
PSockets: The Case for Application-level Network Striping for Data
Intensive Applications using High Speed Wide Area Networks

 H. Sivakumar S. Bailey R. L. Grossman
 sharinat@eecs.uic.edu sbailey@infoblox.com grossman@uic.edu

 University of Illinois at Chicago Infoblox Inc. University of Illinois at Chicago Magnify Inc.
 Chicago, IL, USA Evanston, IL, USA Chicago, IL, USA Chicago, IL, USA

Abstract

Transmission Control Protocol (TCP) is used by various
applications to achieve reliable data transfer. TCP was originally
designed for unreliable networks. With the emergence of high-speed
wide area networks various improvements have been applied to TCP
to reduce latency and achieve improved bandwidth. The
improvement is achieved by having system administrators tune the
network and can take a considerable amount of time. This paper
introduces PSockets (Parallel Sockets), a library that achieves an
equivalent performance without manual tuning. The basic idea
behind PSockets is to exploit network striping. By network striping
we mean striping partitioned data across several open sockets. We
describe experimental studies using PSockets over the Abilene
network. We show in particular that network striping using
PSockets is effective for high performance data intensive computing
applications using geographically distributed data.

1. INTRODUCTION

With the rapid advancements in networking technologies,
high-speed networks such as Abilene and vBNS (very high
speed backbone network service) are becoming more
common. Although distributed data mining and data
intensive computing applications have an urgent need for the
throughput provided by these high performance networks,
achieving the desired throughput in practice can sometimes
be difficult due to the network tuning that is usually required
to achieve optimal performance. The key focus of this paper
is to help applications to achieve the best end-to-end
performance (maximum throughput) over high-speed wide
area networks without modifications to the existing network.

Most data applications need reliable data transfer and hence
utilize the Transmission Control Protocol (TCP) [1]. TCP
was originally designed for unreliable networks that required
reliable data transfers between the source and destination
machines. A common way to improve the bandwidth and
reduce the latency while using TCP on reliable high-speed
wide area networks is to tune the TCP window size
appropriately [2, 7]. This involves the system administrator at
both ends and it can be time consuming to find the best
window size for optimal performance.

In this paper, we introduce a C++ library called PSockets
(Parallel Sockets) which applications can use without the

necessity of tuning the TCP window size and yet still achieve
near optimal utilization of the network bandwidth. The 1idea
is a simple one and an old one – we divide the data into
partitions, open several sockets, and stripe the data over the
sockets. We call this approach network striping. This can be
broadly viewed as analogous to striping data over arrays of
disks [9].

We believe that this paper makes the following contributions:

1. We describe five experiments demonstrating that

network striping is an effective mechanism for
applications to achieve high throughput on wide area
high performance networks.

2. We describe a C++ library we have developed called
PSockets that allows applications to quickly incorporate
network striping with a few simple function calls.

3. We demonstrate that data intensive computing
applications can easily incorporate PSockets into their
design and transparently exploit wide area high
performance networks.

We believe that this paper is novel for the following reasons:

1. With the exception of [8], of which we have just recently
become aware, most approaches to improving
performance have focused on system level tuning of TCP
window size, not application-level network striping. In
this paper, as in [8], we show that this alternative
approach is equally effective, and in certain situations,
more effective, than tuning window size.

2. Prior work on network tuning has focused largely on
network measurements and not on application level
measurements. In this paper, we also show that our
approach using network striping allows the development
of effective data intensive computing applications, an
area of rapidly increasing importance.

3. We provide experimental data which shows that in
certain situations network striping using PSockets is
more effective than tuning window size, even when
theoretically this should not be expected. For example, it
is common that as the complexity of a network grows it
is more likely for there to be some hardware or software

1 0-7803-9802-5/2000/$10.00 (c) 2000 IEEE.

configuration errors somewhere along the path
connecting the sender and receiver, which will limit
network performance. This occurred quite often in our
experiments. In this case, we have observed that
network striping at the application level is still an
effective mechanism for increasing network throughput,
while; on the other hand, tuning window size is not
nearly as effective in practice.

This paper is organized as follows. PSockets is described in
Section 3. Section 4 discusses four sets of experiments
conducted over the Abilene network. Section 5 discusses
some of the applications we have built using PSockets.

2. BACKGROUND

TCP was designed to operate reliably over almost any
transmission medium regardless of transmission rate, delay,
corruption, duplication, or reordering of segments [1]. TCP
implementations currently adapt to transfer rates in the range
of 100 bps to 107 bps and round-trip delay in the range of
1ms to 100 seconds [2]. TCP guarantees reliable in-order
delivery of data sent from the source to the destination. Since
many applications need reliable data delivery, TCP has been
very widely used.

Typically an application requests data to be sent to another
application at a remote machine. The TCP stack in the kernel
of an operating system handles requests from various
applications and passes data to the network. TCP partitions
the data into segments to be sent over appropriate
transmission media and waits for an acknowledgement from
the receiver to know that a particular segment has been
received correctly. TCP achieves this by having windows on
both the sender and the receiver that can throttle the rate at
which data can be sent [10].

Due to the recent advancements in fiber optics and related
technologies, networks with very high transmission speeds
are becoming more common. TCP was not designed for these
types of networks [2] and recently there has been research
addressing this issue [2, 3, 4, 5, 11]. TCP window size is a
key tuning factor for networks with large delays between the
sender and the receiver. RFC1323 [2] provides details on
achieving better TCP performance over such networks.
Automatic TCP Buffer tuning to achieve increased bandwidth
on a socket level is detailed in [3]. Improvements on the TCP
algorithm to transmit data quickly and efficiently are
explained in [4] and [5]. TCP performance improvements
over satellite links were carried out in [8] which involved
large delays. TCP performance depends not upon the transfer
rate itself, but rather upon the product of the transfer rate and
the round-trip delay. This “bandwidth*delay product”
measures the amount of data that would fill the pipe. It is the
buffer space required at the sender and the receiver to obtain
the maximum throughput over the established TCP
connection, i.e., the amount of unacknowledged data that
TCP must handle in order to keep the pipeline full. TCP

performance problems arise when the bandwidth*delay
product is large. This is referred to as “long, fat pipe” and a
network containing this path is a long fat network (LFN). The
three fundamental performance problems with the current
TCP over LFN paths are the window size limit, the recovery
from losses and the round-trip measurements. Several RFC
have been developed and implemented to overcome these
issues and achieve maximum performance with the current
TCP over LFN.

The key factor in achieving maximum performance from
TCP over LFN is the TCP window size. The TCP window
size has to be tuned at both the source and the destination in
order to achieve the maximum throughput. This involves
changing parameters for the TCP stack in the kernel and has
to be done by the system administrators at both ends [6].
Also, after the tuning, performance analysis has to be done to
fine tune this window size. Typically this operation can take
anywhere from a few hours to even weeks [6]. In this paper
we propose an alternative method involving striping data over
several sockets. Applications can use the PSockets library
and don’t have to bother tuning the window size. Our library
achieves equivalent performance to the one that would be
achieved while setting the best window size.

A similar method with satellite applications in mind was
proposed in [8]. Both use several open sockets and the basic
principle is the same. In [8], the data is divided into 8KB
blocks and the blocks are striped across several sockets. In
PSockets, the segmentation and re-assembly of the data
across various sockets is done with the help of pointers in
C++. Striping across open sockets as 8KB blocks involves
the overhead of keeping track of data on different sockets and
then re-assembling them at the destination. We had minimal
overhead by striping the data equally across various sockets
as compared to striping as 8KB blocks. Hence, we have
found it to be more advantageous to divide the data into equal
partitions and send the partitions over the open sockets
asynchronously. In this way we incur very little overhead in
re-assembly and achieve better performance.

3. PSOCKETS

When an application needs to transfer data reliably over a
network, it opens up a TCP/IP socket connection between the
sender and the receiver. When the sender and the receiver are
connected by a high speed wide area network the
bandwidth*delay product is quite high (greater than 64KB).
In order to achieve the maximum TCP Performance on such
networks the sender and the receiver's TCP window size is
set to the bandwidth*delay product [2]. Enabling RFC 1323
on a system has to be done by the system administrators at
both ends and not by the application. This could typically
take a few days or sometimes even weeks. Therefore, in
practice most applications are limited to the default maximum
window size.

Using PSockets, individual applications can overcome this
limitation by using multiple sockets. Since the limitation of
the TCP window size is only on a single socket, PSockets
opens multiple socket connections between the sender and the
receiver. PSockets then divides the data to be transferred into
equal partitions, where the number of open sockets
determines the number of partitions. PSockets then sends the
data partitions asynchronously over the multiple socket
connections. The TCP/IP stack in the kernel multiplexes the
data on the various connections so that, in effect, the
partitions appear to be sent in parallel on the multiple
connections. In this way, PSockets is able to achieve the
maximum data transfer rate possible on a high- speed wide
area network without any network tuning. We call this
approach network striping.

Figure 1 shows TCP packets between a source and
destination pair at a given instant of time over a network.
Assuming that the default TCP window size is set to 64KB
and the bandwidth*delay product is equal to 192KB, Figure 1
shows three scenarios for a LFN. In each case 192KB of data
is to be transmitted from source to destination.

• = Figure 1 (a): Here, the connection between the source

and the destination has the default window size (64KB).
At the source, the first 64KB of data is sent since the
TCP window size is 64KB. The sender then waits for an
acknowledgement before sending any more data. Since
the source waits for an acknowledgement from the
destination the connection pipe between the source and
destination is not completely filled. Therefore the
maximum throughput attainable over the connection is
not achieved. This limitation is overcome by using RFC
1323.

• = Figure 1 (b): This diagram shows the connection
between the source and the destination after enabling
RFC 1323, which recommends the use of large TCP
window sizes for connections having large
bandwidth*delay products. In our example the TCP
window size is set to 192KB (bandwidth*delay product).
In this scenario, the source sends the entire 192KB of
data to be transmitted to the destination without waiting
for an acknowledgement. This achieves the maximum
data rate between the source and the destination. The
entire pipe is filled with segments up to the TCP window
size.

• = Figure 1 (c) shows our method using multiple sockets.
No network tuning is required in this scenario. The TCP
window size is left at the default value of 64KB. In this
example, three sockets are used to fill up the pipe since
each socket has a window size of 64KB. This achieves
the same performance as in Figure 1 (b).

PSockets uses application level network tuning to achieve the
maximum throughput between a source and a destination.
The throughput attained by PSockets is equivalent to the one
obtained over a finely tuned network which has a large
bandwidth*delay product. If the TCP driver does not use a

good recovery algorithm, then quite a few packets may be
dropped and have to be retransmitted. This reduces the data
rate of the connection. When the TCP window size is set to
the bandwidth*delay product for the high-speed wide area
network, the retransmission of the transition data (the data
which has been sent from the source and not yet arrived at the
destination) can be costly and will affect the performance. By
using PSockets, we can use a smaller TCP window size,
reducing the number of packets which need to be
retransmitted

Using the PSockets library, applications don’t have to tune
for the best TCP window size to achieve the maximum
throughput. The PSockets library hides information on the
number of open sockets, the segmentation, and the re-
assembly of the data. PSockets uses an API similar to the
standard socket "send" and "receive".

Figure 1: TCP packets at a given time over a LFN

4. EXPERIMENTAL RESULTS

Machine at
Chicago, IL

Machine at Ann
Arbor, MI

Processor Dual processor
Pentium II 450

MHz

Uni processor
Pentium II 450

MHz
Network card 100 Mb/s fast

Ethernet card
100 Mb/s fast
Ethernet card

Operating
System

Red Hat Linux 6.1 Red Hat Linux
6.1

External
connectivity

ATM Switch

Fast Ethernet
Switch

Table 1: Configuration of the Machines used for

experiments
Experiments were conducted between machines at Chicago,
IL and Ann Arbor, MI. Table 1 describes the configuration
of the machines. The connectivity between Chicago and Ann
Arbor is an OC3 line (155 Mb/s). This link was limited to an
effective rate of 100 Mb/s due to a fast Ethernet switch in the
path with this limitation.

We performed several experiments described below to study
the performance of PSockets. In all the experiments

performed, the overhead to segment and re-assemble the data
has been included.

a) Varying number of sockets: The first test conducted was
to vary the number of parallel sockets used for data transfer.
The goal of the experiment was to find the optimal number of
sockets for a particular buffer size. Figure 2 shows the results
of our experiment for the TCP default window size of 64KB.
The amount of data transmitted in each experiment was
64KB. It was observed that the maximum throughput was
obtained for a PSocket size of 12. Other experiments
conducted (with a constant TCP window size and constant
amount of data transfer) revealed that the maximum
throughput was attained using PSocket sizes between 6 and
16. Using PSockets we were able to achieve a maximum
throughput of 76 Mb/s of application data (not including
other lower level overheads).

Performance of PSockets on
Abilene Network

0

20
40

60

80

0 50 100 150

Number of PSockets

D
at

a
R

at
e

in
 M

b/
s

TCP Window
Size = 64K

Figure 2: Performance of PSockets

b) Varying the amount of data transfer: In this experiment
we varied the amount of data transferred. We kept the TCP
window size set to the default maximum of 64KB. To
compare the performance of PSockets against standard
software, we utilized Iperf [6], a network performance tool
developed by NLANR. Figure 3 shows the results of our
experiments for data transfer amounts varying from 1KB to
4MB using PSockets as well as Iperf. Obeserve that the
throughput increases with an increase in the number of
sockets for a particular amount of data and then finally drops
down. See Figure 1. For a particular PSocket size the
increase in the size of data transferred from 1KB to 4MB did
not have a noticeable effect on the throughput obtained. We
concluded that for a fixed number of sockets, varying the
amount of data transferred did not affect the throughput.

c) Performance of PSockets with and without network
tuning: The third test we performed was to vary the TCP
window size and see the performance of using RFC 1323 as

well as PSockets. Figure 4 shows the results for two TCP
window sizes, 64KB (default TCP window size on Linux
operating system) and 256KB (A TCP window size closer to
the bandwidth*delay product between the machines used for
the experiment). The data transmitted in each experiment was
64KB. This clearly validates our argument that applications
using PSockets can obtain throughputs equivalent to those
obtained after careful network tuning (RFC 1323) of the
high-speed wide area networks. Observe that we are able to
achieve a throughput of 57.7 Mb/s without network tuning
and 67.7 with network tuning. Note that the maximum
throughput attained using Iperf for a TCP window size of
256KB was only 47.7 Mb/s. This could potentially be a
problem in the implementation of the TCP/IP driver or the
network itself [7].

Performance on Abilene Network

0
10
20
30
40
50
60
70
80
90

0 1000 2000 3000 4000
Transmission Buffer Size in KB

D
at

a
R

at
e

Sockets=1
Sockets=2
Sockets=3
Sockets=4
Sockets=5
Sockets=6
Sockets=7
Sockets=8
Iperf

Figure 3: Performance results using Psockets on Abilene
network for various transmission Buffer sizes

PSockets and Iperf

0

10

20

30

40

50

60

70

80

64 256

TCP Window Size in KB

Th
ro

ug
pu

t i
n

M
b/

s

Iperf
PSockets

Figure 4: PSockets without and with network tuning

d) Performance of PSockets with various TCP window
sizes: Figure 5 shows the performance of PSockets (8
sockets) for TCP window sizes 1KB to 4MB. The
bandwidth*delay product for the connection is calculated to
be 245KB. From our second experiment we concluded that
the amount of data transferred did not affect the throughput
obtained using PSockets. Therefore we used 8KB as the data
transfer unit for this experiment. It can be noticed from the
graph that the maximum throughput was obtained for the
TCP window size 512KB. Therefore, as mentioned in [7],
setting the TCP window size equal to the bandwidth*delay
product actually does not give the best performance. The
PSockets performance is compared against Iperf for the same
window size. Observe that the difference in throughput
obtained using PSockets and Iperf narrowed as the TCP
window size increases. Since PSockets uses 8 sockets to send
data, it performs better than Iperf up to the TCP window size
of 8KB. Beyond the 8KB TCP window size, one would
expect both PSockets and Iperf to be able to achieve the same
throughput. Since the Iperf performance was always less than
that of PSockets we tried to verify our suspicion that there
was a potential problem with the TCP/IP driver or the
network itself. Iperf will not achieve the maximum
throughput with a single client when there are problems with
either the TCP/IP driver or the network [7]. When Iperf was
simulated with two clients connecting to the server at the
same time (similar to running PSockets with a value 2), this
defect was confirmed. Iperf with 2 client connections at the
same time was able to achieve an aggregate throughput more
than that of Iperf with a single client.

Performance on Abilene Network

0
10
20
30
40
50
60
70
80

1 10 100 1000 10000
Log (TCP Window Size in KB)

D
at

a
R

at
e

Iperf

Psockets=8

Figure 5: Performance Comparison of PSockets and
Iperf with varying TCP Window Sizes

e) Varying the number of clients. The next experiment we
performed was to increase the number of applications running
PSockets. We used a PSocket size of 8 for this experiment
and a TCP window size of 64KB and the amount of data
transferred by each application was 2MB. Observe that the
aggregate throughput obtained by applications using

PSockets increased as the number of applications increased
from 1 to 7 and then gradually dropped down for 8 or more.
This is due to the fact that the driver has to handle 64 sockets.
This can be observed from Figure 6. It was observed that the
throughput obtained by each application was nearly the same
indicating that each application using PSockets was given an
equal share of the bandwidth.

Performance of PSockets with Multiple
Clients

0

20

40

60

1 2 3 4 5 6 7 8

Number of Clients

A
gg

re
ga

te

th
ro

ug
pu

t i
n

M
b/

s

Figure 6: Performance of PSockets with Multiple Clients

Additional experiments were conducted to compare the
results of applications not using PSockets with applications
using PSockets. An application using PSockets (8 sockets)
was run along with an application using a single socket. The
maximum attainable throughput was equally divided among
the 9 sockets. We can conclude that the applications not
using PSockets will get lower throughput when run along
with applications using PSockets. We analyzed the packet
drops in three applications, which transferred 512KB of data
– one using PSockets (8 sockets) with the default window
size, the second application using one socket with the default
TCP window size, and the third application using one socket,
but with the TCP window size set to the bandwidth*delay
product. The packet drop percentages in the three
applications were 0.03%, 0.02% and 0.07% respectively.
The software tools tcpdump and tcptrace [11] were used to
compute this. The bandwidth attained in the three
applications was 57 Mb/s, 38 Mb/s and 59 Mb/s respectively.
This indicates that there is more contention for the available
bandwidth while using PSockets with the default TCP
window size than while using a single socket with the same
TCP window size. On the other hand, we are able to achieve
a very high throughput while using PSockets without the cost
of network tuning. Note that the bandwidth achieved by an
application with a single socket along with the TCP window
set to bandwidth*delay product is slightly greater than that
achieved by PSockets but the packet drop percentage is
nearly twice as much as that of the application using
PSockets. This test clearly confirms that applications using
PSockets without network tuning will be able to achieve
equivalent bandwidth to that of a well tuned network.

The slow start and the congestion avoidance algorithms [5]
for a wide area network minimize the packet loss during
congestion. All our experiments were run on a Linux system,

and the TCP/IP driver did not have options to configure the
slow start algorithm. Hence the effect of slow start algorithm
while using PSockets has not been studied in this paper.

From all of the above-mentioned experiments, we conclude
that PSockets helps in achieving a throughput closer to the
maximum throughput attainable over the network by using
application level tuning rather than the more time-consuming
network tuning. PSockets would be able to help in achieving
better throughput even when there are inherent problems with
the driver or the network. Applications using PSockets will
be able to extract a greater bandwidth share over a high-speed
network while competing against other normal applications.

5. APPLICATIONS

We built a geographically distributed data intensive
computing application with PSockets to mine high energy
physics data. The data was located at Chicago, IL, Ann
Arbor, MI and Arlington, VA. The Arlington link was limited
due to a DS3 (45Mb/s), while the Ann Arbor was limited due
to a fast ethernet switch of 100Mb/s. The Chicago machines
were limited due to the OC3 link (155 Mb/). Six Linux
machines pulled data from these locations into Portland, OR
at the SuperComputing ’99 conference floor. We were able to
obtain a maximum throughput of around 30-35Mb/s while
using the Physics application since the data was striped
across 6 machines (2 machines at each site).

In addition, we developed a simple application benchmark
program to test the raw performance of PSockets. We were
able to achieve a maximum throughput of around 240Mb/s
using this benchmark. The maximum attainable throughput
was equal to around 300 Mb/s. The input link at the floor was
an OC12 (622 Mb/s).

Currently we are using the PSockets library to build a high
performance wide area data storage application called Osiris.
Osiris stripes row-column data across various nodes
distributed geographically and interconnected by a high speed
wide area network. Osiris is aimed at applications that need
large volumes of data to be retrieved quickly. PSockets is
currently available for the Linux platform and can be
downloaded from http://www.ncdm.uic.edu.

6. CONCLUSIONS

We have developed a library called PSockets, which helps
wide area applications that need to move large amounts of

data. Even though PSockets achieves a performance
equivalent to that obtained with RFC 1323 enabled, it is
much easier to use since no tuning is required. Typically,
tuning the network can be quite labor intensive, since it
requires work by system administrators on both ends. With
the PSockets library, developers need not worry about this.
Since PSockets has the same API as that of regular sockets it
is very easy for application developers to use.

REFERENCES

[1] J. Postel, “Transmission Control Protocol”, Request for

Comments 0793, Sep. 1981.
[2] Van Jacobson, Robert Braden, and Dave Borman. “TCP

extensions for high performance”, Request for
Comments 1323, May 1992.

[3] Jeffery Semke, Jamshid Mahdavi and Matthw Mathis,
“Automatic TCP Buffer Tuning”, ACM SIGCOMM,
Oct. 1998.

[4] Experimental TCP selective acknowledgement
implementations 1998, Obtain via:
http://www.psc.edu/networking/tcp.html

[5] W. Richard Stevens, “TCP slow start, congestion
avoidance, fast retransmit, and fast recovery
algorithms”, Request for Comments 2001, March 1996.

[6] Mark Gates and Alex Warshavsky, Iperf version 1.1.1,
Bandwidth Testing Tool, NLANR Applications,
February 2000.

[7] Mark Gates, “Tuning Applications for High-
Performance Networks”, NLANR Distributed
Computing Workshop, Sep 19-21, 1999, Tucson, AZ.

[8] S. Ostermann, M. Allman, H. Kruse, "An Application-
Level Solution to TCP's Satellite Inefficiencies".
Workshop on Satellite-based Information Services
(WOSBIS), November, 1996. Rye, New York.

[9] D. A. Patterson, G. A. Gibson, R. H. Katz, "The Case
for Redundant Arrays of Inexpensive Disks (RAID)",
Proceedings ACM SIGMOD Conference, Chicago, IL,
(May 1988).

[10] Wright Gray R., W. Richard Steven, "TCP/IP
Illustrated, Volume 2 : The Implementation", Jan 1995,
Addison Wesley.

[11] S. Ostermann, "Tcptrace Version 5.2.1", Aug 1998.

ACKNOWLEDGMENTS

The authors thank Mr. Scott Wahlstrom and Mr. Marco
Mazzucco for help in running certain tests for this paper.

