DRAM+CPU: Build It, They Will Come

Peter Hsu, Ph.D.
Peter Hsu Consulting, Inc.

http://cs.wisc.edu/~peterhsu
Computer Industry Seems Stuck

- Saturated market for high performance
 - Who needs 5 GHz or 16 core PC?
 - Why design servers? PC clusters are servers
 - Stay-at-home video game consoles going extinct

- System-on-a-chip was false hope
 - Specialization & high mask charge don't mix
 - Thin profit cannot support R&D
Toys to Teraflops

• Semi industry = memory
 – Generic DRAM, flash for everyone and everything

• Computer industry must evolve
 – Generic computer chip good enough for everything
 – Add value: software, system, interconnect

• Challenge: base unit extremely cheap
 – Like $1, to sell billions
 – Unencumbered by patents, IP rights
Sell a LOT of Computers

- Consumer product
 - Consumed: eaten, wears out, broken, thrown away
 - Re-purchase: craving, peer pressure, useful?
- Silicon way too durable
 - Embed in less stable material (fabric)
 - Micro mechanical parts (wears out)
 - Organic electronics (deteriorate in sunlight)
 - “System design” problem...
Smart Fabric

- Shadows cue 3-D
 - Painting basics
 - Change with movement
- Colors, shadows, transparency
 - Real time update
 - Who's looking at you?
 - Which direction?
Biological Complexity Model

• Basic unit (cell) cheap, generic
 – As powerful, efficient as possible, within constraint
 – Viable standalone (bacteria)

• Aggregation (multicellular organism)
 – Replicate and subset (stem cell, specialization)
 – Locally wasteful, globally optimal
Meta Architectures

Discrete computing
- Pointers
- Unpredictable control
- Caching
- Little parallelism
- Not real time
Server, desktop, controller

Continuous computing
- Floating point
- Loops, arrays
- Streaming data
- Much parallelism
- Real time
Supercomputer, games, DSP
Focus on Continuous Computing

- “Serious”
 - Weather prediction, protean folding, nuclear reaction
- Games
 - Car crumpling, blood spurting, burning house
- Lifestyle
 - Smart fabric, prosthetics, pornography

Sell a LOT of computers
Cava Project

- “Free” computer
 - Open source ISA
 - Open source RTL
 - Open source Compiler
 - Open source OS
- “One chip to run them all, and in the software bind them”

Yes, I'm a hopeless romantic
Base Unit

• Start with DRAM
 – Majority silicon real estate in computer is memory
 – Majority of fab capacity worldwide
 – Incredibly optimized cost-performance

• Don't screw it up
 – Integrate computer without changing process
 – Maintain yield: logic replace I/O area
 – Stay within power envelope
Typical DRAM: Samsung 512 Mb

- 157 mm\(^2\) @ 120nm [JSSC]
 - 89 mm\(^2\) @ 90nm
- 700 Mb/s × 16
 - I/O 8% (12 mm\(^2\))
- Transistors N:P
 - 330:150 µA/µm
 - 640:280 [TSMC 90nm]
 - 535:236 [Charter 0.13]
- 1 tungsten + 2 aluminum
Increasing I/O Bandwidth

- 78mm2@110nm [JSSC]
 - 256 Mb “GDDR”
- 1600 Mb/s ×32
 - I/O 21% (16.5mm2)
- Expensive
 - < 50% cell area
 - 84 BGA
 - 1.5 W (I/O 33%)
 - Difficult shrink
Powerful, Efficient as Possible

• Logic 15% die area
 – Including (many fewer) I/O

• Performance - 3 generations
 – Transistors 30% speed v. logic process
 – Gate density only 10%

• 65nm DRAM ~ 180nm logic
 – 1 Gbit memory, 1 M gates, 400 MHz, dozen I/O
Cava Architecture

• Vectors
 – “All but 10 parallel apps are vectorizable”

• Symmetric multiprocessor
 – Processor per data lane to memory

• Simultaneous multi-thread
 – No cache, non-speculative, precise exception

• Compact ISA
 – Memory is precious
Cava v. CELL-like Stuff

- **Base unit granularity**
 - Cava: one chip, 3 GFLOPS, 1 W
 - CELL: 1 logic + N memory, 100? GFLOPS, 20? W

- **Programming model**
 - Cava: single address space, uniform latency
 - CELL: multiple address spaces, unequal latencies

- **Business model**
 - Cava: successful 3rd world fabs good for humanity
Competitive Landscape

• Power limits DRAM bandwidth
 – Approximately 10 GB/s per 1 W chip
 – Streaming: 5 GFLOPS per DRAM (mul-add/word)

• Maybe doesn't matter how organize
 – Many DRAM/one cpu, several cpu/one DRAM
 – VLIW, superscalar, SIMD, vectors
 – Directory shared memory, message passing, COMA

Production cost, profit margin, critical mass
Low Tech Implementation

• Extreme hierarchy
 – Deja vu: MSI chips, small PCB's, wire-or backplanes

• Planar layout
 – Mead & Conway VLSI, linear array multipliers

• Basic circuits
 – Avoid dynamic, low swing, ratioed, SRAM

Engineering skills available worldwide
Interleaved Memory, Naturally

- Large DRAM inherently hierarchical
 - Long wires, many loads: independent segments
 - Timing/noise uncertainties: replicate control
- Power limits concurrency
 - VDD drop, supply noise limit number of active banks
 - Bandwidth/cost already highly optimized
- Classic theory: \# banks = latency**2
Performance

• Scalar code
 – Thread IPC ~ 0.25
 – 85% mem utilization
 • 2/3 instructions
 • 1/3 data

• Vector code
 – Mem, add, mul / cycle
 – Cray-1 like

• 30% memory [2.0 CPI]
 – 20% load (7+1.5 cycles)
 – 10% store (3)

• 20% branches [1.1]
 – 7% fall through (2)
 – 7% taken, hit (3)
 – 7% taken, miss (9+1.5)

• 50% ALU [0.6]
 – 40% short (1)
 – 10% long (2)
Gate Count

- **Vector unit** (1×)
 - FP multiplier 30K
 - FP adder 30K
 - VR 30K \((16\times32\times32\times2g/b)\)

- **Thread unit** (4×)
 - RF+IB 1.5K
 \((28\times32\times2g/b)\)
 - ALU, control 5K
 \((200f/f)\)

- **Address Map** (8×)
 - Base, limit, reloc 1.3K
 \((52f/f)\)

- **Memory Port** (1×)
 - Drivers, etc. 20K

- **Total**
 - Processor 150K
Random Thoughts

• Smallest generic base unit?
 - Must run normal OS (Linux, 64+MB, VM)

• Parallel programming language?
 - Never. Naturally parallel apps already happy

• x86?
 - Mandatory L1 cache proxy for larger register file

• Endian?
 - Little. Please...
Conclusion

- Single chip approaching critical mass:
 - Memory capacity (OS, apps, I/O)
 - Performance (clock speed, parallelism)
- Discontinuity in cost/effectiveness
 - Dark horses, white knights, giants tripping...
 - Time to make (or lose) a lot of money
- Will Cava happen?
 - Probably not, but something like it will