DRAM+CPU: Build It, They Will Come

Peter Hsu, Ph.D. Peter Hsu Consulting, Inc.

http://cs.wisc.edu/~peterhsu

Computer Industry Seems Stuck

- Saturated market for high performance
 - Who needs 5 GHz or 16 core PC?
 - Why design servers? PC clusters are servers
 - Stay-at-home video game consoles going extinct
- System-on-a-chip was false hope
 - Specialization & high mask charge don't mix
 - Thin profit cannot support R&D

Toys to Teraflops

- Semi industry = memory
 - Generic DRAM, flash for everyone and everything
- Computer industry must evolve
 - Generic computer chip good enough for everything
 - Add value: software, system, interconnect
- Challenge: base unit extremely cheap
 - Like \$1, to sell billions
 - Unencumbered by patents, IP rights

Sell a LOT of Computers

- Consumer product
 - Consumed: eaten, wears out, broken, thrown away
 - Re-purchase: craving, peer pressure, useful?
- Silicon way too durable
 - Embed in less stable material (fabric)
 - Micro mechanical parts (wears out)
 - Organic electronics (deteriorate in sunlight)
 - "System design" problem...

Smart Fabric

- Shadows cue 3-D
 - Painting basics
 - Change with movement
- Colors, shadows, transparency
 - Real time update
 - Who's looking at you?
 - Which direction?

Biological Complexity Model

- Basic unit (cell) cheap, generic
 - As powerful, efficient as possible, within constraint
 - Viable standalone (bacteria)
- Aggregation (multicellular organism)
 - Replicate and subset (stem cell, specialization)
 - Locally wasteful, globally optimal

Meta Architectures

Discrete computing

- Pointers
- Unpredictable control
- Caching
- Little parallelism
- Not real time

Server, desktop, controller

Continuous computing

- Floating point
- Loops, arrays
- Streaming data
- Much parallelism
- Real time

Supercomputer, games, DSP

Focus on Continuous Computing

- "Serious"
 - Weather prediction, protean folding, nuclear reaction
- Games
 - Car crumpling, blood spurting, burning house
- Lifestyle
 - Smart fabric, prosthetics, pornography

Sell a LOT of computers

Cava Project

- "Free" computer
 - Open source ISA
 - Open source RTL
 - Open source Compiler
 - Open source OS
- "One chip to run them all, and in the software bind them"

Yes, I'm a hopeless romantic

Base Unit

Start with DRAM

- Majority silicon real estate in computer is memory
- Majority of fab capacity worldwide
- Incredibly optimized cost-performance

• Don't screw it up

- Integrate computer without changing process
- Maintain yield: logic replace I/O area
- Stay within power envelope

Typical DRAM: Samsung 512 Mb

- 157mm²@120nm [JSSC]
 - 89mm²@90nm
- 700 Mb/s ×16
 - I/O 8% (12mm²)
- Transistors N:P
 - $-330:150 \mu A/\mu m$
 - 640:280 [TSMC 90nm]
 - 535:236 [Charter 0.13]
- 1 tungsten + 2 aluminum

Increasing I/O Bandwidth

- 78mm²@110nm [JSSC]
 - 256 Mb "GDDR"
- 1600 Mb/s ×32
 - I/O 21% (16.5mm²)
- Expensive
 - < 50% cell area
 - 84 BGA
 - 1.5 W (I/O 33%)
 - Difficult shrink

Powerful, Efficient as Possible

- Logic 15% die area
 - Including (many fewer) I/O
- Performance -3 generations
 - Transistors 30% speed v. logic process
 - Gate density only 10%

- 65nm DRAM ~ 180nm logic
 - 1 Gbit memory, 1 M gates, 400 MHz, dozen I/O

Cava Architecture

- Vectors
 - "All but 10 parallel apps are vectorizable"
- Symmetric multiprocessor
 - Processor per data lane to memory
- Simultaneous multi-thread
 - No cache, non-speculative, precise exception
- Compact ISA
 - Memory is precious

Cava v. CELL-like Stuff

- Base unit granularity
 - Cava: one chip, 3 GFLOPS, 1 W
 - CELL: 1 logic + N memory, 100? GFLOPS, 20? W
- Programming model
 - Cava: single address space, uniform latency
 - CELL: multiple address spaces, unequal latencies
- Business model
 - Cava: successful 3rd world fabs good for humanity

Competitive Landscape

- Power limits DRAM bandwidth
 - Approximately 10 GB/s per 1 W chip
 - Streaming: 5 GFLOPS per DRAM (mul-add/word)
- Maybe doesn't matter how organize
 - Many DRAM/one cpu, several cpu/one DRAM
 - VLIW, superscalar, SIMD, vectors
 - Directory shared memory, message passing, COMA

Production cost, profit margin, critical mass

Low Tech Implementation

- Extreme hierarchy
 - Deja vu: MSI chips, small PCB's, wire-or backplanes
- Planar layout
 - Mead & Conway VLSI, linear array multipliers
- Basic circuits
 - Avoid dynamic, low swing, ratioed, SRAM

Engineering skills available worldwide

Interleaved Memory, Naturally

- Large DRAM inherently hierarchical
 - Long wires, many loads: independent segments
 - Timing/noise uncertainties: replicate control
- Power limits concurrency
 - VDD drop, supply noise limit number of active banks
 - Bandwidth/cost already highly optimized

• Classic theory: # banks = latency**2

Performance

- Scalar code
 - Thread IPC ~ 0.25
 - 85% mem utilization
 - 2/3 instructions
 - 1/3 data
- Vector code
 - Mem, add, mul / cycle
 - Cray-1 like

- 30% memory [2.0 CPI]
 - 20% load (7+1.5 cycles)
 - 10% store (3)
- 20% branches [1.1]
 - 7% fall through (2)
 - 7% taken, hit (3)
 - 7% taken, miss (9+1.5)
- 50% ALU [0.6]
 - 40% short (1)
 - 10% long (2)

Gate Count

- Vector unit (1x)
 - FP multiplier 30K
 - FP adder 30K
 - VR 30K (16·32·32·2g/b)
- Thread unit (4x)
 - RF+IB 1.5K (28·32·2g/b)
 - ALU, control 5K (200f/f)

- Address Map (8x)
 - Base, limit, reloc 1.3K (52f/f)
- Memory Port (1x)
 - Drivers, etc. 20K

- Total
 - Processor 150K

Random Thoughts

- Smallest generic base unit?
 - Must run normal OS (Linux, 64+MB, VM)
- Parallel programming language?
 - Never. Naturally parallel apps already happy
- x86?
 - Mandatory L1 cache proxy for larger register file
- Endian?
 - Little. Please...

Conclusion

- Single chip approaching critical mass:
 - Memory capacity (OS, apps, I/O)
 - Performance (clock speed, parallelism)
- Discontinuity in cost/effectiveness
 - Dark horses, white knights, giants tripping...
 - Time to make (or lose) a lot of money
- Will Cava happen?
 - Probably not, but something like it will