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ABSTRACT
We describe a traffic generation framework for conducting online
evaluations of network intrusion detection systems over a wide range
of realistic conditions. The framework integrates both benign and
malicious traffic, enabling generation of IP packet streamswith
diverse characteristics from the perspective of (i) packet content
(both header and payload), (ii ) packet mix(order of packets in
streams) and (iii ) packet volume(arrival rate of packets in streams).
We begin by describing a methodology for benign traffic genera-
tion that combines payload pools (possibly culled from traces of
live traffic) with application-specific automata to generate streams
with representative characteristics. Next, we describe a method-
ology for malicious traffic generation, and techniques for integra-
tion with benign traffic to produce a range of realistic workload
compositions. We realize our traffic generation framework in a
tool we call Trident, and demonstrate its utility through a series of
laboratory-based experiments using traces collected fromour de-
partmental border router, the DARPA Intrusion Detection Evalua-
tion data sets provided by Lincoln Lab, and a suite of malicious
traffic modules that reproduce a broad range of attacks commonly
seen in today’s networks. Our experiments demonstrate the effects
of varying packet content, mix, and volume on the performance of
intrusion detection systems.

1. INTRODUCTION
Malicious traffic in the Internet is growing at an alarming rate

both in terms of volume and diversity. This escalating threat de-
mands methods and tools to assess the robustness and capabilities
of network intrusion detection systems (NIDS) to a wide range of
both malicious and benign traffic. Standard methods for NIDSeval-
uation include the use of canonical packet traces foroffline tests
or traffic generation systems foronline tests in controlled labora-
tory settings. Regardless of the approach, the benefits of having
established, comprehensive test suites for assessing network intru-
sion detection systems are obvious. They allow for greater con-
trol, reproducibility, and standardized methods for comparing per-
formance of different systems.

The landmark work by McHugh [15] introduced a set of require-
ments for NIDS test traffic streams. A summary of these require-
ments is that tests must be conducted with a diverse set of represen-
tative packet flows (including packet content) of both benign and
malicious traffic. Specifically, the sequences of packets that make
up flows in any test must be realistic since NIDS will raise alarms
based on signatures of packet exchanges. Likewise, packet head-
ers and payloads must reflect a wide diversity of both benign and
malicious content since NIDS also raise alarms based on content
signatures.

A natural approach for addressing representativeness in both flows

and content is to take empirical traces from real networks for offline
analysis. However, this approach is often considered impractical
due to standard privacy concerns and the difficulty in accurate la-
beling of individual packets as benign or malicious. The most no-
table exceptions are the well known DARPA data sets developed
at Lincoln Lab in 1998–1999 for offline NIDS testing [12, 13].
The authors of those studies went to great lengths to create soft-
ware robots that mimicked user behavior as a means for gathering
empirical trace data. While this work has since come under some
criticism, as we discuss in § 3, it remains the largest publicly avail-
able data set for offline NIDS testing, and has been used in many
studies.

Another approach to addressing the challenge of robust NIDS
testing is to generate traffic streams synthetically. In principle, this
process can result in traces for offline tests or in live streams for
online tests. While many traffic generators have been developed
for specific network systems tests, none of them address the prob-
lem of robust NIDS testing in particular. Perhaps most importantly,
the synthetic generation of diverse, representative benign traffic (in-
cluding payload content) has not been well addressed.

Our goal in this work is to create tools and a test methodology
for evaluating the growing number of stateful, protocol-aware in-
trusion detection systems, with a secondary aim of meeting the test
requirements outlined in [15]. These objectives guided ourdesign
of a collection of tools, called Trident, which can be used togen-
erate packet traces for traditional offline evaluations, and can also
be used in controlled laboratory settings to assess the online per-
formance characteristics of NIDS or other network systems (e.g.
firewalls). The capabilities of Trident include:

• The ability to generate representative benign traffic streams,
including payloads,

• The ability to construct and generate new types of malicious
traffic,

• The ability to modulate the mixture of benign and malicious
test traffic,

• The ability to modulate the volume of both benign and mali-
cious test traffic,

• The ability to modulate temporal arrival processes of both
benign and malicious test traffic.

To the best of our knowledge, no existing toolset provides this
combination of capabilities, and we show that they enable a unique
and important range of tests for NIDS.

One of the most important features of Trident, and something
that distinguishes it from simple malicious traffic generators such
as [21], is that it includes representative benign traffic. Trident



uses handcrafted automata-based representations of popular net-
work services to generate a wide range of protocol-compliant packet
streams. The packets (headers and payload) within the streams are
extracted from traces that have been carefully groomed to remove
malicious content.

The objective of trace grooming is to create a large pool of pack-
ets that is both realistic and diverse. We discuss benefits and draw-
backs of three strategies for grooming packet traces for usein Tri-
dent. The first approach is to synthetically generate traces, e.g., us-
ing statistical models developed from live traces such as was done
in the creation of the DARPA data sets. The second approach is
to use a NIDS rule set (or sets) to extract benign packets froman
empirically collected trace. The third approach is based onour
notion of atrust matrixwhich, similar to NIDS rule sets, is used
to extract benign packets from empirically collected packet traces.
It is important to note that none of these strategies can absolutely
guarantee that the resulting benign trace is free of malicious pack-
ets. However, our comparisons of these grooming techniquesin § 5
treat their capabilities particularly in the case of site-specific NIDS
evaluation and tuning.

We demonstrate the capabilities and utility of Trident through a
series of tests on live systems in a controlled laboratory environ-
ment. We begin by populating Trident with two different benign
traffic traces. Next, we create a set of attack modules for malicious
traffic commonly seen in today’s networks, which we explain in
detail in § 6. We use the combination of benign traces and attack
modules to assess the behavior of two popular NIDS over a range of
traffic volume and packet diversity (content and mix). Our experi-
ments are based on a set of test hypotheses and protocols designed
for each system type. The results show that Trident easily exposes
an important range of behavior in our test systems. In particular,
we show how NIDS performance can be sensitive to the mix of
benign application payloads. We also show that the relativepro-
portions of malicious flows to all traffic has a very clear impact on
NIDS performance and resulting alarm quality. We further show
that while traffic volume has a clear effect on NIDS packet loss, its
effect on alarm quality is system dependent. The key implication
of our results is that Trident is well suited for evaluating NIDS or
other network systems that are protocol-aware and stateful(main-
tain connection state for detecting anomalous or maliciousactivity
spanning multiple packets or connections). Our results also suggest
that Trident would be very useful for tuning NIDS rule sets and the
host systems on which they run. Finally, it is also interesting to
note that during the course of our tests, a previously unknown UDP
fragmentation bug in Bro was discovered which we would not have
found without the diverse capabilities of Trident.

In summary, the contributions of this work include the following:

1. Development of a set of commonly seen attack profiles.

2. Development of a framework and integrated set of systems
that provide the flexibility to test systems under a range of
content, volume and mix of benign and attack traffic.

3. Development of an unbiased trace grooming technique to
separate benign from malicious traffic.

4. Demonstration of tool utility through laboratory evaluation
of two popular open source NIDS.

5. Collection of scripts for(i) extraction of attacks from the
DARPA data set, and(ii) controlled dynamic replay of these
attacks (which can be used with other traces as well).

2. RELATED WORK
Several tools exist for generating purely malicious traffic, includ-

ing [5, 8, 16, 21]. Efforts toward generation of both benign and ma-
licious traffic streams include [10, 19] and a commercial product
from Skaion [4]. Trident differs from these systems in its approach
to benign traffic generation and the level of flexibility thatit pro-
vides in controlling the volume, mix and content of producedtraffic
streams. Trident is also related to the Metasploit and Exploitation
Framework projects that provide libraries of common modernat-
tacks [3, 9].

A related study that followed McHugh’s critique is described in
a paper by Mahoney and Chan [14]. The authors conducted an
evaluation ofanomaly-basedNIDS with an enhanced version of
the DARPA data set created by injecting benign traffic from a sin-
gle host (their department web server). Our work, while similar
in some respects, differs in several respects:(i) our target systems
are much broader than anomaly-based NIDS;(ii) our goal is to
provide a flexible and extensible framework for recreating awide
range of attack scenarios by modulating the mix of maliciousand
benign traffic, control of traffic volumes, and inclusion of repre-
sentative benign payload contents;(iii ) we consider the problem of
separating potentially malicious traffic from benign traffic based on
protocol knowledge and statistical properties of the traffic instead
of relying on a firewall or manual grooming.

Our trust framework for separating attack traffic from a mixed
data set is inspired by the work of Junget al.[11]. In that study, the
authors proposed a hypothesis testing framework for detecting ma-
licious scanners. We use a similar though more simple methodin
this study. While beyond the scope of this work, a hypothesistest-
ing framework could be incorporated into our benign trace groom-
ing algorithm. Similarly, Antonatoset al. examined the problem of
generating benign traffic based on statistical properties of existing
traces [7]. The details of their algorithm differ from ours in that
their effort was limited to replicating payload contents while our
environment is broader, allowing control of not only packetcon-
tent but also higher level attributes such as flow arrivals and source
address distribution.

3. MCHUGH’S CRITIQUE OF LINCOLN
LAB IDS EVALUATION

A starting point for our work is the comprehensive critique by
McHugh of the DARPA-sponsored 1998–1999 IDS evaluations [15].
A key contribution of McHugh’s work is not only that it identified
the shortcomings of the reported evaluations but it used these ob-
servations as a springboard for specifying requirements for com-
prehensive IDS testing.

The data sets used in Lincoln Lab evaluations consist of a 5
week-long trace of packet data and feature 58 distinct attack types.
Weeks 1 and 3 in the trace contain entirely benign traffic. Week 2
contains benign traffic mixed with labeled attack traffic that can be
used to train anomaly-based intrusion detection systems. Weeks 4
and 5 contain test data which has an unlabeled mix of attack and
benign traffic. Despite its problems, it remains one of the largest
and most comprehensive data sets for IDS evaluation available to-
day, and is suitable for offline tests. While online tests using a trace
replay tool such as [1] are certainly possible, these tools do not al-
low for flexible manipulation of the resulting traffic streams in the
ways described below.

We distill the major points of McHugh’s evaluation below, and
use these as motivation for our IDS traffic generation architecture.

Benign Data. The Lincoln Lab evaluation did not validate the
false alarm characteristics of the background (benign) data. In par-



Table 1: Summary of DARPA and CSL data sets.
Dataset TCP UDP ICMP

Pkts Bytes Flows Pkts Bytes Flows Pkts Bytes
(M) (GB) (K) (M) (MB) (K) (K) (MB)

Week 1 14.1 2.85 456 0.69 64 18 12 4
Week 2 12.4 2.25 471 0.72 66 27 47 3
Week 3 14.4 3.10 486 1.40 155 14 10 0.6
Week 4 12.1 2.04 333 1.98 214 21 93 27
Week 5 20.6 4.43 864 3.65 346 23 37 12
CSL 12.4 11.04 38 2.24 421 178 92 9

Table 2: Port distribution of CSL Traffic.
Port % No. Flows % No. Pkts

123/udp (NTP) 38.40 2.64
53/udp (DNS) 34.92 2.06
25/tcp (SMTP) 4.72 0.26
80/tcp (HTTP) 2.72 3.55
3124/tcp 1.36 0.18
23127/udp 1.02 0.16
9618/udp (Condor) 0.95 0.14
3126/tcp (.NET) 0.94 0.07
21/tcp (FTP) 0.65 0.12
22/tcp (SSH) 0.02 2.67

Table 3: Port distribution of Darpa Week 1 Traffic.
Port % No. Flows % No. Pkts

80/tcp (HTTP) 88.14 16.41
25/tcp (SMTP) 4.79 2.17
53/udp (DNS) 3.10 1.31
123/udp (NTP) 0.70 0.46
23/tcp (TELNET) 0.49 26.95
79/tcp (FINGER) 0.42 0.08
21/tcp (FTP) 0.23 0.35
110/tcp (POP3) 0.09 0.03
37/tcp (TIME) 0.08 0.01
22/tcp (SSH) 0.03 4.54

ticular, there was no rationale provided to convince the reader that
the observedratesfrom this data set would be similar to those ob-
served in live environments. Moreover, sincevolumeandbursti-
ness(in terms of packet arrival characteristics) of backgroundtraf-
fic vary widely across networks, it might be impossible to create
a single representative background trace. Packet storms resulting
from misconfigurations that are common in real networks and often
resemble flooding attacks were ignored. In summary rates, volume,
and burstiness of benign traffic are important considerations, and
timing parameters derived from network emulators must be vali-
dated.

Malicious Data. The Lincoln Lab evaluations did not attempt
to ensure that themix of malicious and benign traffic in the trace
data was realistic. Second, the number of systems that were sub-
ject to attacks was quite limited and no attempt was made to vali-
date that this distribution was realistic. Third, theattacker-centric
approach used by the evaluators could produce biased results and
offers little toward understanding IDS behavior. Finally,McHugh
notes that as significant effort is expended by the research commu-
nity to generate attacks for testing intrusion detection systems, an
“attack-on-demand” facility that tracks and replicates the latest at-
tacks would be extremely useful to the community. In summary,
benign/malicious traffic mix is an important considerationas is the
diversity and current prevalence of malicious traffic used in tests.

Finally while simple topologies are commonly used to conduct
experiments and build data sets, the burden rests on the experi-
menters to prove that the artificial environment does not signifi-
cantly alter the meaningfulness of the experiments.

4. DATA COLLECTION
The data sets used to derive benign packet traces for this study in-

clude the five week-long traces from the 1999 DARPA data set, and
a trace (headers and payloads) collected for 100 minutes (around
100 GB) from our departmental border router, which we refer to
as the CSL trace. Weeks 1 and 3 of the DARPA data set contain
no malicious traffic and week 2 includes labeled malicious training
data while weeks 4 and 5 include malicious test data.

Table 1 provides a summary of both data sets. There are several
contrasts between the two data sets. First, although the TCPbyte
counts for the CSL trace are larger than that of a typical weekof the
DARPA data, the number of flows is an order of magnitude smaller.
This suggests that large data transfers are more prevalent in the
CSL network than in the DARPA trace. Second, the large number
of UDP flows seen in the CSL data is dominated by NTP and DNS
traffic. The high volume of NTP traffic seen in the CSL network
is partly attributed to [18]. Third, comparing the port distributions
in Tables 2 and 3, we see that the application mix (as identified by
port numbers) in each trace is also quite different. This difference
is to be expected given the fact that the CSL data was collected in
January, 2005 and the DARPA data was generated in 1999. It also
underscores the need for continuous collection and updating of test
data.

5. CONSTRUCTING A BENIGN TRACE
One of the most important aspects of NIDS evaluation is a thor-

ough assessment of the system’s propensity to generate alarms in
the absence of malicious traffic (false positives). The quantity of
false positives is intrinsically tied to both the NIDS undertest and
the nature of benign traffic in the test environment. Therefore, one
of the essential aspects of NIDS evaluation for any network is a be-
nign traffic workload that features the spectrum of characteristics
that aretypical or expectedfor that network. While one might be
able to readily capture a collection of packet traces from the net-
work over an appropriate period of time, the difficulty arises from
the fact that we expect these traces to contain a mixture of both be-
nign and malicious traffic. So, the question becomeshow to iden-
tify and isolate the benign traffic. In many ways, this is exactly the
intrusion detection problem.

There are several possibilities for populating Trident with benign
traffic payloads. We discuss three strategies that might be employed
as a way to explore the design space. While other techniques may
be possible, we believe that the strategies we discuss are reason-
able, effective and cover a large portion of the design space.

• NIDS-based Strategies: The first strategy is to use a well-
known NIDS such as Snort (that is well known to generate a lot of
false alarms but also detects attacks accurately) to groom apacket
trace taken at a local site. We argue that this is a highly problematic
approach since a portion of the connections that are removedare
likely to be those that are of "highest interest" in the sensethat they
are benign packets that trigger alarms (false positives).

• Synthetic Generation Strategies: A second strategy is to use
synthetic traffic generated using software robots that emulate user
behavior. The idea is to craft the robot to ensure that it onlycre-
ates connections with known good hosts (either local or remote).
This data is then used as a basis for further expansion of the trace
through synthetic generation of packets (as in the DARPA data set).
While this strategy is clearly limited in terms of representativeness
from an application mix and payload perspective, it may be appro-
priate for certain environments. A further benefit of this method is
that since the base trace is generated by robots, it may enable trace
data sets to be shared.

• Trust-based Strategies: The third strategy is to groom a packet
trace taken at a local site using connection heuristics (e.g., failure
rates or scanning characteristics). This approach exploits the dif-



ferences in connection characteristics of benign versus malicious
sources based on a model of malicious connection behavior. This
technique is attractive because it is based on transport level char-
acteristics, does not require knowledge of application semantics,
and is not biased by a particular system (NIDS independence). We
posit that a trust-based grooming strategy results in a set of pack-
ets labeled as benign that have a higher opportunity for uncovering
false positive behavior. It is, however, limited in that it might miss
targeted attacks by sophisticated adversaries that have connection
characteristics sufficiently similar to benign users.

The remainder of this section explores the trust-based strategy.
We begin by defining the specifics of our trust-based grooming
methodology. Next, we evaluate its performance using the CSL
packet trace. We conclude the section by discussing some of the
strengths and pitfalls of this strategy.

5.1 Trust-Oriented Grooming
Our trust-based approach addresses the problem of separating

benign traffic from a diverse trace by developing a systematic set
of rules for attributing each connection in a trace with a specific
level of trust. We begin by defining a framework for establishing
the trust assignment rules that is(i) not NIDS-specificand(ii) not
application-specific. Thus, we consider the framework to beunbi-
ased. Within this framework, our approach is to associate trust lev-
els with the characteristics and observed behavior of the participant
end hosts and the networks in which they reside. In this sense, trust
assignment becomes site specific. We believe that site-specificity is
essential for effective NIDS testing, but may not directly lend itself
to standardized benchmarking.

Our framework supports attributing trust to each host at mul-
tiple granularities. We begin by considering individual hosts as
being trusted, neutral or suspect. This estimate is derived simply
based on connection utility and endpoint location (local vsremote).
We then extend this notion to definetrusted, neutralandsuspect
networks. During the execution of the trust assignment algorithm,
these labels are computed based on the behavior of the individual
hosts in each network. However, certain networks can also bepre-
identified as trusted or not trusted and thus all of the hosts in those
networks will be either whitelisted or blacklisted. For example,
a specific network may be known (based on personal knowledge)
to be well managed, and known to have strong, enforced security
policies (e.g.,one’s own network). Likewise, certain networks are
known to be a common source of malicious traffic and might be
blacklisted as a suspect network.

5.2 The Trust Matrix Algorithm
Our trust assignment algorithm, which we call thetrust matrix

(or TM), uses three basic metrics for its decisions, including (i)
endpoint location, (ii ) number of failed/inbound/outbound connec-
tions, and (iii ) volume of traffic exchanged. Clearly, this framework
for benign traffic grooming can and should be modified by individ-
uals for their own environment and based on their own experience.
The algorithm that we derived from this framework for isolating
benign traffic assumestransitivity of trustand has the goal of iden-
tifying hosts as either trusted or suspect as follows:

Step 1. Trust local and white listed hosts.We assume that
the local network is well managed and that all its hosts are most
trustworthy. We also assume there is a possibility that other net-
works are sufficiently trustworthy based on knowledge of manage-
ment and security practices. Label all hosts in these networks as
trusted1.
1While this assumption is reasonable for a well-managed network

Step 2. Trust remote servers.Since we trust local hosts, we
also trust connections that they initiate2. It then follows that we can
trust the remote servers to which they connect—label these hosts as
trusted.

Step 3. Distrust scanners.We identify sources that have failed
connections sent to multiple ports or destinations as suspect3. We
use a simple heuristic to identify scanners that considers the ratio
of good connections (connections that are established and success-
fully receive data) to all connections. We call this the host’s β value.
The threshold parameterβH determines the minimum acceptable
value ofβ for a trusted host andβL determines the minimum value
for a neutral host. Hosts withβ values belowβL are labeled suspect.
An important point is that this heuristic is effective in capturing not
just port-scanners, but also describes most worms and any malware
that randomly selects IP addresses for propagation.

Step 4. Trust well behaved clients.We identify remote clients
that have highβ values (aboveβH ) and label those hosts as trusted.

Step 5. Distrust hosts in suspect networks.Identify otherwise
unlabeled hosts in networks with scanners as network suspect hosts.
If the ratio of unsuccessful connections to all connectionsfrom this
network falls belowβL label the all unlabeled hosts as suspect.

Step 6. Trust peer networks.Classify networks that exchange
high volumes of data with the local network as peer networks.La-
bel all unlabeled hosts in peer networks as trusted.

Step 7. Trust well-behaved networks.Identify networks with
high β values aboveβH and label all unlabeled hosts in these net-
works as trusted.

Step 8. Label remaining unlabeled hosts as trust neutral.
There are two aspects of this process that are noteworthy. The

first is that it is designed to beconservative, i.e., it favors labeling
hosts as suspect. A host is deemed suspect if the sum of its activities
fail to meet any single trust metric. Second, the algorithm above is
ad hoc and is meant to be modified and enhanced on a per network
basis. The TM is summarized in Table 4 and we demonstrate its
utility on a live traffic trace in § 5.4.

Table 4: Ideal host classification in the trust matrix (T =
trusted, N = neutral, S = suspect, X = not applicable).

Hosts
Remote

Local Server Client
Neutral Scanner

Trusted Network T T T S
Neutral Network X T N S
Peer Network X T T S
Suspect Network X T N S

5.3 Estimating Trust Matrix Parameters
We now describe how an empirical packet trace can used to es-

timate reasonable values for the threshold parametersβH andβL.
When individual IP addresses are considered,β is simply the ratio
of successful connections to all connection attempts with an im-
plicit β value of 1 for otherwise trusted hosts such as local clients.
For network aggregates, we use the ratio of all connections from a
given network to determine the network’sβ value. Figure 1 shows
the distribution ofβ values for individual hosts and two network

such as ours, it may be unsuitable for other networks. Other con-
siderations might include prevalence of spyware or otherwise com-
promised hosts among local clients.
2This does not include “follow-up” connections. This situation oc-
curs when a remote client first initiates a connection to a local host,
which leads to a follow-up connection from the local host.
3This technique is related to the methods described in [11].
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Figure 1: Distribution of β values in networks of various sizes from the CSL trace (individual IP addresses (left), /24 networks
(center), /16 networks (right)).
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Figure 2: Summary of transfer volumes from the CSL trace for individual IP addressees (left), /24 networks (center) and /16 networks
(right).

aggregates using the CSL trace. The first observation from these
plots is that the distribution ofβ at the individual host IP level is
bimodal, i.e., hosts tend to be either well-behaved or have many
failed connections. This effect has an important impact on our abil-
ity to identify malicious scanners. Second, the results show that
the desirable bimodal-like distributional properties ofβ continue
to hold at /24 network aggregates but are not as strong for /16ag-
gregates. This suggests that a good starting point for considering
network trust in this trace lies somewhere between /24 and /16 ag-
gregates. These results provide the basis for fixing ourβH value at
0.8 andβL value at 0.2.

In Figure 2, we consider the parameters for identifying peer-
networks, which are defined as networks that participate in high-
volume data transfers with a trusted local network. The histograms
for the CSL trace suggest that there are few networks that exchange
large volumes of data; these are easily isolated. The figure shows
that a volume of 100 MB appears to be a reasonable threshold for
separating high-volume transfers, and this value is not overly sen-
sitive to the size of the network. We fix the volume threshold pa-
rameter at 100 MB for the CSL trace.

We also explored the dynamics of the trust assignment algorithm
as the network radius expands (where radius 0 = /32 network, radius
1 = /31, etc.). Our goal was to maximize the number of accurately
labeled hosts (trusted or suspect) while minimizing the number of
inconsistent labels (i.e., trusted hosts in suspect networks or suspect
hosts within trusted networks). The results reinforce the results
from the earlier two heuristics for optimal network aggregation for
trust labeling, and suggest that the correct aggregation for these
traces lies in the range /24 to /20. This result is likely related to the
administrative granularities used in allocation of IPv4 addresses.

5.4 Trust Matrix Evaluation
Evaluation of the resiliency of the TM to false negatives involves

validation with a NIDS rule-set and conducting a manual examina-
tion of the trace for each missed alert by the TM. More specifically,
how often are legitimate hosts marked suspect (false positives) and
how often are malicious hosts marked trusted by the TM algorithm
(false negatives)? We begin with an analysis of the former using the
CSL trace. While we do not have full “ground truth” for this data,
we approximate it through a manual tagging process. We first clas-
sify sources marked suspicious by the TM by protocol (port num-
bers). We then examine activity of several exemplars from each
pool to determine whether the sources are malicious or benign. In
our experience, the dominant pools tend to be either entirely legiti-
mate, malicious or misconfiguration. However, there are some less
popular ports, often with a single source, where we simply donot
know enough about the activity to label it accurately. Similarly, we
encounter activity that does not include sufficient contextto deter-
mine the intent of the source (e.g., ICMP echo requests are used for
both benign measurement and by worms such as Welchia). In all,
a small fraction (4,188—little over 1%) of the 373,395 sources in
the full trace were deemed suspect.

We summarize our evaluation of the trace in Table 5. First, we
find a high degree of failed connections directed at our departmen-
tal mail servers. An obvious explanation for this is spammers look-
ing for open-relays. Second, we find that certain legitimateDNS re-
quests are dropped by the DNS server. This is the expected behav-
ior of BIND when requests timeout. Likewise, a small fraction of
NTP requests seem to be dropped by the NTP server though we do
not have an explanation for this behavior. The TM also marks cer-
tain sources running Condor4 as suspicious because these sources
can send periodic one-way UDP updates to a server (i.e. they do
not receive an acknowledgment). This incorrect labeling illustrates
a current weakness of our TM. While TCP connection semantics

4Condor is a widely-used computational resource sharing system.



Table 5: Activity summary of sources deemed suspect by the
TM. Sources under category “Legitimate” are considered false
alarms. “Other” includes malicious, legitimate, and unknown.

Service Port No. Sources Category
SMTP 25 940 Spam (Open-Relay)
DNS 53 851 Legitimate
NTP 123 469 Legitimate
Condor 9618 322 Legitimate
DCERPC 1025 230 Exploit
Beagle 2745 127 Exploit
HTTP 80 107 Worms, Open-Proxy
MyDoom 3127 87 Exploit
EDonkey 4662 71 Misconfiguration
FTP 21 54 Legitimate
MS-SQL 1433, 1434 10 MS-SQL Probe Response,Slammer
Other 960 —

can often be extended to most UDP sessions, some isolated applica-
tions do not follow a two-way data exchange and are not presently
accounted for in the TM so may need to be whitelisted. The TM
also successfully detects several instances of malicious traffic such
as sources trying to exploit DCERPC vulnerabilities on port1025,
sources scanning for Beagle and MyDoom backdoors, MS-SQL
password probing attempts and MS-SQL Slammer worm.

A robust evaluation of the resiliency of the TM to false negatives
involves validation with respect to a NIDS rule-set and conducting
a manual examination of the trace for each missed alert by oursys-
tem. This task can be particularly labor intensive considering the
size of the data set and volume of false positives in modern NIDS
rulesets as we discuss below. Instead, we look for false negatives
with respect to the most common background radiation signatures
developed for the Bro IDS [17]. Our results revealed azero false-
negative rate5.

Next, we compare the TM groomed trace with the result of alerts
generated by Snort. We found that running Snort (version 2.4.3)
with a default configuration and snort-rules-pr-2.4 raisesalerts on
3,367 distinct sources. This result is in line with the number of
sources flagged as suspect by the TM. We summarize the dominant
Snort alert categories in Table 5. Examining behavior of typical
sources from these dominant categories suggests that they all cor-
respond to legitimate traffic. However, several attack sources were
also detected by Snort’s payload signatures (SQL-probing,SQL-
Slammer) and its portscan detector (DCERPC, Beagle). While
Snort detected all of the MS-SQL attacks, it only detected a small
portion of other obvious background-radiation attack instances such
as 8/230 DCERPC attacks, 11/127 Beagle attacks.

In comparing the sources flagged as malicious by both Snort
and the TM, we find that there is less than a 10% overlap (308
sources). We believe that this highlights the potential utility of the
TM approach—a large fraction of packets that trigger false posi-
tives in Snort are not flagged by the TM. The overlap includes all
of the background-radiation scanners detected by Snort, such as
the DCERPC exploit and Beagle backdoor attempts,i.e., sources
flagged by the TM are a superset of Snort sources for these at-
tacks. Some of the legitimate DNS and NTP sources flagged as
malicious by the TM also confuse Snort’s portscan detector.For
these services, the Snort false positives are a subset of theTM’s
false positives listed in Table 5.

5.5 Limitations of the Trust Assignment Algo-
rithm

While the TM has the advantages of being unbiased and simple,

5While we detected several instances of true alerts such as MS-
SQL Slammer, no background radiation attacks were missed.

Table 6: Summary of dominant Snort false alert categories.
Note that individual sources could contribute to multiple Snort
alerts.

Alert No. Sources No. Instances
ICMP PING NMAP 877 1327
WEB-MISC /doc/ access 867 2027
ICMP Large ICMP Packet 322 13,021
WEB-MISC Invalid HTTP Version String 219 1162
(portscan) UDP Portsweep 166 570
FTP command overflow attempt 64 5690
WEB-MISC robots.txt access 60 93
(http_inspect) DOUBLE DECODING ATTACK 58 191

it also has limitations. It is likely that a limited amount ofmalicious
packets will persist after trace grooming. For example, a randomly
scanning HTTP worm may send exactly one connection request to
the local network and that request may contact an open web server.
Detecting the presence of such attacks is impossible using our trust
assignment algorithm. While this connection might be flagged by
an IDS, we reject the approach of using IDS rule sets for trace
grooming since loose rule sets might flag benign traffic that would
otherwise cause false positives in tests. We argue that it isbetter to
have some unexpected true positives in test results than to reduce
or eliminate the possibility of seeing false positives due to over-
sanitized benign traces. Second, we note that without inspecting
all packets of a trace (a task we consider to be infeasible), there is
a possibility of false negatives during tests. The potential difficulty
this poses for analyzing test results may be an inevitable trade-off of
having the realism of traffic streams collected from an operational
network. Third, certain site-specific applications such asCondor
that use one-way UDP streams might need to be whitelisted since
they do not have a well-formed notion of “goodness”. Extending
our methodology to consider this traffic is an area for futurework.
Finally, our notion of trust depends on the perspective of the local
network. That is, a network perceived as hostile by us might be a
neutral network for another service provider with whom the hostile
network has a peering relationship.

6. THE TRIDENT SYSTEM
In this section we describe how application-specific benigntraf-

fic streams and malicious traffic streams are generated within the
Trident framework.

Trace Grooming

Payload Classification

Payload Sanitization

Harpoon Client Harpoon Server

Service Automata Generation

Figure 3: Steps for benign traffic generation in Trident.

6.1 Benign Traffic Generation
Several studies of IDS performance, including many papers that

use the DARPA data set, consider detection characteristicsfrom an
off line evaluation (e.g.,[6]). As we show in the results of our lab-
oratory experiments, the dynamic characteristics of traffic streams,



notably the mix and volume, can have huge impact on NIDS per-
formance and provide key insights for system tuning. Therefore,
one of the challenges of benign traffic generation is to dynamically
generate diverse traffic streams based on knowledge obtained from
a limited set of traces. To this end, we considered three strategies
for generating benign traffic.

The first strategy is to use a tool likeflow-replay [1] to cre-
ate flows without any modification to packet headers or payloads.
The most significant drawback of this approach is that it onlyrecre-
ates the client side of a connection. A component of Trident called
attack-replay (described below) provides the capability to re-
play both endpoints of a flow. While this strategy is simple, it is
clearly limited in the amount of diversity that can introduced into a
traffic stream.

A second strategy is statistical replication of payloads for pro-
tocols based on byte-level properties. To our knowledge there has
been only limited work in this area. For example, in the context of
anomaly detection, language-independent statistical profiles such
as n-grams have been proposed to model application payloads[23].
These techniques are attractive because they allow traffic genera-
tion systems to be oblivious to session/application layer protocols.
However, the current trend toward protocol-awareness in modern
NIDS and traffic analyzers suggests that traffic generation needs to
be application-aware to generate meaningful headers/payloads that
exercise the NIDS in ways similar to real traffic.

Another approach, and the one we adopt in Trident, is protocol-
aware emulation based on payload interleaving. Payload interleav-
ing is our term for dynamic construction of flows through random
selection of packets from payload pools corresponding to particular
states in a service automaton, as we describe below. This method
supports the generation of synthetic traffic streams with realistic
application level headers and payloads. While not a focus ofour
evaluation, the statistical techniques discussed in § 5 should be con-
sidered complementary and could be used to generate application
level data, for example the entity body of an HTTP connection. We
describe the components of our protocol-aware emulation scheme
below.

• Automata Generation. At the heart of our benign traffic gen-
eration system is a collection of automata with states that describe
classes of packets observed in a specific service. In our prelimi-
nary exploration of the feasibility of this approach, we usebasic
automata to describe the most popular services seen in the CSL
trace and in the DARPA data set. We do not claim completeness
of these automata or suggest that they exercise all classes of NIDS.
We use them as examples to demonstrate the utility of our meth-
ods and to show how they can accommodate flexible recreation of
a broad class of protocols.

Our automata describe each service through a three phase ab-
straction that is typical of most network protocols. The first stage,
prologue, describes the application-level client server handshake.
The next stage isdialog, in which client and server exchange data.
The final stage isepilogue, in which the participants agree to grace-
fully tear down the connection. Each stage in the conversation
could involve several states in the automata and the final stage is
optional in some protocols such as HTTP. We created automata
that model the packet exchange protocols for HTTP, SMTP, DNS,
Telnet, FTP and SSH (i.e.,the most popular services from our data
sets). Our automata-based abstractions for HTTP and SMTP are
shown in Figures 4(a) and 4(b). Pipelined HTTP requests are cur-
rently not supported but should be an easy extension.

A weakness of a protocol-aware automata-based system such as
ours is that the effectiveness of the evaluation is related to the qual-
ity of the automata. It is our hope that a library of automata will be

developed by the research community over time.
• Payload Classification. The raw traces classified as benign

(i.e., trusted or trust neutral) are given as input to the payload clas-
sification module which we callpayload-gen. The purpose of
payload-gen is to classify packets in the trace into various pools
that correspond to particular states of different service automata. In
this step, packets generated in the same application state,but from
different flows, are aggregated into the same pool. This aggregation
does not preserve packet ordering from any individual flow.

• Payload Sanitization. Following classification, payloads are
discarded or modified to ensure that they do not violate a simple
set of requirements. Discard is appropriate if the originalpayload
suffered truncation during packet capture or the payload does not
match a valid automata state. Modification is generally doneto
simplify service automata definition and processing, and toavoid
generation of false alarms that would result simply as an effect of
interleaving. Our current approach is to be aggressive in these nor-
malization steps. For example, with HTTP, we removeConnection,
Content-length, andTransfer-encoding headers from
server responses, since a NIDS could conceivably use these items
to monitor a connection in progress. Since we wish to arbitrarily
use client and server payloads without maintaining elaborate state
or dynamically rewriting payloads, we remove the echoed address
from the server response since it is not required for correctprotocol
operation. An effect of our sanitization is that we may underreport
the levels of false alarms generated by the NIDS that we evaluate.

• Content Aware Traffic Generation via Harpoon. We wrote
a new traffic generation plug-in for Harpoon [20] to execute the
application state machines and transmit sanitized payloads. Con-
trol of state machine processing is done on Harpoon clients.Har-
poon servers simply respond to requests to send a certain number
of packets from specified application payload pools.

In addition to the distributional data used in Harpoon’s default
TCP traffic generator, we definePNumPacketsandPFlowSizedistribu-
tions. As prologue and epilogue state machine stages are executed,
one packet is sent from the appropriate application payloadpool.
For the dialog stage, the number of packets to send in each state
is chosen from a distributionPNumPackets. In addition, the dialog
stage ends when the total traffic sent exceeds a value chosen from a
distributionPFlowSize. Connections are initiated according to a dis-
tribution PInterConnection. Each of these distributions may be speci-
fied for each service. The effect of modulating the flow size, inter-
connection time, and active session distributions is that the overall
traffic volume and application mix can be tuned as desired.

The exchange of application-layer payloads according to a given
service automaton is done using standard user-level sockets, i.e.,
above the transport layer. Benign traffic streams produced by Tri-
dent are therefore targeted at intrusion detection systemsfocused
on layers above the transport layer. Presently, we do not explicitly
account for non-malicious transport-layer anomalies thatmay have
been present in a trace captured in a live network, such as miscon-
figurations or implementation bugs. Our malicious traffic genera-
tors, described next, include exploits that target both network and
transport layers, as well as higher layers.

6.2 Attack Traffic Generation
• General attack traffic creation. MACE is a modular attack

composition framework that consists of three primary components:
(i) exploit,(ii) obfuscation, and(iii ) propagation, as well as a num-
ber of functions to support interpretation, execution, andexception
handling of attack profiles. For this work, we extended the existing
set of exploits in MACE from 5 to 21 attacks [21] and enhanced
its ability to modulate attack volumes. A taxonomy of available



HTTP
 client request

HTTP
 server response

HTTP
 server data

 S0  S1  S2 

(a) HTTP service automaton.

SMTP
 server banner

SMTP
 EHLO

SMTP
 EHLO response

SMTP
 MAIL From

SMTP
 MAIL From 

 response
SMTP

 RCPT To

SMTP
 RCPT To 
 response

SMTP
 DATA

SMTP
 BEGIN Message

SMTP
 Client Message

 First Packet

SMTP
 Client Message

SMTP
 Client Message

 Last Packet

SMTP
 Server Rcvd

SMTP
 Client Quit

SMTP
 Server Close

 S0  S1  S2  S3  S4  S5  S6  S7 

 S8  S9  S10  S11  S12  S13  S14 

(b) SMTP service automaton.

Figure 4: Service automata for two common application protocols.

Table 7: Taxonomy of MACE Exploits.
Host Based

APPLICATION LEVEL TRANSPORT LEVEL Network Based
Worms Back- DoS Fragmen- Other

doors tation DoS
Welchia rose
Nimda mydoom teardrop1 synflood smurf

CodeRed2 sdbot winnuke teardrop2 pod fraggle
Blaster bonk land

Dameware nestea jolt
Sasser oshare

Table 8: Summary of Trident tools developed for NIDS perfor-
mance evaluation.

Name Description
attack-replay A flow replay tool that allows two-way replay of a packet trace.
autom-gen A script that stores service descriptions and generates

service-specific automata for Harpoon.
exec-groom A traffic grooming algorithm that uses trust heuristics

to separate benign traffic from suspicious traffic.
payload-gen A tool that reads a groomed packet trace and outputs packet

pools that correspond to automata states.
payload-sanitize A tool that sanitizes inconsistencies in protocol headers

that are introduced due to interleaving.
split-darpa A script to separate malicious DARPA traffic from benign

based on labels.
harpoon plugin A traffic generation plugin for Harpoon that executes the

service description automata to produce application
payload traffic.

MACE exploits is provided in Table 7. Our objective is not to
provide a complete attack database for intrusion testing, but to pro-
vide a spectrum of attacks that exercise NIDS in sufficientlydiverse
ways and to support a set of basic building blocks that can be used
to create additional (and perhaps as yet unseen) attack vectors.

• DARPA attack recreation. The DARPA data set provides a
collection of 58 different attack instances. To extend the utility of
Trident, we added the capability to dynamically replay these at-
tacks. We began by developing a tool calledsplit-darpa to
distill labeled attacks from the mixed traces. Due to possible in-
accuracies in the labeling,split-darpa was able to automat-
ically isolate 56/58 attacks in the data set. Next, we developed
the ability to perform dynamic replay of attack traces with the tool
attack-replay. One of the key aspects of this effort is that
for TCP attacks, reassembly of payloads is done before sending
the packets through TCP sockets. All state is maintained at the
client and appropriate server responses are fed to the server through
an out-of-band control channel in a timely manner. For UDP and
ICMP packets, the traffic is transmitted through raw sockets.

6.3 Test Methodology

The objective of laboratory-based experiments reported in§ 7
is to demonstrate the utility of Trident by evaluating the effective-
ness of specific NIDS configurations along dimensions of packet
diversity (content and mix) and traffic volume.

Test Setup. The NIDS we evaluated in our experiments were
Bro (version 0.9a8) and Snort (version 2.3.0). For Bro, we used the
defaultbrolite.bro policy, and for Snort, we used the default
snort.conf. We included a third NIDS configuration consisting
of Snort (version 2.3.0) with a recent snapshot of signatures from
Bleeding Snort [2]. Each NIDS ran on a separate workstation with
a 2 GHz Intel Pentium 4 processor, 1 GB of RAM, and Intel/PRO
1000 network cards. FreeBSD 5.1 was installed on each machine6.

The three NIDS hosts were connected to a Cisco 6500 enterprise
switch/router. Harpoon, MACE, and attack-replay traffic genera-
tors were also connected to this switch, which was configuredin
such a way that the three NIDS received all traffic sent between the
traffic generation hosts. We used two large (216) address spaces as
“internal” and “external” networks, configuring interfacealiases on
each traffic generation host.

We ran three sets of experiments. The first set of experiments
was designed to establish a baseline of alarm behavior for each
NIDS. We first generated a low (5 Mb/s) rate of benign traffic from
the CSL and DARPA data sets, tracing all traffic. We then used
the captured packet trace in an offline manner to produce a baseline
set of alarms generated by the three NIDS configurations. Simi-
larly, for each exploit produced by MACE and each exploit from
the DARPA data set, we generated a baseline set of alarms for the
three NIDS configurations.

In the second set of experiments, we altered the mix of flow
volumes between benign traffic generated by Harpoon, and mali-
cious traffic generated by MACE (CSL) or attack-replay (DARPA).
To effect different mixes, we kept the benign traffic level constant
at about 20 Mb/s, while introducing different levels of malicious
flows. The specific mixes we used were 100% benign flows, 90%
benign flows, 50% benign flows, and 10% benign flows. Below,
we refer to these test setups as mix100, mix90/10, mix50/50,and
mix10/90, respectively.

In the third set of experiments, we used three different levels of
traffic volumes. We tuned Harpoon to generate roughly 20 Mb/s,
40 Mb/s, or 60 Mb/s for each of the CSL and DARPA data sets.
For each traffic volume level, we tuned MACE or attack-replayto
produce approximately 2 Mb/s, 4 Mb/s, and 6 Mb/s of aggregate

6On each host we modified the kernel param-
eters debug.bpf_bufsiz to 4194304 and
debug.bpf_maxbufsize to 8388608 as suggested in the
Bro documentation. Snort presumably can benefit from this
change as well so we applied the change to each NIDS host.



attack traffic, respectively. Below, we refer to these testsexploring
the effect of traffic volumes as vol20, vol40, and vol60.

We ran each experiment for 15 minutes. On each NIDS host, we
measured CPU and memory usage every 5 seconds usingvmstat.
We also took note of packet drops reported by each NIDS upon
shutdown7.

Evaluating Results. Using the results of running the malicious
traffic in the baseline experiments, we constructed representations
of the types and number of alarms at each NIDS we expected to
observe for each exploit. For the second and third sets of experi-
ments, we recorded the number of times an individual exploitwas
executed by MACE or attack-replay. We then were able to com-
pare the alarms produced by each NIDS with what we would ex-
pect, given the specific exploits launched over the durationof the
test. We wrote a script to automatically process this representation
of expected alarms along with the actual log files produced bya
NIDS during a given test. The script reported the set of alarms pro-
duced by the NIDS, along with a frequency of occurrence, and the
expected number of occurrences. We used these counts to generate
relative alarm efficiency and effectiveness values [22]. Efficiency is
defined asE f f iciency= TruePositives

AllAlarms , and is a measure of false pos-
itive occurrence, where a value of 1 means that there are no false
positives and a value of 0 means that all alarms are false positives.
Effectiveness is defined asE f f ectiveness= TruePositives

AllPositives is a mea-
sure of false negatives, where a value of 1 means there are no false
negatives (i.e., all alarms that should have occurred did occur).

7. LABORATORY-BASED IDS EVALUTION
We illustrate the utility of our framework through results of an

experimental evaluation of Bro, Snort and Bleeding Snort perfor-
mance under varying traffic content, mix and volume. While these
results substantiate the effectiveness of the measurementtools and
the potential of the methodology, they should be interpreted with
the following two caveats:

1. The results are limited by the representativeness and diversity
of our protocol automata.

2. Our goal is to conduct black-box evaluation of NIDS perfor-
mance. So we do not perform in-depth analysis of behavioral
causalities.

As a result,these results are not intended to be used as a head-
to-head comparison of the systems or their rulesets. However they
are valuable in that they demonstrate effects of varying benign and
malicious traffic content, mix and volume, and establish thefeasi-
bility of our approach.

Baselining Benign Traffic / Evaluating effect of interleaving.
An important question is how payload interleaving, the process of
random selection of packets from individual payload pools based
on the states in each service automaton, affects alarm characteris-
tics. In particular, it is important to demonstrate that no legitimate
alarms are introduced due to data consistency issues8.

Table 9 shows the number ofunique alarms produced by the
three NIDS setups in both offline and online configurations using
the CSL and DARPA data sets. For the offline setup, we ran each
NIDS configuration using each trace after grooming, but prior to
payload classification and sanitization so that the original flows (in-
cluding IP and TCP headers) were left intact. In the online setup,
we used Trident to generate flows using the groomed, classified,

7We verified these counts using a packet trace taken on a separate,
unloaded host.
8This is exactly what is handled by payload-sanitize.

Table 9: Number of unique alarms generated for each data set
for offline and online setups. The offline setup uses groomed
traces with the original flows (IP and TCP headers) left in-
tact. The online setup uses Trident to generate flows using the
groomed, classified, and sanitized traces.

CSL DARPA
IDS Offline Online Offline Online

Bro 64 9 21 11
Snort 19 11 47 21
Bleeding Snort 20 17 60 24

Table 10: Alarm counts for Bro, Snort, and Bleeding Snort for
a single instance of each MACE exploit.

exploit Bro Snort Bleed exploit Bro Snort Bleed
Snort Snort

SYN flood 0 0 0 oshare 2 1 1
blaster 0 1 1 pingofdeath 4 0 0
bonk 3 1 1 rose 2 0 0
codered2 2 4 3 sasser 0 0 11
dameware 0 0 0 sdbot 0 0 0
fraggle 0 0 0 smurf 0 0 0
jolt 332 133 107 teardrop1 3 1 1
land 1 1 1 teardrop2 3 1 1
mydoom 0 0 2 welchia 2 5 5
nestea 6 2 2 winnuke 0 10 10
nimda 1 1 1

and sanitized traces. We see that the number of unique alarmsis
consistently less for the online test. This effect is causedby the
conservative nature of our sanitization process and by the fact that
our laboratory tests are run in a relatively simple environment. Fur-
thermore, the set of alarm types generated in the online tests is a
subset of the alarm types produced in the offline setup. Alarms
unique to the offline tests are most often related to transport, ad-
dressing, and routing (i.e., layers 3 and 4) and the common alarms
are application-related. For example, in the offline CSL test, Bro
and both Snort variants report address and port scan activity, as
well as small packet fragments that may indicate nefarious activity.
Since Bro maintains connection state, it also reports unexpected
transport layer behavior, such as odd TCP window resizing, TCP
checksum errors, and potential split routing. Since we randomly
traversed the laboratory address spaces in our online tests, it is not
very likely that scanning alarms will be triggered (unless the con-
figuration is set to cause such alarms). Examples of Snort alarms
most common to the offline and online tests include HTTP URLs
associated with malicious activity (e.g., certain PHP scripts) and an
FTP CWD with the directory “. . . ” (rather than “..”). Examples of
Bro alarms most common to the offline and online tests includede-
tection of the FTP PASV command and detecting a single carriage
return at the end of HTTP or SMTP commands, where there should
be a carriage return-line feed pair.

Baselining Malicious Traffic. Tables 10 and 11 provide sum-
maries of the alerts generated by Bro, Snort and Bleeding Snort
for a single instance of each of the 21 MACE and 52 DARPA at-
tacks. It is from the data used to create these tables that we produce
the representation of the alarm types and frequencies we expect for
each MACE and DARPA exploit. Certain exploits in these tables
highlight some of the main differences between Bro and Snort, i.e.,
Bro is generally concerned with stateful monitoring of connections
and applications, while Snort is oriented toward detectingspecific
conditions in individual packets (such as the presence of a particu-
lar string). For example, a specific string in thewinnuke exploit in
Table 10 generates 10 alarms in Snort and Bleeding Snort but does
not trigger any Bro alarms. Similarly, unexpected SMTP state pro-



duced during themailbomb exploit in Table 11 triggers 450 alarms
in Bro, but 0 in Snort and 60 in Bleeding Snort.

Evaluating effect of Traffic Mix. Tests using a range of benign
and malicious traffic mixes demonstrate a remarkable diversity in
the behavior of Bro, Snort, and Bleeding Snort. Figures 5 and6
show CPU utilization and packet loss results for the CSL/MACE
and DARPA/attack-replay data sets. We see that as the overall flow
composition becomes dominated by malicious flows, CPU utiliza-
tion shows a clear increasing trend. We also see a differencecaused
by the application mix of benign traffic flows. For the CSL dataset
with no malicious flows (mix100), we see that Bleeding Snort con-
sumes more CPU time than Bro, but that the opposite occurs for
the DARPA data set with no malicious flows.

Packet loss behavior between the CSL and DARPA traffic is
quite different for both Bro and Snort/Bleeding Snort. For both
Snort variants, there is always some occurrence of packet loss. (We
are currently investigating the cause of this high level of packet loss
even with relatively low CPU utilization, which is consistent with
previously reported experiments [21].) On the other hand, Bro ap-
pears quite resilient to dropping packets until it consumesall CPU
resources, at which point loss becomes endemic.

Figures 7 and 8 show alarm effectiveness and efficiency over the
range of benign and malicious flow mixes. We see that for the CSL
data set alarm effectiveness drops as the traffic mix becomesdom-
inated by malicious flows (false negatives increase). This effect is
mainly caused by packet drops experienced by Bro and both Snort
variants. False positives are relatively low across all mixes for the
CSL data set, with the fewest false positives coming when most of
the traffic is malicious (mix10/90).

For Bro with the DARPA data set, there is a low absolute num-
ber of expected alarms, but with the Snort variants, there are many
more expected alarms. This low absolute number for Bro causes
the large variation in false positives. Since the DARPA dataset
has existed for quite some time, it is possible that Snort hasbeen
tuned to perform well on this set of exploits. Note that we do not
show any results for the mix100 (100% benign traffic flows) sce-
nario for alarm efficiency or effectiveness since all alarmsare con-
sidered false alarms.

Evaluating Effect of Volume. To understand the effect of vol-
ume in NIDS performance, we conducted experiments with traffic
rates of 20, 40 and 60 Mbps. In these experiments, the mix of ma-
licious to benign traffic was fixed at 10/90. Figures 5 and 6 show
the packet drops and CPU utilization for the three systems under
different volumes. On all systems, an increase in traffic volume di-
rectly affects CPU utilization. Interestingly, while Bro seems quite
resilient to packet drops with the CSL data set, the DARPA data
set, which is dominated by HTTP traffic, has a substantial impact
on Bro performance. Snort’s drop rates seem to degrade less in-
tensely with volume for this data set.

In Figures 7 and 8 we show the effectiveness and efficiency of
the systems in the volume experiments. Efficiency and effective-
ness do not seem to be highly correlated with volume of traffical-
though counts of alarms do increase with volume. Second, it seems
that Snort’s signature set has been to tuned to detect DARPA attacks
much better than Bro. Bro generates few alarms on the DARPA
data, and as a result even though Bro produces few false alarms
its efficiency and effectiveness are poor. For the CSL traffic, Bro’s
efficiency and effectiveness are significantly better. Another obser-
vation is that Bleeding Snort rule set, which is a superset ofthe
Snort rule set, seems to have lower efficiency and effectiveness. As
we would expect, the volume of baseline alerts in Bleeding Snort
is higher than for Snort. As a result, Bleeding Snort has a greater
chance of missing true alarms during packet drops but also a larger

chance for false positives, which decreases effectiveness.
Discussion. We believe that our results demonstrate that Tri-

dent is well-suited to test NIDS that consider protocols andthat
it provides a unique set of capabilities for testing the class of net-
worked systems that maintain connection state. The resultsalso
suggest a range of possibilities for tuning and configuring NIDS at
a local site based on expected average or worst case traffic scenar-
ios. Even though the overall traffic volume of any experimentis
not very high, each NIDS configuration exhibits a wide range of
performance characteristics over the set of tests. This diversity in
performance reveals the importance of the mix of benign applica-
tion traffic and malicious traffic. Our experiments also showthat
our decision to interleave payloads that originally belonged to dif-
ferent flows (while respecting a given service automaton) has no
discernible impact on alarm quality. Furthermore, the ability, via
packet interleaving, to create flows of virtually any size and mix
facilitates exercising NIDS over a broad spectrum of conditions.

With Trident, the system resource requirements of an IDS con-
figuration can be tested in an emulated live network setting.Typ-
ically, offline evaluations using publicly available data sets or lo-
cally captured packet traces can reveal only limited aspects of total
system performance. A key consequence of the capabilities pro-
vided with Trident is that comprehensive system evaluationcan
be done using locally captured packet traces enabling testsover
a range of relevant site-specific conditions.

Lastly, our results expose a key challenge in designing NIDS:
graceful degradation under unexpected or extreme conditions. For
example, comparing results of the CSL and DARPA data sets shows
that the the overall mix of application traffic has a significant impact
on NIDS system performance, and that this mix can also greatly af-
fect alarm quality. Even with relatively low overall trafficvolumes,
Trident can easily push each IDS to its operating threshold.

8. CONCLUSION
In this paper, we describe a traffic generation framework forro-

bust online evaluation of network intrusion detection systems. The
objective of our work is to create a system that generates realis-
tic, diverse streams of both benign and malicious traffic. Wede-
velop a methodology for benign traffic generation based on service
specific automata and using packet payloads from either empirical
packet traces or from the standard DARPA traces. This approach is
likely to preclude exact reproduction of experimental results since
privacy concerns will limit sharing across sites. However,we ar-
gue that it enables highly representative testing and will be highly
useful for researchers developing new systems and securityadmin-
istrators seeking to test and tune their own systems. We imple-
mented our traffic generation framework in a tool set we call Tri-
dent. We demonstrate the utility of Trident through a set of ex-
periments on open-source NIDS conducted in a controlled labora-
tory setting. The results of these experiments indicate that content,
mix and volume have tremendous effect on NIDS performance and
demonstrate Trident’s capability to expose a range of diverse be-
havior on modern NIDS.
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Figure 6: CPU utilization (left) and packet loss (right) measurements for Bro, Snort, and Bleeding Snort on DARPA trafficsetup.
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Figure 7: Alarm effectiveness (left) and efficiency (right)for Bro, Snort, and Bleeding Snort on CSL traffic setup.
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Figure 8: Alarm effectiveness (left) and efficiency (right)for Bro, Snort, and Bleeding Snort on DARPA traffic setup.
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