

a series of loss episodes that approximate loss resulting from
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web-like traffic. Harpoon was configured to briefly increase

its load in order to induce packet loss, on average, every

20 seconds. The variability of traffic produced by Harpoon

complicates delineation of loss episodes. To establish baseline

loss episodes to compare against, we found trace segments

where the first and last events were packet losses, and queuing

delays of all packets between those losses were above 90

milliseconds (within 10 milliseconds of the maximum). We

ran this test for 15 minutes and a portion of the time series

for the queue length is shown in Figure 3c.

Results from the experiment with Harpoon web-like traffic

are shown in Table III. For measuring loss frequency, neither

probe rate results in a close match to the true frequency. For

loss episode duration, the results are also poor. For the 10 Hz

probe rate, there were no consecutive losses measured, and

for the 20 Hz probe rate, there were only two instances of

consecutive losses, each of exactly two lost packets.

I: Results from ZING experiments with infinite TCP sources.

1

frequency duration mean (std. dev.)
(seconds)

true values 0.0265 0.136 (0.009)

ZING (10Hz) 0.0005 0 (0)

ZING (20Hz) 0.0002 0 (0)

II: Results from ZING experiments with randomly spaced,

constant duration loss episodes.

1

frequency duration mean (std. dev.)
(seconds)

true values 0.0069 0.068 (0.000)

ZING (10Hz) 0.0036 0.043 (0.001)

ZING (20Hz) 0.0031 0.050 (0.002)

III: Results from ZING experiments with Harpoon web-like

traffic.

1

frequency duration mean (std. dev.)
(seconds)

true values 0.0093 0.136 (0.009)

ZING (10Hz) 0.0014 0 (0)

ZING (20Hz) 0.0012 0.022 (0.001)

VI. PROBE PROCESS MODEL

The results from our experiments described in the previous

section show that simple Poisson probing is generally poor for

measuring loss episode frequency and loss episode duration.

These results, along with deeper investigation of the reasons

for particular deficiencies in loss episode duration measure-

ment, form the foundation for a new measurement process.

A. General Setup

Our methodology involves dispatching a sequence of

probes, each consisting of one or more very closely spaced

packets. The aim of a probe is to obtain a snapshot of the

state of the network at the instant of probing. As such, the

record for each probe indicates whether or not it encountered
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(a) Queue length time series for a portion of the experiment with 40 infinite
TCP sources.
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(b) Queue length time series for a portion of the experiment with randomly
spaced, constant duration loss episodes.
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(c) Queue length time series for a portion of the experiment with Harpoon
web-like traffic. Time segments in grey indicate loss episodes.

3: Queue length time series plots for three different back-

ground traffic scenarios.

a loss episode, as evidenced by either the loss or sufficient

delay of any of the packets within a probe (c.f. § VII).

The probes themselves are organized into what we term ba-

sic experiments, each of which comprises a number of probes

sent in rapid succession. The aim of the basic experiment is to

determine the dynamics of transitions between the congested

and uncongested state of the network, i.e., beginnings and

endings of loss episodes. Below we show how this enables

us to estimate the duration of loss episodes.

A full experiment comprises a sequence of basic experi-

ments generated according to some rule. The sequence may be

terminated after some specified number of basic experiments,

or after a given duration, or in an open-ended adaptive fashion,

e.g., until estimates of desired accuracy for a loss characteristic

have been obtained, or until such accuracy is determined

impossible.
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We formulate the probe process as a discrete-time process.

This decision is not a fundamental limitation: since we are

concerned with measuring loss episode dynamics, we need

only ensure that the interval between the discrete time slots is

smaller than the time scales of the loss episodes.

There are three steps in the explanation of our loss measure-

ment method (i.e., the experimental design and the subsequent

estimation). First, we present the basic algorithm version. This

model is designed to provide estimators of the frequency of

time slots in which loss episodes is present, and the duration

of loss episodes. The frequency estimator is unbiased, and

under relatively weak statistical assumptions, both estimators

are consistent in the sense they converge to their respective

true values as the number of measurements grows.

Second, we describe the improved algorithm version of our

design which provides loss episode estimators under weaker

assumptions, and requires that we employ a more sophisticated

experimental design. In this version of the model, we insert a

mechanism to estimate, and thereby correct, the possible bias

of the estimators from the basic design.

Third, we describe simple validation techniques that can be

used to assign a level of confidence to loss episode estimates.

This enables open-ended experimentation with a stopping

criterion based on estimators reaching a requisite level of

confidence.

B. Basic Algorithm

For each time slot i we decide whether or not to commence

a basic experiment; this decision is made independently for

each slot with some fixed probability p over all slots. In this

way, the sequence of basic experiments follows a geometric

distribution with parameter p. (In practice, we make the

restriction that we do not start a new basic experiment while

one is already in progress. This implies that, in reality, the

random variables controlling whether or not a probe is sent

at time slot i are not entirely independent of each other.) We

indicate this series of decisions through random variables {xi}
that take the value 1 if “a basic experiment is started in slot

i” and 0 otherwise.

If xi = 1, we dispatch two probes to measure congestion in

slots i and i + 1. The random variable yi records the reports

obtained from the probes as a 2-digit binary number, i.e., yi =
00 means “both probes did not observe a loss episode”, while

yi = 10 means “the first probe observed a loss episode while

the second one did not”, and so on. Our methodology is based

on the following fundamental assumptions, which, in view of

the probe and its reporting design (as described in § VII) are

very likely to be valid ones. These assumptions are required

in both algorithmic versions. The basic algorithm requires a

stronger version of these assumptions, as we detail later.

1) Assumptions: We do not assume that the probes accu-

rately report loss episodes: we allow that a true loss episode

present during a given time slot may not be observed by any

of the probe packets in that slot. However, we do assume a

specific structure of the inaccuracy, as follows.

Let Yi be the true loss episode state in slots i and i+1, i.e.,

Yi = 01 means that there is no loss episode present at t = i

and that a loss episode is present at t = i+1. As described in

§ III, true means the congestion that would be observed were

we to have knowledge of router buffer occupancy, queueing

delays and packet drops. Of course, in practice the value of

Yi is unknown. Our specific assumption is that yi is correct,

i.e., equals Yi, with probability pk that is independent of i and

depends only on the number k of 1-digits in Yi. Moreover, if

yi is incorrect, it must take the value 00. Explicitly,

(1) If Yi = 00 (= no loss episode occuring) then yi = 00, too

(= no congestion reported), with probability 1.

(2) If Yi = 01 (= loss episode begins), or Yi = 10 (= loss

episode ends), then P(yi = Yi|(Yi = 01)∪ (Yi = 10)) = p1,

for some p1 which is independent of i. If yi fails to match

Yi, then necessarily, yi = 00.

(3) If Yi = 11 (= loss episode is on-going), then P(yi =Yi|Yi =
11)= p2, for some p2 which is independent of i. If yi fails

to match Yi, then necessarily, yi = 00.

As justification for the above assumptions we first note that

it is highly unlikely that a probe will spuriously measure loss.

That is, assuming well-provisioned measurement hosts, if no

loss episode is present a probe should not register loss. In

particular, for assumptions (1) and (2), if yi 6=Yi, it follows that

yi must be 00. For assumption (3), we appeal to the one-way

delay heuristics developed in § VII: if yi 6= 00, then we hold

in hand at least one probe that reported loss; by comparing

the delay characteristics of that probe to the corresponding

characteristics in the other probe (assuming that the other one

did not report loss), we are able to deduce whether to assign

a value 1 or 0 to the other probe. Thus, the actual networking

assumption is that the delay characteristics over the measured

path are stationary relative to the time discretization we use.

2) Estimation: The basic algorithm assumes that p1 =
p2 for consistent duration estimation, and p1 = p2 = 1 for

consistent and unbiased frequency estimation. The estimators

are as follows:

Loss Episode Frequency Estimation. Denote the true fre-

quency of slots during which a loss episode is present by F .

We define a random variable zi whose value is the first digit

of yi. Our estimate is then

F̂ = ∑
i

zi/M, (2)

with the index i running over all the basic experiments we

conducted, and M is the total number of such experiments.

This estimator is unbiased, E[F̂] = F , since the expected

value of zi is just the congestion frequency F . Under mild

conditions (i.e., p1 = p2 = 1), the estimator is also consistent.

For example, if the durations of the loss episodes and loss-free

episodes are independent with finite mean, then the proportion

of lossy slots during an experiment over N slots converges

almost surely, as N grows, to the loss episode frequency F ,

from which the stated property follows.

Loss Episode Duration Estimation is more sophisticated.

Recall that a loss episode is one consecutive occurrence of

k lossy time slots preceded and followed by no loss, i.e., its

binary representation is written as:

01 . . .10.
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Suppose that we have access to the true loss episode state at all

possible time slots in our discretization. We then count all loss

episodes and their durations and find out that for k = 1,2, . . .,
there were exactly jk loss episodes of length k. Then, loss

occurred over a total of

A = ∑
k

k jk

slots, while the total number of loss episodes is

B = ∑
k

jk.

The average duration D of a loss episode is then defined as

D := A/B.

In order to estimate D, we observe that, with the above

structure of loss episodes in hand, there are exactly B time

slots i for which Yi = 01, and there are also B time slots i for

which Yi = 10. Also, there are exactly A + B time slots i for

which Yi 6= 00. We therefore define

R := #{i : yi ∈ {01,10,11}},

and

S := #{i : yi ∈ {01,10}}.

Now, let N be the total number of time slots. Then P(Yi ∈
{01,10}) = 2B/N, hence P(yi ∈ {01,10}) = 2p1B/N.

Similarly, P(Yi ∈ {01,10,11}) = (A + B)/N, and P(yi ∈
{01,10,11}) = (p2(A−B)+ 2p1B)/N. Thus,

E(R)/E(S) =
p2(A−B)+ 2p1B

2p1B
.

Denoting r := p2/p1, we get then

E(R)/E(S) =
r(A−B)+ 2B

2B
=

rA

2B
− r/2 + 1.

Thus,

D =
2

r
×

(
E(R)

E(S)
−1

)
+ 1. (3)

In the basic algorithm we assume r = 1, the estimator D̂ of

D is then obtained by substituting the measured values of S

and R for their means:

D̂ := 2× R

S
−1. (4)

Note that this estimator is not unbiased for finite N, due to

the appearance of S in the quotient. However, it is consistent

under the same conditions as those stated above for F̂ , namely,

that congestion is described by an alternating renewal process

with finite mean lifetimes. Then the ergodic theorem tells us

that as N grows, R/N and S/N converge to their expected

values (note, e.g., E[R/N] = p P[Yi ∈ {01,10,11}] independent

of N) and hence D̂ converges almost surely to D.

C. Improved Algorithm

The improved algorithm is based on weaker assumptions

than the basic algorithm: we no longer assume that p1 = p2.

In view of the details provided so far, we will need, for the

estimation of duration, to know the ratio r := p1/p2. For that,

we modify our basic experiments as follows.

As before, we decide independently at each time slot

whether to conduct an experiment. With probability 1/2, this

is a basic experiment as before; otherwise we conduct an

extended experiment comprising three probes, dispatched in

slots i, i + 1, i + 2, and redefine yi to be the corresponding 3-

digit number returned by the probes, e.g., yi = 001 means “loss

was observed only at t = i+ 2”, etc. As before Yi records the

true states that our ith experiment attempts to identify. We now

make the following additional assumptions.

1) Additional Assumptions: We assume that the probability

that yi misses the true state Yi (and hence records a string of

0’s), does not depend on the length of Yi but only on the

number of 1’s in the string. Thus, P(yi = Yi) = p1 whenever Yi

is any of {01,10,001,100}, while P(yi = Yi) = p2 whenever Yi

is any of {11,011,110} (we address states 010 and 101 below).

We claim that these additional assumptions are realistic, but

defer the discussion until after we describe the reporting

mechanism for loss episodes.

With these additional assumptions in hand, we denote

U := #{i : yi ∈ {011,110}},

and

V := #{i : yi ∈ {001,100}}.

The combined number of states 011,110 in the full time

series is 2B, while the combined number of states of the form

001,100 is also 2B. Thus, we have

E(U)

E(V )
= r,

hence, with U/V estimating r, we employ (Eq. 3) to obtain

D̂ :=
2V

U
×

(
R

S
−1

)
+ 1.

D. Validation

When running an experiment, our assumptions require that

several quantities have the same mean. We can validate the

assumptions by checking those means.

In the basic algorithm, the probability of yi = 01 is assumed

to be the same as that of yi = 10. Thus, we can design a

stopping criterion for on-going experiments based on the ratio

between the number of 01 measurements and the number of

10 measurements. A large discrepancy between these numbers

(that is not bridged by increasing M) is an indication that

our assumptions are invalid. Note that this validation does

not check whether r = 1 or whether p1 = 1, which are two

important assumptions in the basic design.

In the improved design, we expect to get similar occurrence

rate for each of yi = 01,10,001,100. We also expect to

get similar occurrence rate for yi = 011,110. We can check

those rates, stop whenever they are close, and invalidate the
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experiment whenever the mean of the various events do not

coincide eventually. Also, each occurrence of yi = 010 or

yi = 101 is considered a violation of our assumptions. A large

number of such events is another reason to reject the resulted

estimations. Experimental investigation of stopping criteria is

future work.

E. Modifications

There are various straightforward modifications to the above

design that we do not address in detail at this time. For

example, in the improved algorithm, we have used the triple-

probe experiments only for the estimation of the parameter r.

We could obviously include them also in the actual estimation

of duration, thereby decreasing the total number of probes that

are required in order to achieve the same level of confidence.

Another obvious modification is to use unequal weighing

between basic and extended experiments. In view of the ex-

pression we obtain for D̂ there is no clear motivation for doing

that: a miss in estimating V/U is as bad as a corresponding

miss in R/S (unless the average duration is very small). Basic

experiments incur less cost in terms of network probing load.

On the other hand, if we use the reports from triple probes

for estimating E(S)/E(R) then we may wish to increase their

proportion. Note that in our formulation, we cannot use the

reported events yi = 111 for estimating anything, since the

failure rate of the reporting on the state Yi = 111 is assumed

to be unknown. (We could estimate it using similar techniques

to those used in estimating the ratio p2/p1. This, however,

will require utilization of experiments with more than three

probes). A topic for further research is to quantify the trade-

offs between probe load and estimation accuracy involved in

using extended experiments of 3 or more probes.

F. Estimator Variance

In this section we determine the variance in estimating the

probe loss rate F and the mean loss episode duration D that

arises from the sampling action of the probes. It is important

to emphasize that all the variation we consider stems from the

randomness of the probing, rather than any randomness of the

underlying congestion periods under study. Rather, we view

the congestion under study as a single fixed sample path.

1) Assumptions on the Underlying Congestion: One could

relax this point of view and allow that the sample path

of the congestion is drawn according to some underlying

probability distribution. But it turns out that, under very weak

assumptions, our result holds almost surely for each such

sample path.

To formalize this, recall that during N measurement slots

there are A congested slots distributed amongst B congestion

intervals. We shall be concerned with the asymptotics of the

estimators F̂ and D̂ for large N. To this end, we assume that

A and B have the following behavior for large N, namely, for

some positive a and b

F = A/N → a and B/N → b, as N → ∞

We also write d = a/b to denote the limiting average duration

of a congestion episode.

For a wide class of statistical models of congestion, these

properties will be obeyed almost surely with uniform a and b,

namely, if A and B satisfy the strong law of large numbers

as N → ∞. Examples of models that possess this property

include Markov processes, and alternating renewal processes

with finite mean lifetimes in the congested and uncongested

states.

2) Asymptotic Variance of F̂ and D̂: We can write the

estimators F̂ and D̂ in a different but equivalent way to those

used above. Let there be N slots in total, and for the four

state pairs y = 01,10,00,11 let Ωy denote the set of slots i in

which the true loss episode state was y. Let xi = 1 if a basic

experiment was commenced in slot i. Then Xy = ∑i∈Ωy
xi is

the number of basic experiments that encountered the true

congestion state y. Note that since the Ωy are fixed sets, the

Xy are mutually independent. In what follows we restrict our

attention to the basic algorithm in the ideal case p1 = p2 = 1.

Comparing with § VI-B we have:

F̂ = fF(X11,X10,X01,X00) :=
X10 + X11

X00 + X01 + X10 + X11

D̂ = fD(X11,X10,X01) := 1 +
2X11

X10 + X01

We now determine the asymptotic variances and covariance

of F̂ and D̂ as N grows using the δ -method; see [31].

This supposes a sequence X (N) = (X
(N)
1 , . . . ,X

(N)
m ) of vector

valued random variables and a fixed vector X = (X1, . . . ,Xm)
such that N1/2(X (N) −X) converges in distribution as N → ∞

to a multivariate Gaussian random variable of mean 0 =
(0, . . . ,0) and covariance matrix c = (ci j)i, j=1,...m. If f is a

vector function R
m → R

m′
that is differentiable about X , then

N1/2( f (X (N))− f (X)) is asymptotically Gaussian, as N → ∞,

with mean 0 and asymptotic covariance matrix

c′kℓ =
m

∑
i, j=1

∂ fk(X)

∂X i

ci j
∂ fℓ(X)

∂X j

In the current application we set f = ( fF , fD),
X (N) = (X11,X10,X01,X00)/N and X = limN→∞ E[X (N)] =
limN→∞(#Ω11,#Ω10,#Ω01,#Ω00)p/N = (a − b,b,b,1 −
a − b)p. Since the Xy are independent, the covariance

matrix of N1/2X (N) is the diagonal matrix c with entries

Var(Xy)/N = #Ωy Var(xi)/N = p(1− p)#Ωy/N → (1 − p)X y

as N → ∞. The derivatives of fF and fD are

∇ fF (X) = (1−a,1−a,−a,−a)/p,

∇ fD(X) = (b,(b−a)/2,(b−a)/2,0)/(pb2)

Thus using the δ -method we have shown that N1/2((F̂ ,D̂)−
(a,d)) is asymptotically Gaussian with mean 0 and covariance

(
∇ fF (X) · c∇ fF (X) ∇ fF (X) · c∇ fD(X)
∇ fD(X) · c∇ fF(X) ∇ fD(X) · c∇ fD(X)

)

=
1− p

p

(
a(1−a) (d−1)/2

(d−1)/2 d(d2 −1)/(2a))

)

Note that positive correlation between F̂ and D̂ is expected,

since with higher loss episode frequency, loss episodes will

tender to be longer.
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3) Variance Estimation: For finite N, we can estimate the

variance of F and D directly from the data by plugging

in estimated values for the parameters and scaling by N.

Specifically, we estimate the variances of F̂ and D̂ respectively

by

V̂F =
F̂(1− F̂)(1− p)

N p
and V̂D =

D̂(D̂2 −1)(1− p)

2NF̂ p

Thus, simple estimates of the relative standard deviations of

F̂ and D̂ are thus 1/(pNF̂) and 1/(2pNB̂) respectively, where

B̂ = F̂/D̂ is the estimated frequency of congestion periods.

Estimated confidence intervals for F̂ and D̂ follow in an

obvious manner.

VII. PROBE TOOL IMPLEMENTATION

AND EVALUATION

To evaluate the capabilities of our loss probe measurement

process, we built a tool called BADABING1 that implements

the basic algorithm of § VI. We then conducted a series of

experiments with BADABING in our laboratory testbed with

the same background traffic scenarios described in § V.

The objective of our lab-based experiments was to validate

our modeling method and to evaluate the capability of BAD-

ABING over a range of loss conditions. We report results of

experiments focused in three areas. While our probe process

does not assume that we always receive true indications of

loss from our probes, the accuracy of reported measurements

will improve if probes more reliably indicate loss. With this in

mind, the first set of experiments was designed to understand

the ability of an individual probe (consisting of 1 to N

tightly-spaced packets) to accurately report an encounter with

a loss episode. The second is to examine the accuracy of

BADABING in reporting loss episode frequency and duration

for a range of probe rates and traffic scenarios. In our final

set of experiments, we compare the capabilities of BADABING

with simple Poisson-modulated probing.

A. Accurate Reporting of Loss Episodes by Probes

We noted in § III that, ideally, a probe should provide

an accurate indication of the true loss episode state (Eq. 1).

However, this may not be the case. The primary issue is that

during a loss episode, many packets continue to be success-

fully transmitted. Thus, we hypothesized that we might be able

to increase the probability of probes correctly reporting a loss

episode by increasing the number of packets in an individual

probe. We also hypothesized that, assuming FIFO queueing,

using one-way delay information could further improve the

accuracy of individual probe measurements.

We investigated the first hypothesis in a series of experi-

ments using the infinite TCP source background traffic and

constant-bit rate traffic described in § V. For the infinite

TCP traffic, loss event durations were approximately 150

milliseconds. For the constant-bit rate traffic, loss episodes

were approximately 68 milliseconds in duration. We used a

1Named in the spirit of past tools used to measure loss including PING,
ZING, and STING. This tool is approximately 800 lines of C++ and is available
to the community for testing and evaluation.

modified version of BADABING to generate probes at fixed

intervals of 10 milliseconds so that some number of probes

would encounter all loss episodes. We experimented with

probes consisting of between 1 and 10 packets. Packets in

an individual probe were sent back to back per the capabil-

ities of the measurement hosts (i.e., with approximately 30

microseconds between packets). Probe packet sizes were set

at 600 bytes2.
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4: Results from tests of ability of probes consisting of N

packets to report loss when an episode is encountered.

Figure 4 shows the results of these tests. We see that for

the constant-bit rate traffic, longer probes have a clear impact

on the ability to detect loss. While about half of single-

packet probes do not experience loss during a loss episode,

probes with just a couple more packets are much more reliable

indicators of the true loss episode state. For the infinite TCP

traffic, there is also an improvement as the probes get longer,

but the improvement is relatively small. Examination of the

details of the queue behavior during these tests demonstrates

why the 10 packet probes do not greatly improve loss reporting

ability for the infinite source traffic. As shown in Figure 5,

longer probes begin to have a serious impact on the queuing

dynamics during loss episodes.

This observation, along with our hypothesis regarding one-

way packet delays, led to our development of an alternative

approach for identifying loss events. Our new method consid-

ers both individual packet loss with probes and the one-way

packet delay as follows. For probes in which any packet is lost,

we consider the one-way delay of the most recent successfully

transmitted packet as an estimate of the maximum queue depth

(OWDmax). We then consider a loss episode to be delimited

by probes within τ seconds of an indication of a lost packet

(i.e., a missing probe sequence number) and having a one-way

delay greater than (1−α)×OWDmax. Using the parameters τ

and α , we mark probes as 0 or 1 according to Eq. 1 and form

estimates of loss episode frequency and duration using Eqs. 2

and 4, respectively. Note that even if packets of a given probe

are not actually lost, the probe may be considered to have

experienced a loss episode due to the α and/or τ thresholds.

2This packet size was chosen to exploit an architectural feature of the Cisco
GSR so that probe packets had as much impact on internal buffer occupancy as
maximum-sized frames. Investigating the impact of packet size on estimation
accuracy is a subject for future work.
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5: Queue length during a portion of a loss episode for different

size loss probes. The top plot shows infinite source TCP traffic

with no loss probes. The middle plot shows infinite source TCP

traffic with loss probes of three packets, and the bottom plots

shows loss probes of 10 packets. Each plot is annotated with

TCP packet loss events and probe packet loss events.

This formulation of probe-measured loss assumes that queu-

ing at intermediate routers is FIFO. Also, we can keep a

number of estimates of OWDmax, taking the mean when

determining whether a probe is above the (1 − α)× OWD

threshold or not. Doing so effectively filters loss at end host

operating system buffers or in network interface card buffers,

since such losses are unlikely to be correlated with end-to-end

network congestion and delays.

We conducted a series of experiments with constant-bit

rate traffic to assess the sensitivity of the loss threshold

parameters. Using a range of values for probe send probability

(p), we explored a cross product of values for α and τ .

For α , we selected 0.025, 0.05, 0.10, and 0.20, effectively

setting a high-water level of the queue of 2.5, 5, 10, and 20

milliseconds. For τ , we selected values of 5, 10, 20, 40, and

80 milliseconds. Figure 6a shows results for loss frequency

for a range of p, with τ fixed at 80 milliseconds, and α

varying between 0.05, 0.10, and 0.20 (equivalent to 5, 10, and

20 milliseconds). Figure 6b fixes α at 0.10 (10 milliseconds)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

probe probability (p)

lo
s
s
 f

re
q

u
e

n
c
y

true loss frequency

alpha=0.05 (5 millisec.)
alpha=0.10 (10 millisec.)
alpha=0.20 (20 millisec.)

(a) Estimated loss frequency over a range of values for α

while holding τ fixed at 80 milliseconds.

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

0
0

.0
0

4
0

.0
0

8
0

.0
1

2

probe probability (p)

lo
s
s
 f

re
q

u
e

n
c
y

true loss frequency

tau=20 millisec.
tau=40 millisec.
tau=80 millisec.

(b) Estimated loss frequency over a range of values
for τ while holding α fixed at 0.1 (equivalent to 10
milliseconds).

6: Comparison of the sensitivity of loss frequency estimation

to a range of values of α and τ .

while letting τ vary over 20, 40, and 80 milliseconds. We

see, as expected, that with larger values of either threshold,

estimated frequency increases. There are similar trends for

loss duration (not shown). We also see that there is a trade-off

between selecting a higher probe rate and more “permissive”

thresholds. It appears that the best setting for τ comes around

the expected time between probes plus one or two standard

deviations. The best α appears to depend both on the probe

rate and on the traffic process and level of multiplexing, which

determines how quickly a queue can fill or drain. Considering

such issues, we discuss parameterizing BADABING in general

Internet settings in § VIII.

B. Measuring Frequency and Duration

The formulation of our new loss probe process in § VI calls

for the user to specify two parameters, N and p, where p is the

probability of initiating a basic experiment at a given interval.

In the next set of experiments, we explore the effectiveness

of BADABING to report loss episode frequency and duration

for a fixed N, and p using values of 0.1, 0.3, 0.5, 0.7, and

0.9 (implying that probe traffic consumed between 0.2% and

1.7% of the bottleneck link). With the time discretization

set at 5 milliseconds, we fixed N for these experiments at
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180,000, yielding an experiment duration of 900 seconds. We

also examine the loss frequency and duration estimates for a

fixed p of 0.1 and N of 720,000 from an hour-long experiment.

In these experiments, we used three different background

traffic scenarios. In the first scenario, we used Iperf to generate

random loss episodes at constant duration as described in § V.

For the second, we modified Iperf to create loss episodes

of three different durations (50, 100, and 150 milliseconds),

with an average of 10 seconds between loss episodes. In

the final traffic scenario, we used Harpoon to generate self-

similar, web-like workloads as described in § V. For all traffic

scenarios, BADABING was configured with probe sizes of 3

packets and with packet sizes fixed at 600 bytes. The three

packets of each probe were sent back-to-back, according to the

capabilities of our end hosts (approximately 30 microseconds

between packets). For each probe rate, we set τ to the

expected time between probes plus one standard deviation

(viz., τ = 1−p
p

+
√

1−p

p2 time slots). For α , we used 0.2 for

probe probability 0.1, 0.1 for probe probabilities of 0.3 and

0.5, and 0.05 for probe probabilities of 0.7 and 0.9.

For loss episode duration, results from our experiments

described below confirm the validity of the assumption made

in § VI-D that the probability yi = 01 is very close to the

probability yi = 10. That is, we appear to be equally likely to

measure in practice the beginning of a loss episode as we are

to measure the end. We therefore use the mean of the estimates

derived from these two values of yi.

Table IV shows results for the constant bit rate traffic with

loss episodes of uniform duration. For values of p other than

0.1, the loss frequency estimates are close to the true value.

For all values of p, the estimated loss episode duration was

within 25% of the actual value.

Table V shows results for the constant bit rate traffic with

loss episodes randomly chosen between 50, 100, and 150

milliseconds. The overall result is very similar to the constant

bit rate setup with loss episodes of uniform duration. Again,

for values of p other than 0.1, the loss frequency estimates

are close to the true values, and all estimated loss episode

durations were within 25% of the true value.

Table VI displays results for the setup using Harpoon web-

like traffic to create loss episodes. Since Harpoon is designed

to generate average traffic volumes over relatively long time

scales [29], the actual loss episode characteristics over these

experiments vary. For loss frequency, just as with the constant

bit rate traffic scenarios, the estimates are quite close except

for the case of p = 0.1. For loss episode durations, all estimates

except for p = 0.3 fall within a range of 25% of the actual

value. The estimate for p = 0.3 falls just outside this range.

In Tables IV and V we see, over the range of p values, an

increasing trend in loss frequency estimated by BADABING.

This effect arises primarily from the problem of selecting

appropriate parameters α and τ , and is similar in nature to the

trends seen in Figures 6a and 6b. It is also important to note

that these trends are peculiar to the well-behaved CBR traffic

sources: such an increasing trend in loss frequency estimation

does not exist for the significantly more bursty Harpoon web-

like traffic, as seen in Table VI. We also note that no such trend

exists for loss episode duration estimates. Empirically, there

are somewhat complex relationships among the choice of p,

the selection of α and τ , and estimation accuracy. While we

have considered a range of traffic conditions in a limited, but

realistic setting, we have yet to explore these relationships in

more complex multi-hop scenarios, and over a wider range of

cross traffic conditions. We intend to establish more rigorous

criteria for BADABING parameter selection in our ongoing

work.

Finally, Table VII shows results from an experiment de-

signed to understand the trade-off between an increased value

of p, and an increased value of N. We chose p = 0.1, and show

results using two different values of τ , 40 and 80 milliseconds.

The background traffic used in these experiments was the

simple constant bit rate traffic with uniform loss episode

durations. We see that there is only a slight improvement in

both frequency and duration estimates, with most improvement

coming from a larger value of τ . Empirically understanding

the convergence of estimates of loss characteristics for very

low probe rates as N grows larger is a subject for future

experiments.

IV: BADABING loss estimates for constant bit rate traffic with

loss episodes of uniform duration.
p loss frequency loss duration

(seconds)
true BADABING true BADABING

0.1 0.0069 0.0016 0.068 0.054
0.3 0.0069 0.0065 0.068 0.073
0.5 0.0069 0.0060 0.068 0.051
0.7 0.0069 0.0070 0.068 0.051
0.9 0.0069 0.0078 0.068 0.053

V: BADABING loss estimates for constant bit rate traffic with

loss episodes of 50, 100, or 150 milliseconds.
p loss frequency loss duration

(seconds)
true BADABING true BADABING

0.1 0.0083 0.0023 0.097 0.034
0.3 0.0083 0.0076 0.097 0.076
0.5 0.0083 0.0098 0.097 0.090
0.7 0.0083 0.0102 0.097 0.074
0.9 0.0083 0.0105 0.097 0.059

VI: BADABING loss estimates for Harpoon web-like traffic

(Harpoon configured as described in § V. Variability in true

frequency and duration is due to inherent variability in back-

ground traffic source.)
p loss frequency loss duration

(seconds)
true BADABING true BADABING

0.1 0.0044 0.0017 0.060 0.071
0.3 0.0011 0.0011 0.113 0.143
0.5 0.0114 0.0117 0.079 0.074
0.7 0.0043 0.0039 0.071 0.076
0.9 0.0031 0.0038 0.073 0.062
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VII: Comparison of loss estimates for p = 0.1 and two

different values of N and two different values for the τ

threshold parameter.

1

N τ loss frequency loss duration
(seconds)

true BADABING true BADABING

180,000 40 0.0059 0.0006 0.068 0.021
180,000 80 0.0059 0.0015 0.068 0.053

720,000 40 0.0059 0.0009 0.068 0.020
720,000 80 0.0059 0.0018 0.068 0.041

C. Dynamic Characteristics of the Estimators

As we have shown, estimates for a low probe rate do not

significantly improve even with rather large N. A modest

increase in the probe rate p, however, substantially improves

the accuracy and convergence time of both frequency and

duration estimates. Figure 7 shows results from an experiment

using Harpoon to generate self-similar, web-like TCP traffic

for the loss episodes. For this experiment, p is set to 0.5.

The top plot shows both the dynamic characteristics of both

true and estimated loss episode frequency for the entire 15

minute-long experiment. BADABING estimates are produced

every 60 seconds for this experiment. The error bars at each

BADABING estimate indicate a 95% confidence interval for

the estimates. We see that even after one or two minutes,

BADABING estimates have converged close to the true val-

ues. We also see that BADABING tracks the true frequency

reasonably well. The bottom plot in Figure 7 compares the

true and estimated characteristics of loss episode duration for

the same experiment. Again, we see that after a short period,

BADABING estimates and confidence intervals have converged

close to the true mean loss episode duration. We also see that

the dynamic behavior is generally well followed. Except for

the low probe rate of 0.1, results for other experiments exhibit

similar qualities.

D. Comparing Loss Measurement Tools

Our final set of experiments compares BADABING with

ZING using the constant-bit rate and Harpoon web-like traffic

scenarios. We set the probe rate of ZING to match the link

utilization of BADABING when p = 0.3 and the packet size

is 600 bytes, which is about 876 kb/s, or about 0.5% of

the capacity of the OC3 bottleneck. Each experiment was

run for 15 minutes. Table VIII summarizes results of these

experiments, which are similar to the results of § V. (Included

in this table are BADABING results from row 2 of Tables IV

and VI.) For the CBR traffic, the loss frequency measured by

ZING is somewhat close to the true value, but loss episode

durations are not. For the web-like traffic, neither the loss

frequency nor the loss episode durations measured by ZING are

good matches to the true values. Comparing the ZING results

with BADABING, we see that for the same traffic conditions

and probe rate, BADABING reports loss frequency and duration

estimates that are significantly closer to the true values.

VIII. USING BADABING IN PRACTICE

There are a number of important practical issues which must

be considered when using BADABING in the wide area:
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7: Comparison of loss frequency and duration estimates with

true values over 15 minutes for Harpoon web-like cross traffic

and a probe rate p = 0.5. BADABING estimates are produced

every minute, and error bars at each estimate indicate the 95%

confidence interval. Top plot shows results for loss episode

frequency and bottom plot shows results for loss episode

duration.

VIII: Comparison of results for BADABING and ZING with

constant-bit rate (CBR) and Harpoon web-like traffic. Probe

rates matched to p = 0.3 for BADABING (876 kb/s) with probe

packet sizes of 600 bytes. (BADABING results copied from

row 2 of Tables IV and VI. Variability in true frequency

and duration for Harpoon traffic scenarios is due to inherent

variability in background traffic source.)
traffic tool loss frequency loss duration

scenario true measured true (sec) measured (sec)

CBR BADABING 0.0069 0.0065 0.068 0.073

ZING 0.0069 0.0041 0.068 0.010

Harpoon BADABING 0.0011 0.0011 0.113 0.143

web-like ZING 0.0159 0.0019 0.119 0.007

• The tool requires the user to select values for p and

N. Assume for now that the number of loss events is

stationary over time. (Note that we allow the duration of

the loss events to vary in an almost arbitrary way, and

to change over time. One should keep in mind that in

our current formulation we estimate the average duration

and not the distribution of the durations.) Let B0 be

the mean number of loss events that occur over a unit

period of time. For example, if an average of 12 loss

events occur every minute, and our discretization unit is

5 milliseconds, then B0 = 12/(60×200) = .001 (this is,

of course, an estimate of the true the value of B0). With

the stationarity assumption on B0, we expect the accuracy
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of our estimators to depend on the product pNB0, but

not on the individual values of p, N or B0.3. Indeed, we

have seen in §VI-F.2 that a reliable approximation of the

relative standard deviation in our estimation of duration

is given by:

RelStdDev(duration)≈ 1√
2pNB0

Thus, the individual choice of p and N allows a trade off

between timeliness of results and impact that the user

is willing to have on the link. Prior empirical studies

can provide initial estimates of B0. An alternate design

is to take measurements continuously, and to report an

estimate when our validation techniques confirm that the

estimation is robust. This can be particularly useful in

situations where p is set at low level. In this case, while

the measurement stream can be expected to have little

impact on other traffic, it may have to run for some time

until a reliable estimate is obtained.

• Our estimation of duration is critically based on correct

estimation of the ratio B/M (cf. § VI). We estimate this

ratio by counting the occurrence rate of yi = 01, as well as

the occurrence rate of yi = 10. The number B/M can be

estimated as the average of these two rates. The validation

is done by measuring the difference between these two

rates. This difference is directly proportional to the ex-

pected standard deviation of the above estimation. Similar

remarks apply to other validation tests we mention in both

estimation algorithms.

• The recent study on packet loss via passive measurement

reported in [9] indicates that loss episodes in backbone

links can be very short-lived (e.g., on the order of

several microseconds). The only condition for our tool to

successfully detect and estimate such short durations is

for our discretization of time to be finer than the order of

duration we attempt to estimate. Such a requirement may

imply that commodity workstations cannot be used for

accurate active measurement of end-to-end loss charac-

teristics in some circumstances. A corollary to this is that

active measurements for loss in high bandwidth networks

may require high-performance, specialized systems that

support small time discretizations.

• Our classification of whether a probe traversed a con-

gested path concerns not only whether the probe was

lost, but how long it was delayed. While an appropriate

τ parameter appears to be dictated primarily by the

value of p, it is not yet clear how best to set α for an

arbitrary path, when characteristics such as the level of

statistical multiplexing or the physical path configuration

are unknown. Examination of the sensitivity of τ and α in

more complex environments is a subject for future work.

• To accurately calculate end-to-end delay for inferring

congestion requires time synchronization of end hosts.

While we can trivially eliminate offset, clock skew is still

a concern. New on-line synchronization techniques such

3Note that estimators that average individual estimations of the duration of
each loss episode are not likely to perform that well at low values of p.

as reported in [32] or even off line methods such as [33]

could be used effectively to address this issue.

IX. SUMMARY, CONCLUSIONS AND

FUTURE WORK

The purpose of our study was to understand how to measure

end-to-end packet loss characteristics accurately with probes

and in a way that enables us to specify the impact on the

bottleneck queue. We began by evaluating the capabilities of

simple Poisson-modulated probing in a controlled laboratory

environment consisting of commodity end hosts and IP routers.

We consider this testbed ideal for loss measurement tool eval-

uation since it enables repeatability, establishment of ground

truth, and a range of traffic conditions under which to subject

the tool. Our initial tests indicate that simple Poisson probing

is relatively ineffective at measuring loss episode frequency or

measuring loss episode duration, especially when subjected to

TCP (reactive) cross traffic.

These experimental results led to our development of a

geometrically distributed probe process that provides more

accurate estimation of loss characteristics than simple Poisson

probing. The experimental design is constructed in such a

way that the performance of the accompanying estimators

relies on the total number of probes that are sent, but not

on their sending rate. Moreover, simple techniques that allow

users to validate the measurement output are introduced. We

implemented this method in a new tool, BADABING, which

we tested in our laboratory. Our tests demonstrate that BAD-

ABING, in most cases, accurately estimates loss frequencies

and durations over a range of cross traffic conditions. For the

same overall packet rate, our results show that BADABING is

significantly more accurate than Poisson probing for measur-

ing loss episode characteristics.

While BADABING enables superior accuracy and a better

understanding of link impact versus timeliness of measure-

ment, there is still room for improvement. First, we intend

to investigate why p=0.1 does not appear to work well even

as N increases. Second, we plan to examine the issue of

appropriate parameterization of BADABING, including packet

sizes and the α and τ parameters, over a range of realistic

operational settings including more complex multihop paths.

Finally, we have considered adding adaptivity to our probe

process model in a limited sense. We are also considering

alternative, parametric methods for inferring loss character-

istics from our probe process. Another task is to estimate

the variability of the estimates of congestion frequency and

duration themselves directly from the measured data, under

a minimal set of statistical assumptions on the congestion

process.
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