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Abstract

High performance computing is being increasingly uti-
lized in non-traditional circumstances where it must inter-
operate with other applications. For example, online visu-
alization is being used to monitor the progress of applica-
tions, and real-world sensors are used as inputs to simula-
tions. Whenever these situations arise, there is a question
of what communications infrastructure should be used to
link the different components. Traditional HPC-style com-
munications systems such as MPI offer relatively high per-
formance, but are poorly suited for developing these less
tightly-coupled cooperating applications. Object-based
systems and meta-data formats like XML offer substantial
plug-and-play flexibility, but with substantially lower per-
formance. We observe that the flexibility and baseline per-
formance of all these systems is strongly determined by their
`wire format' , or how they represent data for transmission
in a heterogeneous environment. We examine the perfor-
mance implications of different wire formats and present an
alternative with significant advantages in terms of both per-
formance and flexibility.

1. Introduction

High performance computing is being increasingly uti-
lized in non-traditional circumstances. For instance, many
high-end simulations must interoperate with other applica-
tions to provide environments for human collaboration, or
to allow access to visualization engines and remote instru-
ments [15, 16]. In addition, there has been an increasing
interest in component architectures[2], with the intent of fa-
cilitating the development of complex applications through
reusability.

Whenever these situations arise, there is a question of
what communications infrastructure should be used to link
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the different components. This is specially important in the
presence of software evolution and/or runtime changes in
component couplings. Traditional HPC-style communica-
tions systems such as MPI, and client-server communica-
tion paradigms such as RPC, offer high performance. Yet,
this systems rely on the basic assumption that communi-
cating parties have a priori agreements on the basic con-
tents of the messages being exchanged. Maintaining such
agreements has become increasingly onerous for these less
tightly-coupled systems.

The flexibility requirements of these new systems has
led designers to adopt techniques such as the use of seri-
alized objects as messages (as in Java's RMI [20]) or the
use of meta-data representations like XML. However, both
of these approaches have marshalling and communications
costs that are staggeringly high in comparison to the more
traditional approaches.

We observe that the flexibility and baseline performance
of all these systems is strongly determined by their `wire
format' , or how they represent data for transmission in a
heterogeneous environment. We examine the performance
implications of different wire formats and present an alter-
native with significant advantages in terms of both perfor-
mance and flexibility. Essentially, this approach eliminates
common wire formats like XDR and instead transmits data
in the sender's native format (which we termNatural Data
Representation or NDR), along with meta-information that
identifies these formats. Any necessary data conversion on
the receiving side is performed by custom routines created
through dynamic code generation (DCG). When the sender
and receiver have the same natural data representation, such
as in exchanges between homogeneous architectures, this
approach allows received data to be used directly from the
message buffer, making it feasible for middleware to effec-
tively utilize high performance communication layers like
FM [13] or the zero-copy messaging demonstrated by Rosu
et al. [17] and Welsh et al. [19]. When conversion be-
tween formats is necessary, these DCG conversions are of
the same order of efficiency as the compile-time generated



stub routines used by the fastest systems relying upon a pri-
ori agreements[14]. However, because the conversion rou-
tines are derived at run-time, our approach offers consider-
ably greater flexibility than other systems.

Our experiments with a variety of realistic applications
show that our alternative approach obtains the required flex-
ibility at no cost to performance. On the contrary, the re-
sults presented in Section 4 show an improvement of up to
3 orders of magnitude in the sender encoding time, 1 or-
der of magnitude on the receiver side, and a 45 % reduction
on roundtrip time, when comparing it to a non-flexible ap-
proach like MPI's.

The remainder of this paper is organized as follows. In
Section 2 we review related approaches to communication
and comment on their performance and flexibility. Section 3
presents our approach, Natural Data Representation, and its
implementation in the Portable Binary I/O (PBIO) commu-
nication library. In Section 4 we compare the flexibility and
performance of PBIO with that of some alternative com-
munications systems. After examining the different costs
involved in the communication of binary data on heteroge-
neous platforms, we proceed to evaluate the relative costs of
MPI, XML and CORBA-style communications in exchang-
ing the same sets of messages, and compare them to those of
PBIO. Finally, we compare the performance effects of dy-
namic type discovery and exetension for PBIO and XML-
based systems. We present our conclusion and discuss some
directions for future work in Section 5.

2. Background and Related Work

In high performance communication packages, the oper-
ational norm is for all parties to a communication to have an
a priori agreement on the format of messages exchanged.
Many packages, such as PVM[10] and Nexus[9], support
message exchanges in which the communicating applica-
tions “pack” and “unpack” messages, building and decod-
ing them field by field. Other packages, such as MPI[8],
allow the creation of user-defined datatypes for messages
and fields and provide some marshalling and unmarshalling
support for them internally. However, MPI does not have
any mechanisms for run-time discovery of data types of un-
known messages and any variation in message content in-
validates communication.

By building its messages manually, an application at-
tains significant flexibility in message contents while en-
suring optimized, compiled pack and unpack operations.
However, relegating these tasks to the communicating ap-
plications means that those applications must havea priori
agreement on the format of messages. In wide-area high
performance computing, the need to simultaneously update
all application components in order to change message for-
mats can be a significant impediment to the integration, de-

ployment and evolution of complex systems.

In addition, the semantics of application-side
pack/unpack operations generally imply a data copy
to or from message buffers, with a significant impact on
performance [13, 17]. Packages which perform internal
marshalling, such as MPI, could avoid data copies and
offer more flexible semantics in matching fields provided
by senders and receivers. However, existing packages have
failed to capitalize on those opportunities. For example,
MPIs type-matching rules require stricta priori agreement
on the content of messages, and most MPI implementa-
tions marshal user-defined datatypes via mechanisms that
amount to interpreted versions of field-by-field packing.

The use of object systems technology provides for some
amount of plug-and-play interoperability through subclass-
ing and reflection. This is a significant advantage in build-
ing loosely coupled systems, but they tend to suffer when it
comes to communication efficiency. For example, CORBA-
based object systems use IIOP as a wire format. IIOP
attempts to reduce marshalling overhead by adopting a
“reader-makes-right” approach with respect to byte order
(the actual byte order used in a message is specified by a
header field). This additional flexibility in the wire for-
mat allows CORBA to avoid unnecessary byte-swapping
in message exchanges between homogeneous systems but
is not sufficient to allow such message exchanges with-
out copying of data at both sender and receiver. At issue
here is the contiguity of atomic data elements in structured
data representations. In IIOP, XDR and other wire formats,
atomic data elements are contiguous, without intervening
space or padding between elements. In contrast, the native
representations of those structures in the actual applications
must contain appropriate padding to ensure that the align-
ment constraints of the architecture are met. On the sending
side, the contiguity of the wire format means that data must
be copied into a contiguous buffer for transmission. On
the receiving side, the contiguity requirement means that
data cannot be referenced directly out of the receive buffer,
but must be copied to a different location with appropriate
alignment for each element.

While all of the communication systems above rely on
some form of a fixed wire format for communication, XML
takes a different approach to communication flexibility.
Rather than transmitting data in binary form, its wire for-
mat is ASCII text, with each record represented in textual
form with header and trailer information identifying each
field. This allows applications to communicate with no a
priori knowledge of each others. However, XML encod-
ing and decoding costs are substantially higher that those
of other formats due to the conversion of data from binary
to ASCII and vice-versa. In addition, XML has substan-
tially higher network transmission costs because the ASCII-
encoded record is larger, often substantially larger, than the
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binary original (an expansion factor of 6-8 is not unusual).

3. Approach

Our approach to creating efficient wire formats is to use
Natural Data Representation (NDR). That is, data is placed
`on the wire' in the natural form in which it is maintained
by the sender, then decoded by the receiver `into' its de-
sired form. Our current implementation of NDR is termed
PBIO (for Portable Binary I/O). The PBIO library provides
a record-oriented communication medium. Writers must
provide descriptions of the names, types, sizes and posi-
tions of the fields in the records they are writing. Readers
must provide similar information for the records they wish
to read. No translation is done at the writer's end. At the
reader's end, the format of the incoming record is compared
with the format expected by the program. Correspondence
between fields in incoming and expected records is estab-
lished by field name, with no weight placed on size or or-
dering in the record. If there are discrepancies in field size
or placement, then PBIO's conversion routines perform the
appropriate translations. Thus, the reader program can read
the binary information produced by the writer program de-
spite potential differences in: (1) byte ordering on the read-
ing and writing architectures; (2) differences in sizes of data
types (e.g. long and int); and (3) differences in structure
layout by compilers,

The flexibility of the application is additionally enhance
by the availability of full format information for the incom-
ing record. This allows the receiving parts to make run-
time decisions about the use and processing of incoming
messages without previous knowledge. Such required flex-
ibility however, comes at the price of potentially complex
format conversions on the receiving end: since the format
of incoming records is principally defined by the native for-
mats of the writers and PBIO has noa priori knowledge of
the native formats used by the program components with
which it might communicate, the precise nature of this for-
mat conversion must be determined at run-time.
Runtime code generation for format interpretation. To
alleviate the increased communication costs associated with
interpreted format conversion, NDR-based communications
are interpreted with dynamically generated binary code.
The resulting customized data conversion routinesaccess
and store data elements, convert elements between basic
types and call subroutines to convert complex subtypes.
Measurements[6] show that the one-time costs of generat-
ing binary code coupled with the performance gains by then
being able to use compiled code far outweigh the costs of
continually interpreting data formats. The analysis in the
following section shows that an NDR-based approach to
data transmission also results in performance gains through
copy reduction, while providing additional type-matching

flexibility not present in other component-based distributed
programming systems.

4. Evaluation

This section compares the performance and flexibility of
our NDR-based approach to data exchange with that of sys-
tems like MPI, CORBA, and XML-based ones.

4.1. Analysis of Costs in Heterogeneous Data Ex-
change

Binary data exchange costs in a heterogeneous environ-
ment. Before analyzing the various packages in detail, it is
useful to examine the costs in an exchange of binary data in
a heterogeneous environment. As a baseline for this discus-
sion, we use the MPICH[12] implementation of MPI. Fig-
ure 1 represents a breakdown of the costs of an MPI mes-
sage round-trip between a x86-based PC and a Sun Sparc
connected by 100 Mbps Ethernet.1

The time components labeled “Encode” represent the
time span between the time the application invokes
MPI_send() and its eventual call to write data on a
socket. The “Decode” component is the time span between
therecv() call returning and the point at which the data is
in a form usable by the application. This delineation allows
us to focus on the encode/decode costs involved in binary
data exchange. That these costs are significant is clear from
the figure, where they typically represent 66% of the total
cost of the exchange.

Figure 1 shows the cost breakdown for messages of a se-
lection of sizes (from a real mechanical engineering appli-
cation), but in practice, message times depend upon many
variables. Some of these variables, such as basic operat-
ing system characteristics that affect raw end-to-end TCP/IP
performance, are beyond the control of the application or
the communication middleware. Different encoding strate-
gies in use by the communication middleware may change
the number of raw bytes transmitted over the network; much
of the time those differences are negligible, but where they
are not, they can have a significant impact upon the relative
costs of a message exchange.

The next sections will examine the relative costs of
PBIO, MPI, CORBA, and an XML-based system in ex-
changing the same sets of messages.

4.2. Sending Side Cost

Figure 2 shows a comparison of sending-side data encod-
ing times on the Sparc for an XML-based implementation2,

1The Sun machine is an Ultra 30 with a 247 MHz cpu running Solaris 7.
The x86 machine is a 450 MHz Pentium II, also running Solaris 7.

2A variety of implementations of XML, including both XML genera-
tors and parsers, are available. We have used the fastest known to us at this
time, Expat [3].
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sparc encode         network                                                    i86 decode    i86 encode               network                                                sparc decode

.034m                    .227m                                                         .063m           .010m                            .227m                                                    .104m

sparc encode                  network                                       i86 decode i86 encode                       network                                        sparc decode

.086m                      .345m                                                 .106m       .046m                                    .345m                                                  .186m

sparc encode          network                                      i86 decode            i86 encode                          network                                 sparc decode

.971m                    1.94m                                               1.19m                             .876m                                   1.94m                                             1.51m

13.31m                          15.39m                                     11.63m                           8.95m                    15.39m                                        15.41m

sparc encode                        network                           i86 decode            i86 encode                       network                                    sparc decode

 100 byte roundtrip   .66msec

1Kb roundtrip   1.11msec

10Kb roundtrip   8.43msec

100Kb roundtrip   80.09msec

Figure 1. Cost breakdown for message exchange.
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Figure 2. Send-side encoding times.

MPICH, CORBA, and PBIO.

XML wire formats are inappropriate. The figure shows
dramatic differences in the amount of encoding necessary
for the transmission of data (which is assumed to exist in
binary format prior to transmission). The XML costs rep-
resent the processing necessary to convert the data from
binary to string form and to copy the element begin/end
blocks into the output string.

Advantages derived from NDR.As is mentioned in Sec-
tion 3, we transmit data in the native format of the sender.
As a result, no copies or data conversions are necessary to
prepare simple structure data for transmission. So, while
MPICH's costs to prepare for transmission on the Sparc
vary from 34�sec for the 100 byte record up to 13 msec
for the 100Kb record, PBIO's cost is a flat 3�sec.
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Figure 3. Receive side decode times.

4.3. Receiving Side Costs

Our NDR approach to binary data exchange eliminates
sender-side processing by transmitting in the sender's na-
tive format and isolating the complexity of managing het-
erogeneity in the receiver. As a result, the receiver must per-
form conversion of the various incoming `wire' formats to
its `native' format. PBIO matches fields by name, so a con-
version may require byte-order changes (byte-swapping),
movement of data from one offset to another, or even a
change in the basic size of the data type (for example, from
a 4-byte integer to an 8-byte integer).

This conversion is another form of the “marshaling prob-
lem” that occurs widely in RPC implementations[1] and in
network communication. Marshaling can be a significant
overhead[4, 18], and tools like the Universal Stub Compiler
(USC) [14] attempt to optimize marshaling with compile-
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time solutions. Although optimization considerations sim-
ilar to those addressed by USC apply in our case, the dy-
namic form of the marshaling problem in PBIO, where the
layout and even the complete field contents of the incom-
ing record are unknown until run-time, rules out such static
solutions. The conversion overhead is nil for some homoge-
neous data exchanges, but as Figure 1 shows, the overhead
is high (66%) for many heterogeneous exchanges.

Generically, receiver-side overhead in communication
middleware has several components:

� byte-order conversion,

� data movement costs,and

� control costs.

Byte order conversion costs are to some extent unavoidable.
If the communicating machines use different byte orders,
the translation must be performed somewhere regardless of
the capabilities of the communications package.

Data movement costs are harder to quantify. If byte-
swapping is necessary, data movement can be performed
as part of the process without incurring significant addi-
tional costs. Otherwise, clever design of the communication
middleware can often avoid copying data. However, pack-
ages that define a `wire format' for transmitted data have a
harder time being clever in this area. One of the basic dif-
ficulties is that the native format for mixed-datatype struc-
tures on most architectures has gaps, unused areas between
fields, inserted by the compiler to satisfy data alignment re-
quirements. To avoid making assumptions about the align-
ment requirements of the machines they run on, most pack-
ages use wire formats which are fully packed and have no
gaps. This mismatchforcesa data copy operation in situ-
ations where a clever communications system might other-
wise have avoided it.

Control costs represent the overhead of iterating through
the fields in the record and deciding what to do next. Pack-
ages that require the application to marshal and unmarshal
their own data have the advantage that this process occurs in
special-purpose compiler-optimized code, minimizing con-
trol costs. However, to keep that code simple and portable,
such systems uniformly rely on communicating in a pre-
defined wire format, therefore incurring the data movement
costs described in the previous paragraph.

Packages that marshal data themselves typically use an
alternative approach to control, where the marshaling pro-
cess is controlled by what amounts to a table-driven inter-
preter. This interpreter marshals or unmarshals application-
defined data, making data movement and conversion deci-
sions based upon a description of the structure provided by
the application and its knowledge of the format of the in-
coming record. This approach to data conversion gives the
package significant flexibility in reacting to changes in the

incoming data and was our initial choice when implement-
ing NDR.

XML necessarily takes a different approach to receiver-
side decoding. Because the `wire' format is a continuous
string, XML is parsed at the receiving end. The Expat XML
parser[3] calls handler routines for every data element in the
XML stream. That handler can interpret the element name,
convert the data value from a string to the appropriate binary
type and store it in the appropriate place. This flexibility
makes XML extremely robust to changes in the incoming
record. The parser we have employed is quite fast, but XML
still pays a relatively heavy penalty for requiring string-to-
binary conversion on the receiving side.

Comparison of receiver-side costs for XML-based, MPI,
CORBA, and PBIO wire formats. Figure 3b shows a
comparison of receiver-side processing costs on the Sparc
for interpreted converters used by XML, MPICH (via the
MPI_Unpack() ) call, CORBA, and PBIO. XML receiver
conversions are clearly expensive, typically between one
and two orders of decimal magnitude more costly than our
NDR-based converter for this heterogeneous exchange. (On
an exchange between homogeneous architectures, PBIO
and MPI would have substantially lower costs, while XML's
costs would remain unchanged.) Our NDR-based converter
is relatively heavily optimized and performs considerably
better than MPI, in part because MPICH uses a separate
buffer for the unpacked message rather than reusing the re-
ceive buffer (as we do). However, NDR's receiver-side con-
version costs still contribute roughly 20% of the cost of an
end-to-end message exchange. While a portion of this con-
version overhead must be the consequence of the raw num-
ber of operations involved in performing the data conver-
sion, we believe that a significant fraction of this overhead
is due to the fact that the conversion is essentially being per-
formed by an interpreter.

Optimizing receiver-side costs for PBIO.Our decision to
transmit data in the sender's native format results in the wire
format being unknown to the receiver until run-time. Our
solution to the problem is to employ dynamic code genera-
tion to create a customized conversion subroutine for ev-
ery incoming record type. These routines are generated
by the receiver on the fly, as soon as the wire format is
known. PBIO dynamic code generation is based on Vcode,
a fast dynamic code generation package developed at MIT
by Dawson Engler[7]. Vcode essentially provides an API
for a virtual RISC instruction set. The provided instruc-
tion set is relatively generic, so that most Vcode instruction
macros generate only one or two native machine instruc-
tions. Native machine instructions are generated directly
into a memory buffer and can be executed without refer-
ence to an external compiler or linker. We have significantly
enhanced Vcode and ported it to several new architectures.
With the present implementation we can generate code for
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Figure 4. Receiver side costs for interpreted
conversions in MPI and PBIO and DCG con-
versions in PBIO.

Sparc (v8, v9 and v9 64-bit), MIPS (old 32-bit, new 32-bit
and 64-bit ABIs), DEC Alpha and Intel x86 architectures3.

The execution times for these dynamically generated
conversion routines are shown in Figure 4. (We have chosen
to leave the XML conversion times off of this figure to keep
the scale to a manageable size.)

The dynamically generated conversion routine operates
significantly faster than the interpreted version. This im-
provement removes conversion as a major cost in commu-
nication, bringing it down to near the level of a copy opera-
tion, and it is the key to PBIO's ability to efficiently perform
many of its functions.

The cost savings achieved for PBIO described in this sec-
tion are directly reflected in the time required for an end-to-
end message exchange. Figure 5 shows a comparison of
PBIO and MPICH message exchange times for mixed-field
structures of various sizes. The performance differences are
substantial, particularly for large message sizes where PBIO
can accomplish a round-trip in 45% of the time required by
MPICH. The performance gains are due to:

� virtually eliminating the sender-side encoding cost by
transmitting in the sender's native format,and

� using dynamic code generation to customize a conver-
sion routine on the receiving side (currently notdone
on the x86 side).

Once again, Figure 5 does not include XML times to
keep the figure to a reasonable scale.

3More details on the nature of PBIO's dynamic code generation can be
found in [5].

Figure 6. Receiver-side decoding costs with
and without an unexpected field: Heteroge-
neous case.
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4.4. High Performance and Application Evolution

The principal difference between PBIO and most other
messaging middleware is that PBIO messages carry format
meta-information, somewhat like an XML-style description
of the message content. This meta-information can be a
useful tool in building and deploying enterprise-level dis-
tributed systems because it (1) allows generic components
to operate upon data about which they have noa priori
knowledge, and (2) allows the evolution and extension of
the basic message formats used by an application without
requiring simultaneous upgrades to all application compo-
nents. In other words, PBIO offers limited support forre-
flectionandtype extension. Both of these are valuable fea-
tures commonly associated with object systems.

PBIO supports reflection by allowing message formats to
be inspected before the message is received. Its support of
type extension derives from doing field matching between
incoming and expected records by name. Because of this,
new fields can be added to messages without disruption be-
cause application components which don' t expect the new
fields will simply ignore them.

Most systems that support reflection and type extension
in messaging, such as systems using XML as a wire for-
mat or marshalling objects as messages, suffer prohibitively
poor performance compared to systems such as MPI which
have no such support. Therefore, it is interesting to exam-
ine the effect of exploiting these features upon PBIO per-
formance. In particular, in the following, we measure the
performance effects of type extension by introducing an un-
expected field into the incoming message and measuring the
change in receiver-side processing.

Figures 6 and 7 present receive-side processing costs for
an exchange of data with an unexpected field. These fig-
ures show values measured on the Sparc side of hetero-
geneous and homogeneous exchanges, respectively, using
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PBIO DCG 100Kb roundtrip   35.27msec

PBIO DCG 10Kb roundtrip    4.3msec

PBIO DCG 1Kb roundtrip   .87msec

PBIO DCG 100b roundtrip  .62msec

.002m                          .227m                                                                    .126m                .0002m                            .227m                                                   .046m

.002m                  1.94m                               .345m .001m               1.94m                         1.16m

.002m    15.39m                         3.32m .001m          15.39m                     1.16m

network decode network decode

13.31m                          15.39m                                     11.63m                           8.95m                    15.39m                                        15.41m

  sparc encode                           network                               i86 decode             i86 encode                    network                               sparc decode

.002m                            .345m                                                    .126m    .0005m                                  .345m                                    .05m

sparc encode          network                                      i86 decode            i86 encode                          network                                 sparc decode

.971m                    1.94m                                               1.19m                             .876m                                   1.94m                                             1.51m

sparc encode                  network                                       i86 decode i86 encode                       network                                        sparc decode

.086m                      .345m                                                 .106m       .046m                                    .345m                                                  .186m

.034m                    .227m                                                         .063m           .010m                            .227m                                                    .104m

sparc encode         network                                                    i86 decode    i86 encode               network                                                sparc decode

MPICH 1Kb roundtrip   1.11msec

MPICH 100 byte roundtrip   .66msec

MPICH 10Kb roundtrip   8.43msec

MPICH 100Kb roundtrip   80.0msec

Figure 5. Cost comparison for PBIO and MPICH message exchange.

Figure 7. Receiver-side decoding costs with
and without an unexpected field: Homoge-
neous case.
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Matching fields

Homogeneous Receive Times

PBIO's dynamic code generation facilities to create conver-
sion routines. It's clear from Figure 6 that the extra field has
not effect upon the receive-side performance. Transmitting
would have added slightly to the network transmission time,
but otherwise the support of type extension adds no cost to

this exchange.
Figure 7 shows the effect of the presence of an unex-

pected field in the homogeneous case. Here, the overhead is
potentially significant because the homogeneous case nor-
mally imposes no conversion overhead in PBIO. The pres-
ence of the unexpected field creates a layout mismatch be-
tween the wire and native record formats and as a result the
conversion routine must relocate the fields. As the figure
shows, the resulting overhead is non-negligible, but not as
high as exists in the heterogeneous case. For smaller record
sizes, most of the cost of receiving data is actually caused by
the overhead of the kernelselect() call. The difference
between the overheads for matching and extra field cases is
roughly comparable to the cost ofmemcpy() operation for
the same amount of data.

As noted earlier in Section 4.3, XML is extremely ro-
bust with respect to changes in the format of the incoming
record. Essentially, XML transparently handles precisely
the same types of change in the incoming record as can
PBIO. That is, new fields can be added or existing fields
reordered without worry that the changes will invalidate ex-
isting receivers. Unlike PBIO, XML's behavior does not
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change substantially when such mismatches are present. In-
stead, XML's receiver-side decoding costs remain essen-
tially the same as presented in Figure 3. However, those
costs are several orders of magnitude higher than PBIO's
costs.

For PBIO, the results shown in Figures 6 and 7 are ac-
tually based upon a worst-case assumption, where an unex-
pected field appears before all expected fields in the record,
causing field offset mismatches in all expected fields. In
general, the overhead imposed by a mismatch varies pro-
portionally with the extent of the mismatch. An evolving
application might exploit this feature of PBIO by adding
any additional at the end of existing record formats. This
would minimize the overhead caused to application compo-
nents which have not been updated.

5. Conclusions and Future Work

This paper describes and analyzes a basic issue with the
performance and flexibility of modern high performance
communication infrastructures: the choice of `wire formats'
for data transmission. We demonstrate experimentally the
performance of different wire formats, addressing the sizes
of data transfers (i.e., the compactness of wire formats), the
overheads of data copying and conversion at senders and
receivers, across heterogeneous machine architectures.

We contribute an efficient and general solution for wire
formats for heterogeneous distributed systems, and describe
how our approach allows for application flexibility. By us-
ing the Natural Data Representation (NDR), copy overheads
are avoided at senders and receivers can place data into the
forms they desire. We reduce the receiver-side `interpreta-
tion' overheads of NDR by runtime binary code generation
and code installation at receivers. As a result, the added
flexibility comes at no cost and, in fact, the performance of
PBIO transmissions exceed that of data transmission per-
formed in modern HPC infrastructures like MPI.

The principal conclusions of this research are (1) that
the use of NDR is feasible and desirable and (2) its advan-
tages outweigh its potential costs. Specifically, receivers
who have no a priori knowledge of data formats being ex-
changed can easily `join' ongoing communications. In ad-
dition, loosely coupled or `plug-and-play' codes can be
composed into efficient, distributed applications whenever
desired by end users, without substantial modifications to
application components (or recompilation or relinking). In
effect, by using NDR and runtime binary code generation,
we can create efficient wire formats for high performance
components while providing flexibility rivaling that of plug
and play systems like Java.

We are continuing to develop the compiler techniques
necessary to generate efficient binary code, including the
development of selected runtime binary code optimization

methods and the development of code generators for addi-
tional platforms, most notably the Intel i960 and StrongArm
platforms. In related research, our group is developing
high performance communication hardware and firmware
for cluster machines, so that PBIO-based messaging may
be mapped to zero-copy communication interfaces and so
that selected message operations may be placed `into' the
communication co-processors being used [17, 11].
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