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ABSTRACT

We describe a traffic generation framework for conductintinen
evaluations of network intrusion detection systems oveida wange
of realistic conditions. The framework integrates bothigerand
malicious traffic, enabling generation of IP packet streamith
diverse characteristics from the perspective ipfpacket content
(both header and payload)ij)(packet mix(order of packets in
streams) andi{) packet voluméarrival rate of packets in streams).
We begin by describing a methodology for benign traffic ganer
tion that combines payload pools (possibly culled from ésaof
live traffic) with application-specific automata to generatreams
with representative characteristics. Next, we describeethod-
ology for malicious traffic generation, and techniques faegra-
tion with benign traffic to produce a range of realistic wodd
compositions. We realize our traffic generation framewarlai
tool we call Trident, and demonstrate its utility throughegies of
laboratory-based experiments using traces collected frorrde-
partmental border router, the DARPA Intrusion Detectioalta-
tion data sets provided by Lincoln Lab, and a suite of malisio
traffic modules that reproduce a broad range of attacks cartymo
seen in today’s networks. Our experiments demonstrateffibete
of varying packet content, mix, and volume on the perforneasfc
intrusion detection systems.

1. INTRODUCTION

Malicious traffic in the Internet is growing at an alarmindera
both in terms of volume and diversity. This escalating thoks
mands methods and tools to assess the robustness and iti@gabil
of network intrusion detection systems (NIDS) to a wide o
both malicious and benign traffic. Standard methods for Neixs-
uation include the use of canonical packet tracesoftime tests
or traffic generation systems fonline tests in controlled labora-
tory settings. Regardless of the approach, the benefitswifidna
established, comprehensive test suites for assessingnketvtru-
sion detection systems are obvious. They allow for greater c
trol, reproducibility, and standardized methods for corimgaper-
formance of different systems.

The landmark work by McHugh [15] introduced a set of require-
ments for NIDS test traffic streams. A summary of these requir
ments is that tests must be conducted with a diverse set e
tative packet flows (including packet content) of both barégd
malicious traffic. Specifically, the sequences of packeds ke
up flows in any test must be realistic since NIDS will raiserala
based on signatures of packet exchanges. Likewise, paeket h
ers and payloads must reflect a wide diversity of both benigh a
malicious content since NIDS also raise alarms based orecbnt
signatures.

A natural approach for addressing representativenesstirfloa/s
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and content is to take empirical traces from real networkefftine
analysis. However, this approach is often considered iotiga
due to standard privacy concerns and the difficulty in adeule
beling of individual packets as benign or malicious. The nmus
table exceptions are the well known DARPA data sets devdlope
at Lincoln Lab in 1998-1999 for offline NIDS testing_[12.113].
The authors of those studies went to great lengths to credite s
ware robots that mimicked user behavior as a means for gagher
empirical trace data. While this work has since come undereso
criticism, as we discuss in[3 3, it remains the largest plybéivail-
able data set for offline NIDS testing, and has been used iryman
studies.

Another approach to addressing the challenge of robust NIDS
testing is to generate traffic streams synthetically. Ingple, this
process can result in traces for offline tests or in live steéor
online tests. While many traffic generators have been dpedlo
for specific network systems tests, none of them addressrétie p
lem of robust NIDS testing in particular. Perhaps most irtgatty,
the synthetic generation of diverse, representative Iemadfic (in-
cluding payload content) has not been well addressed.

Our goal in this work is to create tools and a test methodology
for evaluating the growing number of stateful, protocolkagvin-
trusion detection systems, with a secondary aim of meetiagest
requirements outlined in_[15]. These objectives guideddmsign
of a collection of tools, called Trident, which can be usedj¢n-
erate packet traces for traditional offline evaluationsl ean also
be used in controlled laboratory settings to assess thaeeopler-
formance characteristics of NIDS or other network systeeng. (
firewalls). The capabilities of Trident include:

e The ability to generate representative benign traffic sta
including payloads,

e The ability to construct and generate new types of malicious
traffic,

e The ability to modulate the mixture of benign and malicious
test traffic,

e The ability to modulate the volume of both benign and mali-
cious test traffic,

e The ability to modulate temporal arrival processes of both
benign and malicious test traffic.

To the best of our knowledge, no existing toolset providés th
combination of capabilities, and we show that they enableigue
and important range of tests for NIDS.

One of the most important features of Trident, and something
that distinguishes it from simple malicious traffic generatsuch
as [21], is that it includes representative benign traffigiddnt



uses handcrafted automata-based representations ofapamtt
work services to generate a wide range of protocol-compfiaoket
streams. The packets (headers and payload) within thersirase
extracted from traces that have been carefully groomednove
malicious content.

The objective of trace grooming is to create a large pool okpa
ets that is both realistic and diverse. We discuss benefitsleaw-
backs of three strategies for grooming packet traces foiruse-
dent. The first approach is to synthetically generate tracgsus-
ing statistical models developed from live traces such asdeae

2. RELATED WORK

Several tools exist for generating purely malicious trafficlud-
ing [5,18,[16[21L]. Efforts toward generation of both benigd ana-
licious traffic streams include[_T10.119] and a commercialdpici
from Skaion[[4]. Trident differs from these systems in itpagach
to benign traffic generation and the level of flexibility thiapro-
vides in controlling the volume, mix and content of produtredfic
streams. Trident is also related to the Metasploit and Hbgtion
Framework projects that provide libraries of common modsrn
tacks [3[9].

in the creation of the DARPA data sets. The second approach is A related study that followed McHugh's critique is descdlia

to use a NIDS rule set (or sets) to extract benign packets &lom
empirically collected trace. The third approach is basedwon
notion of atrust matrixwhich, similar to NIDS rule sets, is used
to extract benign packets from empirically collected patiaces.
It is important to note that none of these strategies canlatesyp
guarantee that the resulting benign trace is free of maigcfgack-
ets. However, our comparisons of these grooming technigu§
treat their capabilities particularly in the case of sipedfic NIDS
evaluation and tuning.

We demonstrate the capabilities and utility of Trident tigio a
series of tests on live systems in a controlled laboratoxremn-
ment. We begin by populating Trident with two different kgmi
traffic traces. Next, we create a set of attack modules foicmak
traffic commonly seen in today’s networks, which we explain i
detail in 8[6. We use the combination of benign traces andlatta
modules to assess the behavior of two popular NIDS over araihg
traffic volume and packet diversity (content and mix). Oypek
ments are based on a set of test hypotheses and protocasettsi
for each system type. The results show that Trident easppses
an important range of behavior in our test systems. In pdaic
we show how NIDS performance can be sensitive to the mix of
benign application payloads. We also show that the relgtiee
portions of malicious flows to all traffic has a very clear irapan
NIDS performance and resulting alarm quality. We furthesvgh
that while traffic volume has a clear effect on NIDS packes]dits
effect on alarm quality is system dependent. The key imfiica
of our results is that Trident is well suited for evaluatingDi$ or
other network systems that are protocol-aware and staiefain-
tain connection state for detecting anomalous or malicamtisity
spanning multiple packets or connections). Our resultssalggest
that Trident would be very useful for tuning NIDS rule setd &me
host systems on which they run. Finally, it is also interegtio
note that during the course of our tests, a previously unkndpP
fragmentation bug in Bro was discovered which we would netha
found without the diverse capabilities of Trident.

In summary, the contributions of this work include the faling:

1. Development of a set of commonly seen attack profiles.
2. Development of a framework and integrated set of systems
that provide the flexibility to test systems under a range of
content, volume and mix of benign and attack traffic.

. Development of an unbiased trace grooming technique to
separate benign from malicious traffic.

. Demonstration of tool utility through laboratory evaioa
of two popular open source NIDS.

. Collection of scripts for(i) extraction of attacks from the
DARPA data set, andi) controlled dynamic replay of these
attacks (which can be used with other traces as well).

a paper by Mahoney and Chen]14]. The authors conducted an
evaluation ofanomaly-basedNIDS with an enhanced version of
the DARPA data set created by injecting benign traffic fronmna s
gle host (their department web server). Our work, while kmi
in some respects, differs in several respe@tsour target systems
are much broader than anomaly-based NIDB; our goal is to
provide a flexible and extensible framework for recreatingide
range of attack scenarios by modulating the mix of maliciang
benign traffic, control of traffic volumes, and inclusion efpre-
sentative benign payload conten(is;) we consider the problem of
separating potentially malicious traffic from benign tafiased on
protocol knowledge and statistical properties of the traffstead
of relying on a firewall or manual grooming.

Our trust framework for separating attack traffic from a ndixe
data set is inspired by the work of Juegal. [L1]]. In that study, the
authors proposed a hypothesis testing framework for datesta-
licious scanners. We use a similar though more simple method
this study. While beyond the scope of this work, a hypothest
ing framework could be incorporated into our benign traagr-
ing algorithm. Similarly, Antonatost al. examined the problem of
generating benign traffic based on statistical propertiesisting
traces[[¥]. The details of their algorithm differ from oursthat
their effort was limited to replicating payload contentsiletour
environment is broader, allowing control of not only packen-
tent but also higher level attributes such as flow arrivatbsource
address distribution.

3. MCHUGH'’S CRITIQUE OF LINCOLN
LAB IDS EVALUATION

A starting point for our work is the comprehensive critique b
McHugh of the DARPA-sponsored 1998-1999 IDS evaluatioB [1
A key contribution of McHugh'’s work is not only that it idefigd
the shortcomings of the reported evaluations but it usesktiod-
servations as a springboard for specifying requirememsdm-
prehensive IDS testing.

The data sets used in Lincoln Lab evaluations consist of a 5
week-long trace of packet data and feature 58 distinctlatiges.
Weeks 1 and 3 in the trace contain entirely benign traffic. K\&ee
contains benign traffic mixed with labeled attack traffictttan be
used to train anomaly-based intrusion detection systeneekgv4
and 5 contain test data which has an unlabeled mix of attadk an
benign traffic. Despite its problems, it remains one of thigdat
and most comprehensive data sets for IDS evaluation alailab
day, and is suitable for offline tests. While online testagsi trace
replay tool such as[1] are certainly possible, these toolsat al-
low for flexible manipulation of the resulting traffic strearim the
ways described below.

We distill the major points of McHugh'’s evaluation below,dan
use these as motivation for our IDS traffic generation aechitre.

Benign Data. The Lincoln Lab evaluation did not validate the
false alarm characteristics of the background (benigrg.datpar-



Table 1: Summary of DARPA and CSL data sets.

Dataset TCP UDP ICMP
Pkts Bytes Flows| Pkts Bytes Flows| Pkts Bytes
M @B K | M MB) (K (K) (MB)
Week1 | 141 2.85 456 | 0.69 64 18 12 4
Week2 | 124  2.25 471 | 0.72 66 27 47 3
Week 3 | 14.4 3.10 486 | 1.40 155 14 10 0.6
Week 4 | 12.1 2.04 333 | 1.98 214 21 93 27
Week 5 | 20.6 4.43 864 | 3.65 346 23 37 12
CSL 12.4  11.04 38 | 224 421 178 | 92 9

Table 2: Port distribution of CSL Traffic.

Port % No. Flows | % No. Pkts
123/udp (NTP) 38.40 2.64
53/udp (DNS) 34.92 2.06
25/tcp (SMTP) 4.72 0.26
80/tcp (HTTP) 2.72 3.55
3124/tcp 1.36 0.18
23127/udp 1.02 0.16
9618/udp (Condor) 0.95 0.14
3126/tcp (.NET) 0.94 0.07
21/tcp (FTP) 0.65 0.12
22/tcp (SSH) 0.02 2.67

Table 3: Port distribution of Darpa Week 1 Traffic.

Port % No. Flows | % No. Pkts
80ftcp (HTTP) 88.14 16.41
25/tcp (SMTP) 4.79 2.17
53/udp (DNS) 3.10 1.31
123/udp (NTP) 0.70 0.46
23/tcp (TELNET) 0.49 26.95
79/cp (FINGER) 0.42 0.08
21/tcp (FTP) 0.23 0.35
110/tcp (POP3) 0.09 0.03
37/cp (TIME) 0.08 0.01
22/tcp (SSH) 0.03 454

ticular, there was no rationale provided to convince theleeghat
the observedatesfrom this data set would be similar to those ob-
served in live environments. Moreover, sine®umeand bursti-
nesg(in terms of packet arrival characteristics) of backgrotnad-

fic vary widely across networks, it might be impossible toatee
a single representative background trace. Packet storsn#ting
from misconfigurations that are common in real networks dteho
resemble flooding attacks were ignored. In summary ratésmen
and burstiness of benign traffic are important considenatiand
timing parameters derived from network emulators must bie va
dated.

Malicious Data. The Lincoln Lab evaluations did not attempt
to ensure that thenix of malicious and benign traffic in the trace
data was realistic. Second, the number of systems that wére s
ject to attacks was quite limited and no attempt was madelto va
date that this distribution was realistic. Third, tacker-centric
approach used by the evaluators could produce biasedsesdt
offers little toward understanding IDS behavior. FinaNjcHugh
notes that as significant effort is expended by the reseancimu-
nity to generate attacks for testing intrusion detecticsteys, an
“attack-on-demand” facility that tracks and replicates katest at-
tacks would be extremely useful to the community. In summary
benign/malicious traffic mix is an important consideratamis the
diversity and current prevalence of malicious traffic usetksts.

Finally while simple topologies are commonly used to conduc
experiments and build data sets, the burden rests on thei-expe
menters to prove that the artificial environment does natifiig
cantly alter the meaningfulness of the experiments.

4. DATA COLLECTION

The data sets used to derive benign packet traces for tlii istu

clude the five week-long traces from the 1999 DARPA data sel, a

a trace (headers and payloads) collected for 100 minutesr{dr
100 GB) from our departmental border router, which we refer t
as the CSL trace. Weeks 1 and 3 of the DARPA data set contain
no malicious traffic and week 2 includes labeled malicioagitng

data while weeks 4 and 5 include malicious test data.

Table[1 provides a summary of both data sets. There are severa
contrasts between the two data sets. First, although theby@&P
counts for the CSL trace are larger than that of a typical voéétke
DARPA data, the number of flows is an order of magnitude smalle
This suggests that large data transfers are more prevaiehei
CSL network than in the DARPA trace. Second, the large number
of UDP flows seen in the CSL data is dominated by NTP and DNS
traffic. The high volume of NTP traffic seen in the CSL network
is partly attributed to[[118]. Third, comparing the port dilstitions
in Tabled® anfl3, we see that the application mix (as idedtifie
port numbers) in each trace is also quite different. Thifedéhce
is to be expected given the fact that the CSL data was coiléote
January, 2005 and the DARPA data was generated in 19990lt als
underscores the need for continuous collection and upglefitest
data.

5. CONSTRUCTING A BENIGN TRACE

One of the most important aspects of NIDS evaluation is a thor
ough assessment of the system'’s propensity to generatesaiar
the absence of malicious traffic (false positives). The ttiaof
false positives is intrinsically tied to both the NIDS undest and
the nature of benign traffic in the test environment. Themfone
of the essential aspects of NIDS evaluation for any netweekkie-
nign traffic workload that features the spectrum of charéttes
that aretypical or expectedor that network. While one might be
able to readily capture a collection of packet traces froertht-
work over an appropriate period of time, the difficulty asigeom
the fact that we expect these traces to contain a mixturetofte
nign and malicious traffic. So, the question becoinew to iden-
tify and isolate the benign traffidn many ways, this is exactly the
intrusion detection problem.

There are several possibilities for populating Tridentvaienign
traffic payloads. We discuss three strategies that mightipdayed
as a way to explore the design space. While other technigags m
be possible, we believe that the strategies we discuss asermre
able, effective and cover a large portion of the design space

e NIDS-based Strategies: The first strategy is to use a well-
known NIDS such as Snort (that is well known to generate aflot o
false alarms but also detects attacks accurately) to gropatleet
trace taken at a local site. We argue that this is a highlylprohtic
approach since a portion of the connections that are remared
likely to be those that are of "highest interest” in the sehaethey
are benign packets that trigger alarms (false positives).

e Synthetic Generation Strategies: A second strategy is to use
synthetic traffic generated using software robots that ataulser
behavior. The idea is to craft the robot to ensure that it @ané
ates connections with known good hosts (either local or tejno
This data is then used as a basis for further expansion ofdhe t
through synthetic generation of packets (as in the DARPA det).
While this strategy is clearly limited in terms of represgivieness
from an application mix and payload perspective, it may h@ap
priate for certain environments. A further benefit of thisthoel is
that since the base trace is generated by robots, it mayestrabk
data sets to be shared.

e Trust-based Strategies: The third strategy is to groom a packet
trace taken at a local site using connection heurisgas, (failure
rates or scanning characteristics). This approach expiloé dif-



ferences in connection characteristics of benign versuimas
sources based on a model of malicious connection behavios. T
technique is attractive because it is based on transpaat tbar-
acteristics, does not require knowledge of applicationesgios,
and is not biased by a particular system (NIDS independeige)
posit that a trust-based grooming strategy results in afgeak-
ets labeled as benign that have a higher opportunity forverat
false positive behavior. It is, however, limited in that itght miss
targeted attacks by sophisticated adversaries that hareection
characteristics sufficiently similar to benign users.

The remainder of this section explores the trust-basetegiya
We begin by defining the specifics of our trust-based grooming
methodology. Next, we evaluate its performance using the CS
packet trace. We conclude the section by discussing sonteeof t
strengths and pitfalls of this strategy.

5.1 Trust-Oriented Grooming

Our trust-based approach addresses the problem of sepgrati
benign traffic from a diverse trace by developing a systesrsst
of rules for attributing each connection in a trace with ac#fje
level of trust. We begin by defining a framework for estabtigh
the trust assignment rules that(i$ not NIDS-specifi@and (ii ) not
application-specific Thus, we consider the framework to bebi-
ased Within this framework, our approach is to associate trent |
els with the characteristics and observed behavior of théfmant
end hosts and the networks in which they reside. In this sémnst
assignment becomes site specific. We believe that sitefigitgds
essential for effective NIDS testing, but may not direcdgd itself
to standardized benchmarking.

Our framework supports attributing trust to each host at-mul
tiple granularities. We begin by considering individualstoas
beingtrusted neutral or suspect This estimate is derived simply
based on connection utility and endpoint location (locakraote).
We then extend this notion to defitmusted, neutraland suspect
networks. During the execution of the trust assignmentrélyn,
these labels are computed based on the behavior of thedndivi
hosts in each network. However, certain networks can alqode
identified as trusted or not trusted and thus all of the hostisase
networks will be either whitelisted or blacklisted. For exale,

a specific network may be known (based on personal knowledge)

to be well managed, and known to have strong, enforced $gcuri
policies €.g.,0ne’s own network). Likewise, certain networks are
known to be a common source of malicious traffic and might be
blacklisted as a suspect network.

5.2 The Trust Matrix Algorithm

Our trust assignment algorithm, which we call tihest matrix
(or TM), uses three basic metrics for its decisions, ineigdf)
endpoint location(ii) number of failed/inbound/outbound connec-
tions and (ii) volume of traffic exchange®learly, this framework
for benign traffic grooming can and should be modified by ifttiv
uals for their own environment and based on their own expeeie
The algorithm that we derived from this framework for isoigt
benign traffic assumesansitivity of trustand has the goal of iden-
tifying hosts as either trusted or suspect as follows:

Step 1. Trust local and white listed hosts.We assume that
the local network is well managed and that all its hosts arstmo
trustworthy. We also assume there is a possibility that rotle¢-
works are sufficiently trustworthy based on knowledge of aggn
ment and security practices. Label all hosts in these n&svas
trustefll.

Iwhile this assumption is reasonable for a well-managed orétw

Step 2. Trust remote servers.Since we trust local hosts, we
also trust connections that they initiBteit then follows that we can
trust the remote servers to which they connect—Ilabel thests las
trusted.

Step 3. Distrust scannersWe identify sources that have failed
connections sent to multiple ports or destinations as sfhp#/e
use a simple heuristic to identify scanners that considersdtio
of good connections (connections that are establishedutess-
fully receive data) to all connections. We call this the leo3t/alue.
The threshold paramet@y determines the minimum acceptable
value off3 for a trusted host an@_ determines the minimum value
for a neutral host. Hosts wifhivalues belowd, are labeled suspect.
An important point is that this heuristic is effective in tajing not
just port-scanners, but also describes most worms and ahyama
that randomly selects IP addresses for propagation

Step 4. Trust well behaved clientsWe identify remote clients
that have higif8 values (abov@y) and label those hosts as trusted.

Step 5. Distrust hosts in suspect networkddentify otherwise
unlabeled hosts in networks with scanners as network stispsts.

If the ratio of unsuccessful connections to all connectioos this
network falls below, label the all unlabeled hosts as suspect.

Step 6. Trust peer networks.Classify networks that exchange
high volumes of data with the local network as peer netwolks.
bel all unlabeled hosts in peer networks as trusted.

Step 7. Trust well-behaved networks.ldentify networks with
high B values abovédy; and label all unlabeled hosts in these net-
works as trusted.

Step 8. Label remaining unlabeled hosts as trust neutral.

There are two aspects of this process that are noteworthg. Th
first is that it is designed to beonservativei.e., it favors labeling
hosts as suspect. A hostis deemed suspect if the sum ofivtisiast
fail to meet any single trust metric. Second, the algorittrova is
ad hoc and is meant to be modified and enhanced on a per network
basis. The TM is summarized in Talfllk 4 and we demonstrate its
utility on a live traffic trace in §514.

Table 4: Ideal host classification in the trust matrix (T =
trusted, N = neutral, S = suspect, X = not applicable).

Hosts
Remote
Local | Server Client

Neutral [ Scanner
Trusted Network T T T S
Neutral Network X T N S
Peer Network X T T S
Suspect Network X T N S

5.3 Estimating Trust Matrix Parameters

We now describe how an empirical packet trace can used to es-
timate reasonable values for the threshold param@igrand 3. .
When individual IP addresses are considefeis, simply the ratio
of successful connections to all connection attempts withina
plicit B value of 1 for otherwise trusted hosts such as local clients.
For network aggregates, we use the ratio of all connectiam &
given network to determine the networlBsvalue. Figurdll shows
the distribution off3 values for individual hosts and two network

such as ours, it may be unsuitable for other networks. Otber c
siderations might include prevalence of spyware or othezwbdm-
promised hosts among local clients.

2This does not include “follow-up” connections. This siioatoc-
curs when a remote client first initiates a connection to allbost,
which leads to a follow-up connection from the local host.

3This technique is related to the methods describein [11].
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aggregates using the CSL trace. The first observation fraseth
plots is that the distribution df at the individual host IP level is
bimodal,i.e., hosts tend to be either well-behaved or have many
failed connections. This effect has an important impacturabil-
ity to identify malicious scanners. Second, the resultsastiat
the desirable bimodal-like distributional propertiesfotontinue
to hold at /24 network aggregates but are not as strong foagi6
gregates. This suggests that a good starting point for derisp
network trust in this trace lies somewhere between /24 afagt
gregates. These results provide the basis for fixing3puvalue at
0.8 andB, value at 0.2.

In Figure[2, we consider the parameters for identifying peer
networks, which are defined as networks that participatagh-h
volume data transfers with a trusted local network. Theolgistms
for the CSL trace suggest that there are few networks théiaege
large volumes of data; these are easily isolated. The fihwes
that a volume of 100 MB appears to be a reasonable threshold fo
separating high-volume transfers, and this value is notipeen-
sitive to the size of the network. We fix the volume threshadd p
rameter at 100 MB for the CSL trace.

We also explored the dynamics of the trust assignment dlhgpori
as the network radius expands (where radius 0 =/32 netwandliys
1 =/31, etc.). Our goal was to maximize the number of acclyrate
labeled hosts (trusted or suspect) while minimizing the Inemnof
inconsistent labels.g., trusted hosts in suspect networks or suspect
hosts within trusted networks). The results reinforce t&uits
from the earlier two heuristics for optimal network aggrémyafor
trust labeling, and suggest that the correct aggregatiorthfese
traces lies in the range /24 to /20. This result is likely testito the
administrative granularities used in allocation of IPvdli@s$ses.

5.4 Trust Matrix Evaluation
Evaluation of the resiliency of the TM to false negativeines

validation with a NIDS rule-set and conducting a manual éram
tion of the trace for each missed alert by the TM. More speaific
how often are legitimate hosts marked suspect (false pesjtand
how often are malicious hosts marked trusted by the TM algri
(false negatives)? We begin with an analysis of the formieiquhie
CSL trace. While we do not have full “ground truth” for thistda
we approximate it through a manual tagging process. We fast ¢
sify sources marked suspicious by the TM by protocol (porhhiu
bers). We then examine activity of several exemplars froohea
pool to determine whether the sources are malicious or hetig
our experience, the dominant pools tend to be either epteglti-
mate, malicious or misconfiguration. However, there areestass
popular ports, often with a single source, where we simplyaio
know enough about the activity to label it accurately. Samy, we
encounter activity that does not include sufficient contexdeter-
mine the intent of the source.g, ICMP echo requests are used for
both benign measurement and by worms such as Welchia).,In all
a small fraction (4,188—little over 1%) of the 373,395 s@sn
the full trace were deemed suspect.

We summarize our evaluation of the trace in Tdllle 5. First, we
find a high degree of failed connections directed at our deyear-
tal mail servers. An obvious explanation for this is spameok-
ing for open-relays. Second, we find that certain legitinkx{kS re-
quests are dropped by the DNS server. This is the expecte-beh
ior of BIND when requests timeout. Likewise, a small frantiaf
NTP requests seem to be dropped by the NTP server though we do
not have an explanation for this behavior. The TM also maeks c
tain sources running Condbas suspicious because these sources
can send periodic one-way UDP updates to a seiver they do
not receive an acknowledgment). This incorrect labelihgitates
a current weakness of our TM. While TCP connection semantics

4Condor is a widely-used computational resource sharingsys



Table 5: Activity summary of sources deemed suspect by the  Table 6: Summary of dominant Snort false alert categories.

TM. Sources under category “Legitimate” are considered fate Note that individual sources could contribute to multiple Short
alarms. “Other” includes malicious, legitimate, and unknown. alerts.
Service Port No. Sources| Category Alert No. Sources| No. Instances
SMTP 25 940 | Spam (Open-Relay) ICMP PING NMAP 877 1327
DNS 53 851 | Legitimate WEB-MISC /doc/ access 867 2027
NTP 123 469 | Legitimate ICMP Large ICMP Packet 322 13,021
Condor 9618 322 | Legitimate WEB-MISC Invalid HTTP Version String 219 1162
DCERPC 1025 230 | Exploit (portscan) UDP Portsweep 166 570
Beagle 2745 127 | Exploit FTP command overflow attempt 64 5690
HTTP 80 107 | Worms, Open-Proxy WEB-MISC robots.txt access 60 93
MyDoom 3127 87 | Exploit (http_inspect) DOUBLE DECODING ATTACK| 58 191
EDonkey 4662 71 | Misconfiguration
FTP 21 54 | Legitimate
MS-SQL | 1433, 1434 10 | MS-SQL Probe Response,Slammer . s . Lo ..
Other 960 | — italso has limitations. Itis likely that a limited amountroglicious

packets will persist after trace grooming. For example naoanly
scanning HTTP worm may send exactly one connection reqoest t
can often be extended to most UDP sessions, some isolattickapp ~ the local network and that request may contact an open webrser

tions do not follow a two-way data exchange and are not ptgsen ~ Detecting the presence of such attacks is impossible usingust
accounted for in the TM so may need to be whitelisted. The TM assignment algorithm. While this connection might be flagie

also successfully detects several instances of malicraffictsuch an IDS, we reject the approach of using IDS rule sets for trace
as sources trying to exploit DCERPC vulnerabilities on 4625, grooming since loose rule sets might flag benign traffic thala
sources scanning for Beagle and MyDoom backdoors, MS-SQL Otherwise cause false positives in tests. We argue thabéttsr to
password probing attempts and MS-SQL Slammer worm. have_ some unexpected_ true positives in test re_s_ults thaedtawe

A robust evaluation of the resiliency of the TM to false négst or eliminate the possibility of seeing false positives doever-
involves validation with respect to a NIDS rule-set and amiihg sanitized benign traces. Second, we note that without atisie
a manual examination of the trace for each missed alert byysur @l packets of a trace (a task we consider to be infeasiltle}etis
tem. This task can be particularly labor intensive congidethe a possibility of false negatives during tests. The potédiféculty

size of the data set and volume of false positives in mode®aNI  this poses for analyzing test results may be an inevitaatietioff of
rulesets as we discuss below. Instead, we look for falsetimega ~ Naving the realism of traffic streams collected from an dfpemal

with respect to the most common background radiation sigeat network. Third, certain site-specific applications suctCasdor
developed for the Bro IDS[17]. Our results revealerkeo false-  that use one-way UDP streams might need to be whitelistes sin

negative raté. they do not have a well-formed notion of “goodness”. Extegdi

Next, we compare the TM groomed trace with the result of slert Our methodology to consider this traffic is an area for futucek.
generated by Snort. We found that running Snort (versiorgp.4  Finally, our notion of trust depends on the perspective efidtal
with a default configuration and snort-rules-pr-2.4 raislests on ~ Network. That is, a network perceived as hostile by us migha b
3,367 distinct sources. This result is in line with the numbg neutral network for another service provider with whom tbethe
sources flagged as suspect by the TM. We summarize the daminannetwork has a peering relationship.

Snort alert categories in Tadlg# 5. Examining behavior ofcgip
sources from these dominant categories suggests thatltlwy-a 6. THE TRIDENT SYSTEM
respond to legitimate traffic. However, several attack cesiwere In this section we describe how application-specific benigh

also detected by Snort’s payload signatures (SQL-prolhegi. - ' S . !
Slammer) and its portscan detector (DCERPC, Beagle). While %;éﬁigig:\?oma“mous traffic streams are generatednatii

Snort detected all of the MS-SQL attacks, it only detectethalls
portion of other obvious background-radiation attackdnses such
as 8/230 DCERPC attacks, 11/127 Beagle attacks.

In comparing the sources flagged as malicious by both Snort
and the TM, we find that there is less than a 10% overlap (308
sources). We believe that this highlights the potentidityof the
TM approach—a large fraction of packets that trigger falssi{
tives in Snort are not flagged by the TM. The overlap includes a
of the background-radiation scanners detected by Snaeh as

the DCERPC exploit and Beagle backdoor attempts, sources
flagged by the TM are a superset of Snort sources for these at- o gt A
tacks. Some of the legitimate DNS and NTP sources flagged as - -

malicious by the TM also confuse Snort's portscan detedtar
these services, the Snort false positives are a subset diMfse
false positives listed in Tab[d 5.

Trace Grooming

Payload Classification

Service Automata Generation Payload Sanitization

Figure 3: Steps for benign traffic generation in Trident.

5.5 Limitations of the Trust Assignment Algo- . . .
rithm g g 6.1 Benign Traffic Generation
Several studies of IDS performance, including many papet t
use the DARPA data set, consider detection characterfsticsan

SWhile we detected several instances of true alerts such as MS off line evaluation é.g.,[6]). As we show in the results of our lab-
SQL Slammer, no background radiation attacks were missed. oratory experiments, the dynamic characteristics of traffieams,

While the TM has the advantages of being unbiased and simple,




notably the mix and volume, can have huge impact on NIDS per- developed by the research community over time.

formance and provide key insights for system tuning. Tlozeef
one of the challenges of benign traffic generation is to dyoalty
generate diverse traffic streams based on knowledge otthoma
a limited set of traces. To this end, we considered thre¢egfies
for generating benign traffic.

The first strategy is to use a tool liké ow- r epl ay [I] to cre-
ate flows without any modification to packet headers or paldoa
The most significant drawback of this approach is that it caebye-
ates the client side of a connection. A component of Tridatied
at t ack- r epl ay (described below) provides the capability to re-
play both endpoints of a flow. While this strategy is simptdsi
clearly limited in the amount of diversity that can introédanto a
traffic stream.

A second strategy is statistical replication of payloadspim-
tocols based on byte-level properties. To our knowledgeethas
been only limited work in this area. For example, in the crinté
anomaly detection, language-independent statisticdil@gsasuch
as n-grams have been proposed to model application pay[#2ds
These techniques are attractive because they allow tradfierg-
tion systems to be oblivious to session/application layetqzols.
However, the current trend toward protocol-awareness idero
NIDS and traffic analyzers suggests that traffic generatemds to
be application-aware to generate meaningful headers/pdglthat
exercise the NIDS in ways similar to real traffic.

Another approach, and the one we adopt in Trident, is prétoco
aware emulation based on payload interleaving. Payloadé&atv-
ing is our term for dynamic construction of flows through ramd
selection of packets from payload pools corresponding ttibqodar
states in a service automaton, as we describe below. Thisochet
supports the generation of synthetic traffic streams witlisec
application level headers and payloads. While not a focusuof
evaluation, the statistical techniques discussedln § &ldie con-
sidered complementary and could be used to generate applica
level data, for example the entity body of an HTTP connectite
describe the components of our protocol-aware emulatiberse
below.

e Automata Generation. At the heart of our benign traffic gen-
eration system is a collection of automata with states thatiibe
classes of packets observed in a specific service. In ounprel
nary exploration of the feasibility of this approach, we bssic

e Payload Classification. The raw traces classified as benign
(i.e.,trusted or trust neutral) are given as input to the payloasd-cl
sification module which we cafjayl oad- gen. The purpose of
payl oad- genis to classify packets in the trace into various pools
that correspond to particular states of different servideraata. In
this step, packets generated in the same application btatépm
different flows, are aggregated into the same pool. Thisaggdion
does not preserve packet ordering from any individual flow.

e Payload Sanitization. Following classification, payloads are
discarded or modified to ensure that they do not violate alsimp
set of requirements. Discard is appropriate if the origpetioad
suffered truncation during packet capture or the payloash dwt
match a valid automata state. Modification is generally dmne
simplify service automata definition and processing, andviaid
generation of false alarms that would result simply as agcefbf
interleaving. Our current approach is to be aggressivedsemor-
malization steps. For example, with HTTP, we rem@e@nect i on,
Cont ent - | engt h, andTr ansf er - encodi ng headers from
server responses, since a NIDS could conceivably use ttexas i
to monitor a connection in progress. Since we wish to antijra
use client and server payloads without maintaining eladbostate
or dynamically rewriting payloads, we remove the echoedesid
from the server response since it is not required for coprestbcol
operation. An effect of our sanitization is that we may unelgort
the levels of false alarms generated by the NIDS that we atalu

e Content Aware Traffic Generation via Harpoon. We wrote
a new traffic generation plug-in for Harpodn ]20] to exectte t
application state machines and transmit sanitized paglo&n-
trol of state machine processing is done on Harpoon cligtiés:-
poon servers simply respond to requests to send a certaiherum
of packets from specified application payload pools.

In addition to the distributional data used in Harpoon'sauif
TCP traffic generator, we defifympacket@NdPriowsizedistribu-
tions. As prologue and epilogue state machine stages acatexk
one packet is sent from the appropriate application payjozal.
For the dialog stage, the number of packets to send in eatd sta
is chosen from a distributioRyympackets 1N addition, the dialog
stage ends when the total traffic sent exceeds a value chosemf
distributionPg|owsize CONnections are initiated according to a dis-
tribution Pinterconnection Each of these distributions may be speci-

automata to describe the most popular services seen in the CS fied for each service. The effect of modulating the flow simter-
trace and in the DARPA data set. We do not claim completeness connection time, and active session distributions is theiwerall

of these automata or suggest that they exercise all clatb#B8.

We use them as examples to demonstrate the utility of our-meth

traffic volume and application mix can be tuned as desired.
The exchange of application-layer payloads according feeng

ods and to show how they can accommodate flexible recreation o service automaton is done using standard user-level sdlest

a broad class of protocols.

above the transport layer. Benign traffic streams produgetirib

Our automata describe each service through a three phase abdent are therefore targeted at intrusion detection sysfeoused

straction that is typical of most network protocols. Thetfitage,

on layers above the transport layer. Presently, we do ndicakp

prologue describes the application-level client server handshake account for non-malicious transport-layer anomalies ey have

The next stage idialog, in which client and server exchange data.
The final stage igpilogue in which the participants agree to grace-
fully tear down the connection. Each stage in the conversati

could involve several states in the automata and the fingesta

optional in some protocols such as HTTP. We created automata

been present in a trace captured in a live network, such amis
figurations or implementation bugs. Our malicious traffioge-
tors, described next, include exploits that target botlvost and
transport layers, as well as higher layers.

that model the packet exchange protocols for HTTP, SMTP,DNS g 2 Attack Traffic Generation

Telnet, FTP and SSH.€.the most popular services from our data

sets). Our automata-based abstractions for HTTP and SMEP ar

shown in Figuref4(h) anfi_4]b). Pipelined HTTP requestsiare c
rently not supported but should be an easy extension.

A weakness of a protocol-aware automata-based system such a

ours is that the effectiveness of the evaluation is relaiete qual-
ity of the automata. It is our hope that a library of automatiétve

e General attack traffic creation. MACE is a modular attack
composition framework that consists of three primary congms:
(i) exploit, (ii ) obfuscation, andiii ) propagation, as well as a num-
ber of functions to support interpretation, execution, axception
handling of attack profiles. For this work, we extended thstig
set of exploits in MACE from 5 to 21 attacks]21] and enhanced
its ability to modulate attack volumes. A taxonomy of avaiéa
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Figure 4: Service automata for two common application prot@ols.

Table 7: Taxonomy of MACE Exploits.

Host Based
APPLICATION LEVEL TRANSPORT LEVEL | Network Based
Worms Back- DoS Fragmen- Other
doors tation DoS

Welchia rose

Nimda mydoom teardropl| synflood smurf
CodeRed2| sdbot winnuke | teardrop2 pod fraggle

Blaster bonk land
Dameware nestea jolt

Sasser oshare

Table 8: Summary of Trident tools developed for NIDS perfor-
mance evaluation.

Name Description
attack-replay A flow replay tool that allows two-way replay of a packet trade
autom-gen A script that stores service descriptions and generates
service-specific automata for Harpoon.
exec-groom A traffic grooming algorithm that uses trust heuristics
to separate benign traffic from suspicious traffic.
payload-gen A tool that reads a groomed packet trace and outputs packet

pools that correspond to automata states.

A tool that sanitizes inconsistencies in protocol headers
that are introduced due to interleaving.

A script to separate malicious DARPA traffic from benign
based on labels.

A traffic generation plugin for Harpoon that executes the
service description automata to produce application
payload traffic.

payload-sanitize
split-darpa

harpoon plugin

MACE exploits is provided in TablEl7. Our objective is not to
provide a complete attack database for intrusion testinigtdopro-
vide a spectrum of attacks that exercise NIDS in sufficiedithgrse
ways and to support a set of basic building blocks that carsbd u
to create additional (and perhaps as yet unseen) attackrsect

e DARPA attack recreation. The DARPA data set provides a
collection of 58 different attack instances. To extend ttiktyiof
Trident, we added the capability to dynamically replay ¢has
tacks. We began by developing a tool calkel i t - dar pa to
distill labeled attacks from the mixed traces. Due to pdssifr-
accuracies in the labelingpl i t - dar pa was able to automat-
ically isolate 56/58 attacks in the data set. Next, we deado
the ability to perform dynamic replay of attack traces witb tool
att ack-repl ay. One of the key aspects of this effort is that
for TCP attacks, reassembly of payloads is done before sgndi
the packets through TCP sockets. All state is maintainetheat t
client and appropriate server responses are fed to thersbroagh
an out-of-band control channel in a timely manner. For UD& an
ICMP packets, the traffic is transmitted through raw sockets

6.3 Test Methodology

The objective of laboratory-based experiments reporte8l[th
is to demonstrate the utility of Trident by evaluating th&eefive-
ness of specific NIDS configurations along dimensions of gack
diversity (content and mix) and traffic volume.

Test Setup. The NIDS we evaluated in our experiments were
Bro (version 0.9a8) and Snort (version 2.3.0). For Bro, wesliibe
defaultbr ol i t e. br o policy, and for Snort, we used the default
snort . conf. We included a third NIDS configuration consisting
of Snort (version 2.3.0) with a recent snapshot of signatfn@m
Bleeding Snortl[2]. Each NIDS ran on a separate workstatim w
a 2 GHz Intel Pentium 4 processor, 1 GB of RAM, and Intel/PRO
1000 network cards. FreeBSD 5.1 was installed on each nethin

The three NIDS hosts were connected to a Cisco 6500 enterpris
switch/router. Harpoon, MACE, and attack-replay traffingea-
tors were also connected to this switch, which was configured
such a way that the three NIDS received all traffic sent betvtlee
traffic generation hosts. We used two largé¥{address spaces as
“internal” and “external” networks, configuring interfaabases on
each traffic generation host.

We ran three sets of experiments. The first set of experiments
was designed to establish a baseline of alarm behavior fdr ea
NIDS. We first generated a low (5 Mb/s) rate of benign traffasir
the CSL and DARPA data sets, tracing all traffic. We then used
the captured packet trace in an offline manner to producedibas
set of alarms generated by the three NIDS configurations.i-Sim
larly, for each exploit produced by MACE and each exploiniro
the DARPA data set, we generated a baseline set of alarmisefor t
three NIDS configurations.

In the second set of experiments, we altered the mix of flow
volumes between benign traffic generated by Harpoon, and mal
cious traffic generated by MACE (CSL) or attack-replay (DARP
To effect different mixes, we kept the benign traffic levehstant
at about 20 Mb/s, while introducing different levels of ncadus
flows. The specific mixes we used were 100% benign flows, 90%
benign flows, 50% benign flows, and 10% benign flows. Below,
we refer to these test setups as mix100, mix90/10, mix5@&Ba,
mix10/90, respectively.

In the third set of experiments, we used three differentléegé
traffic volumes. We tuned Harpoon to generate roughly 20 Mb/s
40 Mb/s, or 60 Mb/s for each of the CSL and DARPA data sets.
For each traffic volume level, we tuned MACE or attack-replay
produce approximately 2 Mb/s, 4 Mb/s, and 6 Mb/s of aggregate

0n each host we modified the kernel param-
eters debug. bpf _bufsi z to 4194304 and
debug. bpf _maxbuf si ze to 8388608 as suggested in the
Bro documentation. Snort presumably can benefit from this
change as well so we applied the change to each NIDS host.



attack traffic, respectively. Below, we refer to these tegfdoring
the effect of traffic volumes as vol20, vol40, and vol60.

We ran each experiment for 15 minutes. On each NIDS host, we

measured CPU and memory usage every 5 secondswussteat .

We also took note of packet drops reported by each NIDS upon

shutdowfl.
Evaluating Results. Using the results of running the malicious
traffic in the baseline experiments, we constructed reptatens

of the types and number of alarms at each NIDS we expected to

observe for each exploit. For the second and third sets arexp
ments, we recorded the number of times an individual explag
executed by MACE or attack-replay. We then were able to com-

Table 9: Number of unique alarms generated for each data set
for offline and online setups. The offline setup uses groomed
traces with the original flows (IP and TCP headers) left in-
tact. The online setup uses Trident to generate flows using ¢
groomed, classified, and sanitized traces.

CSL DARPA
IDS Offline  Online | Offline  Online
Bro 64 9 21 11
Snort 19 11 47 21
Bleeding Snort 20 17 60 24

pare the alarms produced by each NIDS with what we would ex- Table 10: Alarm counts for Bro, Snort, and Bleeding Snort for

pect, given the specific exploits launched over the duratfotine
test. We wrote a script to automatically process this regmtegion
of expected alarms along with the actual log files producea by
NIDS during a given test. The script reported the set of adgpm-
duced by the NIDS, along with a frequency of occurrence, aed t
expected number of occurrences. We used these counts t@ggene
relative alarm efficiency and effectiveness vallie$ [22ficicy is
defined a€ f ficiency— Truepositives and is a measure of false pos-
itive occurrence, where a value of 1 means that there arelse fa
positives and a value of 0 means that all alarms are falsé¢ivyessi
Effectiveness is defined &f fectiveness- THHEPOSIIVESis 5 meg-
sure of false negatives, where a value of 1 means there ags® f

negativesi(e., all alarms that should have occurred did occur).

7. LABORATORY-BASED IDS EVALUTION

We illustrate the utility of our framework through resultsam
experimental evaluation of Bro, Snort and Bleeding Snorfgpre
mance under varying traffic content, mix and volume. Whikesth
results substantiate the effectiveness of the measuraowatand
the potential of the methodology, they should be interptetih
the following two caveats:

1. The results are limited by the representativeness aedsity
of our protocol automata.

2. Our goal is to conduct black-box evaluation of NIDS perfor

a single instance of each MACE exploit.

exploit Bro | Snort | Bleed || exploit Bro | Snort | Bleed
Snort Snort
SYNflood | O 0 0 oshare 2 1 1
blaster 0 1 1 pingofdeath | 4 0 0
bonk 3 1 1 rose 2 0 0
codered2 2 4 3 sasser 0 0 11
dameware | O 0 0 sdbot 0 0 0
fraggle 0 0 0 smurf 0 0 0
jolt 332 | 133 107 teardropl 3 1 1
land 1 1 1 teardrop2 3 1 1
mydoom 0 0 2 welchia 2 5 5
nestea 6 2 2 winnuke 0 10 10
nimda 1 1 1

and sanitized traces. We see that the number of unique alarms
consistently less for the online test. This effect is causgdhe
conservative nature of our sanitization process and byatiettiat
our laboratory tests are run in a relatively simple envirenmFur-
thermore, the set of alarm types generated in the online iest
subset of the alarm types produced in the offline setup. Adarm
unique to the offline tests are most often related to transpdr
dressing, and routing.€., layers 3 and 4) and the common alarms
are application-related. For example, in the offline CSL, tBso
and both Snort variants report address and port scan gctast
well as small packet fragments that may indicate nefariatisity.
Since Bro maintains connection state, it also reports ureepl
transport layer behavior, such as odd TCP window resizigR T

mance. So we do not perform in-depth analysis of behavioral -pecksum errors, and potential split routing. Since we oaniy

causalities.

As a resultthese results are not intended to be used as a head-

to-head comparison of the systems or their rulesdtsvever they
are valuable in that they demonstrate effects of varyindgreand
malicious traffic content, mix and volume, and establishfézesi-
bility of our approach.

Baselining Benign Traffic / Evaluating effect of interleaving.
An important question is how payload interleaving, the psscof
random selection of packets from individual payload poaisead
on the states in each service automaton, affects alarmatbesa
tics. In particular, it is important to demonstrate that egitimate
alarms are introduced due to data consistency iBsues

Table[® shows the number ohique alarms produced by the
three NIDS setups in both offline and online configuratioriagis

the CSL and DARPA data sets. For the offline setup, we ran each

NIDS configuration using each trace after grooming, butrpigo
payload classification and sanitization so that the oridioas (in-
cluding IP and TCP headers) were left intact. In the onlirtefse
we used Trident to generate flows using the groomed, classifie

"We verified these counts using a packet trace taken on a $epara
unloaded host.

8This is exactly what is handled by payload-sanitize.

traversed the laboratory address spaces in our onling ieistaot

very likely that scanning alarms will be triggered (unlelss ton-
figuration is set to cause such alarms). Examples of Snarhala
most common to the offline and online tests include HTTP URLs
associated with malicious activite.g, certain PHP scripts) and an
FTP CWD with the directory “...” (rather than “.."). Exampglef

Bro alarms most common to the offline and online tests inctiee
tection of the FTP PASV command and detecting a single agria
return at the end of HTTP or SMTP commands, where there should
be a carriage return-line feed pair.

Baselining Malicious Traffic. TabledZID anf11 provide sum-
maries of the alerts generated by Bro, Snort and BleedingtSno
for a single instance of each of the 21 MACE and 52 DARPA at-
tacks. Itis from the data used to create these tables thatodeige
the representation of the alarm types and frequencies wecefqr
each MACE and DARPA exploit. Certain exploits in these table
highlight some of the main differences between Bro and Shert
Bro is generally concerned with stateful monitoring of ceciions
and applications, while Snort is oriented toward detecsipecific
conditions in individual packets (such as the presence afticp-
lar string). For example, a specific string in thennuke exploit in
Table[ID generates 10 alarms in Snort and Bleeding Snoridast d
not trigger any Bro alarms. Similarly, unexpected SMTPespab-



duced during thenailbomb exploit in TabldTlL triggers 450 alarms
in Bro, but 0 in Snort and 60 in Bleeding Snort.

Evaluating effect of Traffic Mix. Tests using a range of benign
and malicious traffic mixes demonstrate a remarkable diyers
the behavior of Bro, Snort, and Bleeding Snort. Figlides 5@nd
show CPU utilization and packet loss results for the CSL/NEAC
and DARPA/attack-replay data sets. We see that as the obfleval
composition becomes dominated by malicious flows, CPUzatili
tion shows a clear increasing trend. We also see a differeacsed
by the application mix of benign traffic flows. For the CSL dsgh
with no malicious flows (mix100), we see that Bleeding Snort-c

chance for false positives, which decreases effectiveness
Discussion. We believe that our results demonstrate that Tri-
dent is well-suited to test NIDS that consider protocols #wat
it provides a unique set of capabilities for testing the €lasnet-
worked systems that maintain connection state. The realdts
suggest a range of possibilities for tuning and configurihig ®at
a local site based on expected average or worst case tradfiaisc
ios. Even though the overall traffic volume of any experimient
not very high, each NIDS configuration exhibits a wide ranfe o
performance characteristics over the set of tests. Thirglly in
performance reveals the importance of the mix of benignicapl

sumes more CPU time than Bro, but that the opposite occurs for tion traffic and malicious traffic. Our experiments also shbat

the DARPA data set with no malicious flows.

Packet loss behavior between the CSL and DARPA traffic is
quite different for both Bro and Snort/Bleeding Snort. Fottb
Snort variants, there is always some occurrence of packet (Ve
are currently investigating the cause of this high levelaxfket loss
even with relatively low CPU utilization, which is consiatewith
previously reported experimen{s [21].) On the other hand,dp-
pears quite resilient to dropping packets until it consuale€PU
resources, at which point loss becomes endemic.

Figured¥ anfil8 show alarm effectiveness and efficiency beer t
range of benign and malicious flow mixes. We see that for the CS
data set alarm effectiveness drops as the traffic mix becoomes
inated by malicious flows (false negatives increase). Tiéeseis
mainly caused by packet drops experienced by Bro and bottt Sno
variants. False positives are relatively low across allasifor the
CSL data set, with the fewest false positives coming whert wfos
the traffic is malicious (mix10/90).

For Bro with the DARPA data set, there is a low absolute num-
ber of expected alarms, but with the Snort variants, thexeramy
more expected alarms. This low absolute number for Bro cause
the large variation in false positives. Since the DARPA dmt
has existed for quite some time, it is possible that Snorthiegen
tuned to perform well on this set of exploits. Note that we db n
show any results for the mix100 (100% benign traffic flows) sce
nario for alarm efficiency or effectiveness since all alaarescon-
sidered false alarms.

Evaluating Effect of Volume. To understand the effect of vol-
ume in NIDS performance, we conducted experiments witli¢raf
rates of 20, 40 and 60 Mbps. In these experiments, the mix ef ma
licious to benign traffic was fixed at 10/90. Figurgs 5 did 6isho
the packet drops and CPU utilization for the three systenaeiun
different volumes. On all systems, an increase in trafficma di-
rectly affects CPU utilization. Interestingly, while Breems quite
resilient to packet drops with the CSL data set, the DARPA dat
set, which is dominated by HTTP traffic, has a substantiakichp
on Bro performance. Snort's drop rates seem to degraderess i
tensely with volume for this data set.

In Figured¥ and8 we show the effectiveness and efficiency of

the systems in the volume experiments. Efficiency and éffect
ness do not seem to be highly correlated with volume of traffic
though counts of alarms do increase with volume. Secondgins
that Snort’s signature set has been to tuned to detect DAR&éka

much better than Bro. Bro generates few alarms on the DARPA
data, and as a result even though Bro produces few false alarm

its efficiency and effectiveness are poor. For the CSL trafio’s
efficiency and effectiveness are significantly better. Arobbser-
vation is that Bleeding Snort rule set, which is a supersehef
Snort rule set, seems to have lower efficiency and effe@s®nAs
we would expect, the volume of baseline alerts in BleedingrSn
is higher than for Snort. As a result, Bleeding Snort has atgre
chance of missing true alarms during packet drops but alamat

our decision to interleave payloads that originally bekhg¢p dif-
ferent flows (while respecting a given service automators) a
discernible impact on alarm quality. Furthermore, theigbivia
packet interleaving, to create flows of virtually any size anix
facilitates exercising NIDS over a broad spectrum of caonds.

With Trident, the system resource requirements of an IDS con
figuration can be tested in an emulated live network settirygp-
ically, offline evaluations using publicly available dagtssor lo-
cally captured packet traces can reveal only limited aspafdbtal
system performance. A key consequence of the capabilities p
vided with Trident is that comprehensive system evaluatian
be done using locally captured packet traces enabling tests
a range of relevant site-specific conditions.

Lastly, our results expose a key challenge in designing NIDS
graceful degradation under unexpected or extreme conditibor
example, comparing results of the CSL and DARPA data setgsho
that the the overall mix of application traffic has a significianpact
on NIDS system performance, and that this mix can also graétl
fect alarm quality. Even with relatively low overall traffiolumes,
Trident can easily push each IDS to its operating threshold.

8. CONCLUSION

In this paper, we describe a traffic generation frameworkder
bust online evaluation of network intrusion detection egst. The
objective of our work is to create a system that generatdstea
tic, diverse streams of both benign and malicious traffic. d&e
velop a methodology for benign traffic generation based orice
specific automata and using packet payloads from eitherreralpi
packet traces or from the standard DARPA traces. This aphrisa
likely to preclude exact reproduction of experimental tesssince
privacy concerns will limit sharing across sites. Howewveg, ar-
gue that it enables highly representative testing and wilhighly
useful for researchers developing new systems and seeuirityn-
istrators seeking to test and tune their own systems. Weeimpl
mented our traffic generation framework in a tool set we cal T
dent. We demonstrate the utility of Trident through a set)of e
periments on open-source NIDS conducted in a controlleoriab
tory setting. The results of these experiments indicatedtiatent,
mix and volume have tremendous effect on NIDS performande an
demonstrate Trident’s capability to expose a range of devére-
havior on modern NIDS.
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Figure 6: CPU utilization (left) and packet loss (right) measurements for Bro, Snort, and Bleeding Snort on DARPA trafficsetup.
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Figure 7: Alarm effectiveness (left) and efficiency (right)for Bro, Snort, and Bleeding Snort on CSL traffic setup.

o | bro @ snort O bleeding snort o | bro @ snort O bleeding snort
— —
© _| o _|
g ° °
>
2 © _| 2 o |
¢ o s o
g o
o < | 5 <
5 o S
~ | N ]
o o
o | o |
[} [}
mix90.10 mix50.50 mix10.90 vol25 vol50 vol75 mix90.10 mix50.50 mix10.90 vol25 vol50 vol75
traffic scenario traffic scenario

Figure 8: Alarm effectiveness (left) and efficiency (right)for Bro, Snort, and Bleeding Snort on DARPA traffic setup.
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