The Processor That Don't Cost a Thing

Peter Hsu, Ph.D. Peter Hsu Consulting, Inc.

http://cs.wisc.edu/~peterhsu

DRAM+Processor

- Commercial demand
 - Heat stiffling industry's growth
 - Heat density limits small systems
 - Total power dissipation limits large systems
 - Acceptance of parallel programming
- Feasible solution
 - Enough memory per chip to make useful system
 - Powerful microarchitecture using DRAM process

System Architecture Evolution Circa 1995

System Architecture Evolution

Two Kinds of Computations

Discrete

- Integers, pointers
- Unpredictable branches
- Irregular data patterns
- Caching effective
- Low power efficiency
- Cluster of few processors
- Winner: x86

Continuous

- Floating point numbers
- Loops
- Data streams
- Caching ineffective
- High power efficiency
- Cluster of many
- Winner?

System Architecture Evolution Circa 2005

A Question of Granularity

- Trend: integrate 100 FPU @ multi GHz
 - Main memory off chip
 - Pin bandwidth woefully inadequate, need huge cache(s)
 - Terrible heat density, IR drop, hotspots...
 - Giant heat sink, noisy fan
- Why concentrate computing?
 - If there's parallelism, no need to be close together
 - If inherently serial, cannot use parallel resources

System Architecture Evolution Circa 2010?

Display Technology

- Today's HDTV
 - 1-2M pixels
 - 500MB main memory
 - GB/s bandwidth
 - GFLOPS to render
 - Home cinema
 - \$10,000

- Wallpaper display
 - 1B+ pixels
 - 50GB main memory
 - TB/s bandwidth
 - TFLOPS to render
 - Faux picture window
 - \$10,000
 - Power major concern

Today's High-End Embedded System

- "Power" applications
 - H.264 MPEG4
 - Video games
 - Autonomous robots
- Like small PC
 - 512 MB, 5 GFLOPS
 - 20W, \$100

Tomorrow's Low-Cost Computer

- 10x more "efficient"
 - 2W, \$10
- Enables 100x volume
 - Sub \$100 devices
 - Cheap clusters
 - Aggregate 1000's to form large systems

Off-Chip Bandwidth is Expensive

- 512M DDR2, 89mm^2
- 1.4GB/s, 8% I/O, **0.8W**

- 256M GDDR2, 52mm²
- 6.4GB/s, 21% I/O, **1.5W**

Most Efficient Granularity

- Crunch data within DRAM
 - Drastically reduce off-chip communication
- Must maintain memory cost-effectiveness
 - Similar area (yield)
 - Comparable power (package)
 - Don't change process (duh)
- How much computing is possible inside DRAM?

Why DRAM+CPU Now?

- Many previous disappointments
 - PIM, IRAM...
- Inherently a high performance solution
 - Power no issue for low bandwidth chip-to-chip
 - Separate DRAM & CPU chips not inefficient
 - Large applications need large memory (100's MB)

Sufficient memory capacity

Outline

- Motivation
- About DRAM
- What can we realistically integrate?
- A viable microarchitecture
- Fun things to do

DRAM Structure

- Base array
 - 256 x 512 cells
 - Subword lines
 - Tungstan bit lines
- Mat
 - 16 x 16 subarrays
 - M1 main word lines
 - M2 global DQ lines

Area Utilization (65% Cells)

• X direction

- 5% subword drivers
- 10% X decoder
- 10% off-chip I/O

• Y direction

- 10% sense amps
- 5% Y decoder
- 10% DQ drivers

Process

Transistors

- Priority is low leakage
- Relatively thick oxide, high threshold, long channel
- Roughly 3 generations slower than logic process

Interconnect

- Small bit line pitch requires high resistance tungstan
- Only need 2 aluminum or copper layers
- Wide, low resistance M2 for long distances

Interconnect Details

DRAM Timing

Taa, Tcy = 12.5ns

Subarray

BL equalize	WL up	BL sense	BL write	WL down

Integration Ramifications

- Pros
 - Close to main memory
 - Low latency, good BW
 - Dense complex cells
 - Flip-flops, latches
 - Full adders, multipliers
 - Clock gating effective
 - Easy power mgnt

- Cons
 - Few global wires
 - Extremely hierarchical microarchitecture
 - Low P&R density
 - Simple control scheme

Bottom Up Design Philosophy

Boundary conditions

- Logic area (yield, cost, sales volume)
- Bandwidth (power, routing overhead)
- Process limitations (logic construct density)

Microarchitecture

- How many FPUs (area & bandwidth, cache?)
- Frequency (power, number of banks)
- Appropriate control structure (area)

4 Gbit in 45nm (2009)

16.2 x 6.8 = 110mm²

Area

- 45nm process like 130nm logic
 - 150K gates/mm² (33% utilization)
 - M1 5600 tracks/mm, M2 2800
- How many FPUs?
 - IEEE 32b ~0.2mm^2
 - 12 FPUs ~30% of 10mm^2 logic area
 - 30% PLL, charge pump, I/O, etc.
- Leaves 40% = 600K gates

Power

- Magic number: 2W
 - Convection cool, no heat sink, low junction temp.
 - Cheap package, minimum system cost
- Logic area 0.9W
 - 180nm FPU 1.8V 266MHz = 150mW [DIVA]
 - $\frac{1}{4}$ area, $\frac{1}{2}$ V, 1.5x frequency (400MHz) = 30mW
 - FPUs 40% area, same power density
- Chip 1.8W (0.8 mem + 0.9 logic + 0.1 I/O)

Bandwidth

- Memory power: bandwidth, distance, voltage
 - -130nm 1.5V 6.4GB/s = 0.8W internal + 0.7W I/O
 - DRAM chip size constant @ 80-100mm^2
 - 45nm voltage 0.9 (perhaps)
- How many ports?
 - $-(1.5 / 0.9V)^2 * 6.4 = 18GB/s @ 0.8W$
 - -18G/4B/12 words =375MHz
 - One memory access / multiply-add

A Viable Microarchitecture

- Vectors
 - Wire efficient (no multiport RF), simple control
- Multicore
 - One memory port per core maximizes utilization
- Multistream
 - Tolerate memory latency in scalar code
- Cache-less
 - SRAM bad: leakage, power, yield, migration

4 Gbit in 45nm (2009)

16.2 x 6.8 = 110mm²

DRAM Layout Drives Floorplan

Microarchitecture Summary

- Memory
 - 64b, 8 lanes, 8 banks each, 4x4 crossbar, pair arbitrate
 - 5 cycles latency
- Frequency
 - 400 MHz
- Processor (6)

- 64b vector paired-single FPU
- 4 scalar streams share mem port, hides latency

Physical Design of Processor

Package

- Fewest possible I/O
 - Diff. pairs in & out
 - Up to 10Gb/s each
- Chip scale BGA
 - 24 balls (14 pwr/gnd)
 - 1 cm², 3mm high

Cool Stuff

- Vector registers implemented as shift registers
 - Interleave bits of VR to bitslice crossbar
- Poor-man's simultaneous multistreaming
 - Concurrent scalar units, time-shared memory port
 - Low latency, simple control, extremely hierarchical
- Ultimate scatter/gather flexibility
 - Vector load/store by scalar units (4)
 - Fire-and-forget vector ops

System Architecture Evolution Circa 2010?

Home Entertainment Possibilities

- 64 DRAM, 8 FPGA
 - 0.6 TFLOPS SP
 - 32 GBytes
- 8 FPGA routers
 - 32 fast signals
 - USB, video, etc.
- Sub \$1000 cost
 - 200 Watts

