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Abstract 
 

Transmission Control Protocol (TCP) is used by various 
applications to achieve reliable data transfer. TCP was originally 
designed for unreliable networks. With the emergence of high-speed 
wide area networks various improvements have been applied to TCP 
to reduce latency and achieve improved bandwidth. The 
improvement is achieved by having system administrators tune the 
network and can take a considerable amount of time. This paper 
introduces PSockets (Parallel Sockets), a library that achieves an 
equivalent performance without manual tuning. The basic idea 
behind PSockets is to exploit network striping.  By network striping 
we mean striping partitioned data across several open sockets.  We 
describe experimental studies using PSockets over the Abilene 
network.  We show in particular that network striping using 
PSockets is effective for high performance data intensive computing 
applications using geographically distributed data. 

1. INTRODUCTION 
 
With the rapid advancements in networking technologies, 
high-speed networks such as Abilene and vBNS (very high 
speed backbone network service) are becoming more 
common.  Although distributed data mining and data 
intensive computing applications have an urgent need for the 
throughput provided by these high performance networks, 
achieving the desired throughput in practice can sometimes 
be difficult due to the network tuning that is usually required 
to achieve optimal performance. The key focus of this paper 
is to help applications to achieve the best end-to-end 
performance (maximum throughput) over high-speed wide 
area networks without modifications to the existing network. 
 
Most data applications need reliable data transfer and hence 
utilize the Transmission Control Protocol (TCP) [1].  TCP 
was originally designed for unreliable networks that required 
reliable data transfers between the source and destination 
machines.  A common way to improve the bandwidth and 
reduce the latency while using TCP on reliable high-speed 
wide area networks is to tune the TCP window size 
appropriately [2, 7]. This involves the system administrator at 
both ends and it can be time consuming to find the best 
window size for optimal performance. 
 
In this paper, we introduce a C++ library called PSockets 
(Parallel Sockets) which applications can use without the 

necessity of tuning the TCP window size and yet still achieve 
near optimal utilization of the network bandwidth.  The 1idea 
is a simple one and an old one – we divide the data into 
partitions, open several sockets, and stripe the data over the 
sockets.  We call this approach network striping.  This can be 
broadly viewed as analogous to striping data over arrays of 
disks [9].  
 
We believe that this paper makes the following contributions: 
 
1. We describe five experiments demonstrating that 

network striping is an effective mechanism for 
applications to achieve high throughput on wide area 
high performance networks.   

2. We describe a C++ library we have developed called 
PSockets that allows applications to quickly incorporate 
network striping with a few simple function calls.  

3. We demonstrate that data intensive computing 
applications can easily incorporate PSockets into their 
design and transparently exploit wide area high 
performance networks.  

We believe that this paper is novel for the following reasons: 

1. With the exception of [8], of which we have just recently 
become aware, most approaches to improving 
performance have focused on system level tuning of TCP 
window size, not application-level network striping. In 
this paper, as in [8], we show that this alternative 
approach is equally effective, and in certain situations, 
more effective, than tuning window size.  

2. Prior work on network tuning has focused largely on 
network measurements and not on application level 
measurements.  In this paper, we also show that our 
approach using network striping allows the development 
of effective data intensive computing applications, an 
area of rapidly increasing importance. 

3. We provide experimental data which shows that in 
certain situations network striping using PSockets is 
more effective than tuning window size, even when 
theoretically this should not be expected.  For example, it 
is common that as the complexity of a network grows it 
is more likely for there to be some hardware or software 
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configuration errors somewhere along the path 
connecting the sender and receiver, which will limit 
network performance.  This occurred quite often in our 
experiments.  In this case, we have observed that 
network striping at the application level is still an 
effective mechanism for increasing network throughput, 
while; on the other hand, tuning window size is not 
nearly as effective in practice.    

This paper is organized as follows.  PSockets is described in 
Section 3. Section 4 discusses four sets of experiments 
conducted over the Abilene network. Section 5 discusses 
some of the applications we have built using PSockets.  

2. BACKGROUND 
 
TCP was designed to operate reliably over almost any 
transmission medium regardless of transmission rate, delay, 
corruption, duplication, or reordering of segments [1]. TCP 
implementations currently adapt to transfer rates in the range 
of 100 bps to 107 bps and round-trip delay in the range of 
1ms to 100 seconds [2]. TCP guarantees reliable in-order 
delivery of data sent from the source to the destination. Since 
many applications need reliable data delivery, TCP has been 
very widely used. 
 
Typically an application requests data to be sent to another 
application at a remote machine. The TCP stack in the kernel 
of an operating system handles requests from various 
applications and passes data to the network. TCP partitions 
the data into segments to be sent over appropriate 
transmission media and waits for an acknowledgement from 
the receiver to know that a particular segment has been 
received correctly. TCP achieves this by having windows on 
both the sender and the receiver that can throttle the rate at 
which data can be sent [10]. 
 
Due to the recent advancements in fiber optics and related 
technologies, networks with very high transmission speeds 
are becoming more common. TCP was not designed for these 
types of networks [2] and recently there has been research 
addressing this issue [2, 3, 4, 5, 11].  TCP window size is a 
key tuning factor for networks with large delays between the 
sender and the receiver. RFC1323 [2] provides details on 
achieving better TCP performance over such networks. 
Automatic TCP Buffer tuning to achieve increased bandwidth 
on a socket level is detailed in [3]. Improvements on the TCP 
algorithm to transmit data quickly and efficiently are 
explained in [4] and [5]. TCP performance improvements 
over satellite links were carried out in [8] which involved 
large delays. TCP performance depends not upon the transfer 
rate itself, but rather upon the product of the transfer rate and 
the round-trip delay. This “bandwidth*delay product” 
measures the amount of data that would fill the pipe. It is the 
buffer space required at the sender and the receiver to obtain 
the maximum throughput over the established TCP 
connection, i.e., the amount of unacknowledged data that 
TCP must handle in order to keep the pipeline full. TCP 

performance problems arise when the bandwidth*delay 
product is large. This is referred to as “long, fat pipe” and a 
network containing this path is a long fat network (LFN). The 
three fundamental performance problems with the current 
TCP over LFN paths are the window size limit, the recovery 
from losses and the round-trip measurements. Several RFC 
have been developed and implemented to overcome these 
issues and achieve maximum performance with the current 
TCP over LFN.  
 
The key factor in achieving maximum performance from 
TCP over LFN is the TCP window size. The TCP window 
size has to be tuned at both the source and the destination in 
order to achieve the maximum throughput. This involves 
changing parameters for the TCP stack in the kernel and has 
to be done by the system administrators at both ends [6]. 
Also, after the tuning, performance analysis has to be done to 
fine tune this window size. Typically this operation can take 
anywhere from a few hours to even weeks [6]. In this paper 
we propose an alternative method involving striping data over 
several sockets.   Applications can use the PSockets library 
and don’t have to bother tuning the window size. Our library 
achieves equivalent performance to the one that would be 
achieved while setting the best window size.   
 
A similar method with satellite applications in mind was 
proposed in [8].  Both use several open sockets and the basic 
principle is the same.  In [8], the data is divided into 8KB 
blocks and the blocks are striped across several sockets.  In 
PSockets, the segmentation and re-assembly of the data 
across various sockets is done with the help of pointers in 
C++. Striping across open sockets as 8KB blocks involves 
the overhead of keeping track of data on different sockets and 
then re-assembling them at the destination. We had minimal 
overhead by striping the data equally across various sockets 
as compared to striping as 8KB blocks. Hence, we have 
found it to be more advantageous to divide the data into equal 
partitions and send the partitions over the open sockets 
asynchronously.  In this way we incur very little overhead in 
re-assembly and achieve better performance. 
 
3. PSOCKETS 
 
When an application needs to transfer data reliably over a 
network, it opens up a TCP/IP socket connection between the 
sender and the receiver. When the sender and the receiver are 
connected by a high speed wide area network the 
bandwidth*delay product is quite high (greater than 64KB). 
In order to achieve the maximum TCP Performance on such 
networks the sender and the receiver's TCP window size is 
set to the bandwidth*delay product [2].  Enabling RFC 1323 
on a system has to be done by the system administrators at 
both ends and not by the application.  This could typically 
take a few days or sometimes even weeks. Therefore, in 
practice most applications are limited to the default maximum 
window size.   
 



Using PSockets, individual applications can overcome this 
limitation by using multiple sockets.  Since the limitation of 
the TCP window size is only on a single socket, PSockets 
opens multiple socket connections between the sender and the 
receiver. PSockets then divides the data to be transferred into 
equal partitions, where the number of open sockets 
determines the number of partitions.  PSockets then sends the 
data partitions asynchronously over the multiple socket 
connections. The TCP/IP stack in the kernel multiplexes the 
data on the various connections so that, in effect, the 
partitions appear to be sent in parallel on the multiple 
connections. In this way, PSockets is able to achieve the 
maximum data transfer rate possible on a high- speed wide 
area network without any network tuning. We call this 
approach network striping.  
  
Figure 1 shows TCP packets between a source and 
destination pair at a given instant of time over a network. 
Assuming that the default TCP window size is set to 64KB 
and the bandwidth*delay product is equal to 192KB, Figure 1 
shows three scenarios for a LFN. In each case 192KB of data 
is to be transmitted from source to destination.  
 
• = Figure 1 (a): Here, the connection between the source 

and the destination has the default window size (64KB). 
At the source, the first 64KB of data is sent since the 
TCP window size is 64KB. The sender then waits for an 
acknowledgement before sending any more data.  Since 
the source waits for an acknowledgement from the 
destination the connection pipe between the source and 
destination is not completely filled. Therefore the 
maximum throughput attainable over the connection is 
not achieved. This limitation is overcome by using RFC 
1323. 

• = Figure 1 (b): This diagram shows the connection 
between the source and the destination after enabling 
RFC 1323, which recommends the use of large TCP 
window sizes for connections having large 
bandwidth*delay products. In our example the TCP 
window size is set to 192KB (bandwidth*delay product). 
In this scenario, the source sends the entire 192KB of 
data to be transmitted to the destination without waiting 
for an acknowledgement. This achieves the maximum 
data rate between the source and the destination. The 
entire pipe is filled with segments up to the TCP window 
size.  

• = Figure 1 (c) shows our method using multiple sockets. 
No network tuning is required in this scenario.  The TCP 
window size is left at the default value of 64KB. In this 
example, three sockets are used to fill up the pipe since 
each socket has a window size of 64KB.   This achieves 
the same performance as in Figure 1 (b). 

 
PSockets uses application level network tuning to achieve the 
maximum throughput between a source and a destination. 
The throughput attained by PSockets is equivalent to the one 
obtained over a finely tuned network which has a large 
bandwidth*delay product.  If the TCP driver does not use a 

good recovery algorithm, then quite a few packets may be 
dropped and have to be retransmitted.  This reduces the data 
rate of the connection. When the TCP window size is set to 
the bandwidth*delay product for the high-speed wide area 
network, the retransmission of the transition data (the data 
which has been sent from the source and not yet arrived at the 
destination) can be costly and will affect the performance. By 
using PSockets, we can use a smaller TCP window size, 
reducing the number of packets which need to be 
retransmitted 
  
Using the PSockets library, applications don’t have to tune 
for the best TCP window size to achieve the maximum 
throughput. The PSockets library hides information on the 
number of open sockets, the segmentation, and the re-
assembly of the data.  PSockets uses an API similar to the 
standard socket "send" and "receive".  

 

 
 

Figure 1: TCP packets at a given time over a LFN 

4. EXPERIMENTAL RESULTS 
 
 

Machine at 
Chicago, IL 

Machine at Ann 
Arbor, MI 

Processor Dual processor 
Pentium II 450 

MHz 

Uni processor 
Pentium II 450 

MHz 
Network card 100 Mb/s fast 

Ethernet card 
100 Mb/s fast 
Ethernet card 

Operating 
System 

Red Hat Linux 6.1 Red Hat Linux 
6.1 

External 
connectivity  

 
ATM Switch 

Fast Ethernet 
Switch 

 
Table 1: Configuration of the Machines used for 

experiments 
Experiments were conducted between machines at Chicago, 
IL and Ann Arbor, MI.  Table 1 describes the configuration 
of the machines. The connectivity between Chicago and Ann 
Arbor is an OC3 line (155 Mb/s).  This link was limited to an 
effective rate of 100 Mb/s due to a fast Ethernet switch in the 
path with this limitation.   

 
We performed several experiments described below to study 
the performance of PSockets. In all the experiments 



performed, the overhead to segment and re-assemble the data 
has been included. 
 
a) Varying number of sockets:  The first test conducted was 
to vary the number of parallel sockets used for data transfer.  
The goal of the experiment was to find the optimal number of 
sockets for a particular buffer size. Figure 2 shows the results 
of our experiment for the TCP default window size of 64KB. 
The amount of data transmitted in each experiment was 
64KB. It was observed that the maximum throughput was 
obtained for a PSocket size of 12. Other experiments 
conducted (with a constant TCP window size and constant 
amount of data transfer) revealed that the maximum 
throughput was attained using PSocket sizes between 6 and 
16. Using PSockets we were able to achieve a maximum 
throughput of 76 Mb/s of application data (not including 
other lower level overheads). 
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Figure 2: Performance of PSockets 
 
b) Varying the amount of data transfer: In this experiment 
we varied the amount of data transferred.  We kept the TCP 
window size set to the default maximum of 64KB. To 
compare the performance of PSockets against standard 
software, we utilized Iperf [6], a network performance tool 
developed by NLANR. Figure 3 shows the results of our 
experiments for data transfer amounts varying from 1KB to 
4MB using PSockets as well as Iperf.  Obeserve that the 
throughput increases with an increase in the number of 
sockets for a particular amount of data and then finally drops 
down.  See Figure 1. For a particular PSocket size the 
increase in the size of data transferred from 1KB to 4MB did 
not have a noticeable effect on the throughput obtained. We 
concluded that for a fixed number of sockets, varying the 
amount of data transferred did not affect the throughput.  
 
c) Performance of PSockets with and without network 
tuning:  The third test we performed was to vary the TCP 
window size and see the performance of using RFC 1323 as 

well as PSockets.  Figure 4 shows the results for two TCP 
window sizes, 64KB (default TCP window size on Linux 
operating system) and 256KB (A TCP window size closer to 
the bandwidth*delay product between the machines used for 
the experiment). The data transmitted in each experiment was 
64KB.  This clearly validates our argument that applications 
using PSockets can obtain throughputs equivalent to those 
obtained after careful network tuning (RFC 1323) of the 
high-speed wide area networks. Observe that we are able to 
achieve a throughput of 57.7 Mb/s without network tuning 
and 67.7 with network tuning. Note that the maximum 
throughput attained using Iperf for a TCP window size of 
256KB was only 47.7 Mb/s. This could potentially be a 
problem in the implementation of the TCP/IP driver or the 
network itself [7].  
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Figure 3: Performance results using Psockets on Abilene 
network for various transmission Buffer sizes 
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Figure 4: PSockets without and with network tuning 
 



d) Performance of PSockets with various TCP window 
sizes: Figure 5 shows the performance of PSockets (8 
sockets) for TCP window sizes 1KB to 4MB. The 
bandwidth*delay product for the connection is calculated to 
be 245KB. From our second experiment we concluded that 
the amount of data transferred did not affect the throughput 
obtained using PSockets. Therefore we used 8KB as the data 
transfer unit for this experiment. It can be noticed from the 
graph that the maximum throughput was obtained for the 
TCP window size 512KB.  Therefore, as mentioned in [7], 
setting the TCP window size equal to the bandwidth*delay 
product actually does not give the best performance.  The 
PSockets performance is compared against Iperf for the same 
window size.  Observe that the difference in throughput 
obtained using PSockets and Iperf narrowed as the TCP 
window size increases. Since PSockets uses 8 sockets to send 
data, it performs better than Iperf up to the TCP window size 
of 8KB. Beyond the 8KB TCP window size, one would 
expect both PSockets and Iperf to be able to achieve the same 
throughput. Since the Iperf performance was always less than 
that of PSockets we tried to verify our suspicion that there 
was a potential problem with the TCP/IP driver or the 
network itself. Iperf will not achieve the maximum 
throughput with a single client when there are problems with 
either the TCP/IP driver or the network [7]. When Iperf was 
simulated with two clients connecting to the server at the 
same time (similar to running PSockets with a value 2), this 
defect was confirmed. Iperf with 2 client connections at the 
same time was able to achieve an aggregate throughput more 
than that of Iperf with a single client.   
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Figure 5: Performance Comparison of PSockets and  
Iperf with varying TCP Window Sizes 

 
e) Varying the number of clients.  The next experiment we 
performed was to increase the number of applications running 
PSockets. We used a PSocket size of 8 for this experiment 
and a TCP window size of 64KB and the amount of data 
transferred by each application was 2MB. Observe that the 
aggregate throughput obtained by applications using 

PSockets increased as the number of applications increased 
from 1 to 7 and then gradually dropped down for 8 or more.  
This is due to the fact that the driver has to handle 64 sockets. 
This can be observed from Figure 6. It was observed that the 
throughput obtained by each application was nearly the same 
indicating that each application using PSockets was given an 
equal share of the bandwidth.   
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Figure 6: Performance of PSockets with Multiple Clients 

 
Additional experiments were conducted to compare the 
results of applications not using PSockets with applications 
using PSockets. An application using PSockets (8 sockets) 
was run along with an application using a single socket.  The 
maximum attainable throughput was equally divided among 
the 9 sockets.  We can conclude that the applications not 
using PSockets will get lower throughput when run along 
with applications using PSockets. We analyzed the packet 
drops in three applications, which transferred 512KB of data 
– one using PSockets (8 sockets) with the default window 
size, the second application using one socket with the default 
TCP window size, and the third application using one socket, 
but with the TCP window size set to the bandwidth*delay 
product. The packet drop percentages in the three 
applications were 0.03%, 0.02% and 0.07% respectively.   
The software tools tcpdump and tcptrace [11] were used to 
compute this. The bandwidth attained in the three 
applications was 57 Mb/s, 38 Mb/s and 59 Mb/s respectively. 
This indicates that there is more contention for the available 
bandwidth while using PSockets with the default TCP 
window size than while using a single socket with the same 
TCP window size.  On the other hand,  we are able to achieve 
a very high throughput while using PSockets without the cost 
of network tuning. Note that the bandwidth achieved by an 
application with a single socket along with the TCP window 
set to bandwidth*delay product is slightly greater than that 
achieved by PSockets but the packet drop percentage is 
nearly twice as much as that of the application using 
PSockets. This test clearly confirms that applications using 
PSockets without network tuning will be able to achieve 
equivalent bandwidth to that of a well tuned network.  
 
The slow start and the congestion avoidance algorithms [5] 
for a wide area network minimize the packet loss during 
congestion. All our experiments were run on a Linux system, 



and the TCP/IP driver did not have options to configure the 
slow start algorithm. Hence the effect of slow start algorithm 
while using PSockets has not been studied in this paper.  
 
From all of the above-mentioned experiments, we conclude 
that PSockets helps in achieving a throughput closer to the 
maximum throughput attainable over the network by using 
application level tuning rather than the more time-consuming 
network tuning. PSockets would be able to help in achieving 
better throughput even when there are inherent problems with 
the driver or the network. Applications using PSockets will 
be able to extract a greater bandwidth share over a high-speed 
network while competing against other normal applications. 

5. APPLICATIONS 
 
We built a geographically distributed data intensive 
computing application with PSockets to mine high energy 
physics data.  The data was located at Chicago, IL, Ann 
Arbor, MI and Arlington, VA. The Arlington link was limited 
due to a DS3 (45Mb/s), while the Ann Arbor was limited due 
to a fast ethernet switch of 100Mb/s. The Chicago machines 
were limited due to the OC3 link (155 Mb/). Six Linux 
machines pulled data from these locations into Portland, OR 
at the SuperComputing ’99 conference floor. We were able to 
obtain a maximum throughput of around 30-35Mb/s while 
using the Physics application since the data was striped 
across 6 machines (2 machines at each site).  
 
In addition, we developed a simple application benchmark 
program to test the raw performance of PSockets.  We were 
able to achieve a maximum throughput of around 240Mb/s 
using this benchmark. The maximum attainable throughput 
was equal to around 300 Mb/s. The input link at the floor was 
an OC12 (622 Mb/s).  
 
Currently we are using the PSockets library to build a high 
performance wide area data storage application called Osiris. 
Osiris stripes row-column data across various nodes 
distributed geographically and interconnected by a high speed 
wide area network. Osiris is aimed at applications that need 
large volumes of data to be retrieved quickly. PSockets is 
currently available for the Linux platform and can be 
downloaded from http://www.ncdm.uic.edu. 

6. CONCLUSIONS 
 
We have developed a library called PSockets, which helps 
wide area applications that need to move large amounts of 

data. Even though PSockets achieves a performance 
equivalent to that obtained with RFC 1323 enabled, it is 
much easier to use since no tuning is required. Typically, 
tuning the network can be quite labor intensive, since it 
requires work by system administrators on both ends. With 
the PSockets library, developers need not worry about this. 
Since PSockets has the same API as that of regular sockets it 
is very easy for application developers to use.    
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