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Abstract
We investigate reference counting in the context of a multi-
threaded architecture by exploiting two observations: (1) ref-
erence-counting can be performed by a transformed program
slice of the mutator that isolates heap references, and (2) hard-
ware trends indicate that microprocessors in the near future
will be able to execute multiple concurrent threads on a single
chip. We generate a reference-counting collector as a trans-
formed program slice of an application and then execute this
slice in parallel with the application as a “run-behind” thread.
Preliminary measurements of collector overheads are quite
encouraging, showing a 25% to 53% space overhead to trans-
fer garbage collection to a separate thread.

1  Introduction

Automatic memory management, or garbage collection, h
become a “must have” component of modern programming la
guages; it makes programming both easier and more reliable. T
benefits of garbage collection come at a non-trivial cost. Hen
much research has been done in improving collectors [13, 2
especially tracing collectors (mark-and-sweep and copying). C
lectors have been made, in particular refinements, generatio
incremental, concurrent and parallel.

A less widely used and studied form of garbage collection is refe
ence counting. Reference counting is a naturally incremental a
locality-friendly approach since the collector’s operations are d
tributed evenly over the application’s computation and the workin
set of the collector closely matches that of the main applicatio
Reference counting provides for instant recycling of garba
(which also improves memory access locality) and thus insta
finalization for expensive objects. It is insensitive to heap res
dency and can exploit program structure (e.g., dead variable inf
mation). Reference counting is attractive in real-time an
interactive environments due to the bounded overheads and pa
times it can guarantee, in memory-constrained embedded envir
ments due to immediacy of garbage detection, and in distribu
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environments due to its excellent locality. It is also simple
implement and has found wide use where its overheads are acc
able (e.g., the Perl and Python interpreters) or where it can be e
ily encapsulated in abstract data types (e.g., “smart point
libraries for C++).

The problems inherent in reference counting are well know
There is a space overhead to store reference counts, a time o
head to maintain them, and the difficulty in finding and reclaimin
cyclic garbage. Space overheads can be minimized since a few
should usually suffice for most reference counts and these can
stored in unused parts of object headers or compacted in a ta
Time overheads can be minimized by Deutsch and Bobrow
deferred reference counting [5] which ignores updates to lo
variables and periodically scans the stack to determine true re
ence counts. Time overheads can also be tackled by using con
rency as in the SRC Modula-2+ collector [4], and as we propose
this work. Cyclic structures can be collected by using a tracing c
lector as a backup [12]. This paper concentrates primarily on us
concurrency to reduce the time overhead of a reference coun
collector. Existing solutions for the other problems (space a
cycles) can be composed with our solution.

We propose a new way of implementing concurrent referen
counting by exploiting two observations:

• The computations that maintain reference counts for hea
allocated objects can be obtained by suitably transforming
program slicethat comprises all the mutator’s instruction
that manipulate heap references. This transformed slice
then be executed in parallel with the mutator.

• Hardware trends indicate that next-generation microproce
sors will be able to execute multiple concurrent threads on
single chip through a variety of techniques:Simultaneous
Multithreading (SMT, where multiple threads of execution
are fetched and executed simultaneously in the same exe
tion pipeline and which share functional units and all levels
caches e.g., Compaq 21464 [10]),Chip Multiprocessing
(CMP, which is essentially a small-scale shared-memory m
tiprocessor on a single chip e.g., IBM Power4 [7,14], Su
MAJC [25], Compaq Piranha [1], NEC MP98 [11]) or
Coarse-grain Multithreading(where multiple threads of exe-
cution share a processor but only one is being executed i
given cycle, this differs from traditional multiprogramming in
that there is hardware support for extremely fast contex
switch time e.g., IBM RS64-II/III [23,24] and Sun MAJC).
All of these techniques give software the opportunity t
implement closely-coupled threads cheaply by exploiting fa
on-chip communication, as opposed to a typical shared mu
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processor architecture where communication between proces-
sors is comparatively expensive.

Existing concurrent reference counting techniques have the muta-
tor log all updates to in-heap references (similar to the write barri-
ers of concurrent tracing schemes). The collector is a generic
routine that examines the change log to maintain reference counts
and reclaim garbage. However, as we shall develop, this logging
approach is but one point in a continuum of implementations of the
same abstract model. The concurrent-slice implementation we pro-
pose reduces the amount of information logged by the mutator by
having the collector repeat a subset of the mutator’s actions. In the
best case, the repeated actions correspond to a precise program
slice of references to heap-allocated objects. Thus computations
necessary to perform reference counting are removed from the
mutator and isolated in an independent assist thread which runs
behind the mutator. This approach is inspired by Patil and Fis-
cher’s shadow processing[19, 20, 18] which tried to speed up
memory access checking by moving the instrumentation code con-
ventionally inserted in the main application to a second “shadow”
process which executes concurrently on an independent processor.

2  Related Work

Reference counting in practice:One of the most well known effi-
cient implementations of sequential reference counting is Deutsch
& Bobrow’s deferred reference counting scheme [5]. They only
maintain reference counts for updates to references in heap
objects, ignoring local variables which can constitute a large frac-
tion of pointer updates. Objects with counts equal to zero are only
potentialgarbage (since local variables might point to them); they
are put on a zero-count list which is periodically reconciled by
having the collector pause the mutator and scan its stack and regis-
ters for references in local variables to obtain true counts for the
objects in the list. The Lucent Inferno environment [28] includes
the Dis Virtual Machine which provides a (non-concurrent) refer-
ence counting garbage collector combined with a tracing garbage
collector [12].

Concurrent reference counting:The most widely known concur-
rent reference counting implementation is DeTreville’s Modula-2+
collector [4]. He compared several concurrent collectors: pure ref-
erence counting, mark-and-sweep, copying and a combination of
reference counting and mark-and-sweep. He considered the last
combination scheme to be best in spite of the overhead of refer-
ence counting since the concurrent tracing schemes had poor
memory locality on their target platform (the DEC SRC Firefly).
Levanoni and Petrank [16] have proposed a concurrent reference
counting algorithm which is designed to use fine-grain synchroni-
zation and be scalable on a multiprocessor system, but it has not
yet been implemented. Kakuta et al [15] have proposed a concur-
rent reference counting algorithm for a LISP environment.

Customized garbage collectors:Colnet et al [3] have proposed
automatically generating a mark-and-sweep collector for a specific
mutator application. Their customizations include type-specific
allocation and marking routines to speed up the collection process,
exploiting the type system of Eiffel.

Concurrent program slices: Patil and Fischer [19, 20, 18] sliced
out memory-access computation and executed it as a shadow “run-

behind” process on a dual-CPU multiprocessor in order to imp
ment a low-overhead memory access checker (similar to the Pu
tool). They were able to demonstrate relatively low overheads
this shadow-processing scheme which inspired the research in
paper. A related notion is the idea of using a subset of a program
dynamic execution path to compute useful information, rather th
using static analysis (and instrumentation) or dynamic profiling
guess the same information. This has recently been exploited
several “run-ahead” pre-fetching schemes [8, 2] as well as
aggressively speculative microarchitectures [21].

3  Reference-Counting with a Concurrent
Program Slice

We first present an abstract model of a concurrent reference co
ing garbage collector for a typesafe language (such as Java
which all references are to heap objects, and in which referen
arithmetic is forbidden. We discuss how this abstract model h
been concretely implemented in previous work and note that th
implementations are but one point in a continuum of possible s
tems. We then describe how we will study another point in the co
tinuum by extracting a program slice of the mutator and executi
it concurrently on a multithreaded processor.

3.1  An Abstract Model of Concurrent
Reference Counting
One can imagine a producer-consumer relation between the m
tor and the collector (operating as multiple threads in a shar
address space) with the mutator generating requests into a F
queue as it executes. The collector processes these requests
maintains reference counts for the objects named in each opera
as specified by Table 1.

Objects whose reference counts go to zero are considered garb
and returned to the memory allocator. Recursive freeing of obje
pointed to by references embedded within this object (if their re
erence counts go to zero) can be done eagerly at the garbage r
mation point, or lazily by deferring it to the next allocation whe
this object is recycled by the allocator.

This (conceptual) arrangement requires a shared FIFO qu
between the mutator (producer) and the collector (consumer), a
some synchronization in the memory allocator. Reference cou
and associated book-keeping information are assumed to be st
in object headers and can be accessed without having to sync
nize with the mutator. Overheads could be reduced by using De
sch-Bobrow deferred reference counting and only enqueu
updates of references in the heap, and periodically pausing

Mutator
Operation

Request in FIFO
Queue

Collector
Operation

p=new() CreateRef(p) p->rc = 1

p=q AssignRef(p,q) q->rc++
p->rc--

p dead KillRef(p) p->rc--

TABLE 1. Communication between mutator and collector.
‘p’ and ‘q’ are references to objects. p->rc is the reference
count of p’s referent.
2
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mutator to scan its stack and registers for local references (or by
having the mutator voluntarily enqueue information on local refer-
ences at regular intervals).

3.2  A Continuum of Concrete
Implementations of the Abstract Model
Even though our abstract model postulates a logical FIFO queue
between the mutator and collector, the two do not have to physi-
cally communicate all the information inserted into the queue. We
can imagine acontinuum of concrete implementations of the
abstract model, by varying the amount of information actually
exchanged between the mutator and the collector. For the rest of
this paper, we assume that the Deutsch-Bobrow deferred reference
counting framework is used for all implementations.

At one extreme, the mutator logs all references that it manipulates
and the collector is a standard log-processor as outlined in
Section 3.1. This approach is adopted in the SRC Modula-2+ col-
lector and it seems to be the only actively pursued form of concur-
rent reference counting. However, there are alternatives.

At the other extreme the mutator communicatesnothingto the col-
lector except for certain irreproducible values (e.g., return values
of memory allocations, system calls and other interactions with the
external environment). The collector is a complete copy of the
mutator that runs behind it by a safe distance (we describe ways of
doing this below). Also,the mutator need not be pausedfor local
reference scanning since the collector is a copy of the mutator and
could scan itself for this information. This may, of course, be unac-
ceptably expensive as we are running two copies of the same pro-
gram. The heap space overhead, as seen by the mutator, is
comparable to that of a naive semi-space copying collector which
essentially cuts the heap in half and copies live data from one
semispace to the other when it gets full (though, the working set of
this extreme is larger than the copying collector since it potentially
uses the entire heap).

There are interesting points in the continuum between these two
extremes. A more practical implementation requires that the col-
lector ignore instructions that don’t contribute to garbage collec-
tion. In particular, the collector could be a program slice [26] of the
mutator that recomputes precisely enough information to maintain
reference counts of heap-allocated objects. This could be done by
using the instructions that read and write heap references as the
criteria for a static interprocedural backward slice. This slice is
suitably transformed to produce an executable thread that gener-
ates the same stream of FIFO requests as the original mutator
would have and hence can be used as the collector to maintain ref-
erence counts (again without requiring the mutator to be paused).

Each implementation in the continuum has a cost which can be
divided into mutator time overhead, and collector time and space
overheads. The log-everything approach has low collector over-
heads but it requires the mutator to log two pointers on every store
of a reference to the heap as well as a periodic pause for the collec-
tor to scan its stack and registers for local references. The recom-
pute-everything approach has high collector overheads but it has
potentially low mutator overheads in that the logging is reduced to
a bare minimum and mutators need not be paused for stack scan-
ning (since the collector can scan its own stack as it maintains cop-

ies of all mutator reference variables). The slicing approach strik
a compromise with lower collector space overheads while s
retaining low mutator time overheads and again, not requiri
mutator pauses. Note that there are other points in this continu
as well which trade off collector overhead with mutator overhea
In the next subsection, we describe our particular implementat
which approximates the slicing approach.

3.3  Our Implementation of the Model
Our implementation infrastructure is a Java compiler whichstati-
cally compiles Java into a native executablefor execution on a uni-
processor as well as simulators of multithreaded processors.
expect the basic technique to be applicable to other configuratio

3.3.1  Generating the Collector
System ModelWe assume that all collectors that we generate w
operate in the following manner. Each class definition in the orig
nal mutator application is used by the collector generation alg
rithm to generate a corresponding “shadow” class definition whi
contains a transformed subset of the components (data mem
and methods) of the original class definition. No direct reference
made to names of mutator classes in the collector, only shad
classes are used. Mutator objects created dynamically will ha
corresponding shadow objects in the collector. Shadow objects
what are manipulated by the collector when it executes. They co
tain (at least logically) a pointer to the original mutator objec
which this shadow represents, a reference count and any additio
book-keeping information required by the reference-countin
algorithm. The collector generation algorithm needs to ensure t
such a mapping between mutator and shadow objects can be es
lished (e.g., by logging the address of each new object created)
maintained as the mutator executes (by having the collector
aware of all mutator operations on references).

The Ideal World: A Precise SliceOne way of generating the col-
lector is to literally construct a static interprocedural slice of a Ja
program using all reference-manipulation instructions in the pr
gram as the criteria for a backward slice. Program slicing alg
rithms have been extended to handle object-oriented progra
with classes and inheritance hierarchies [17]. However, we are
aware of actual implementations of full-fledged program slicers f
Java, apart from the Bandera project which slices Java progra
[9] for the specific purpose of generating specifications for mod
checkers. To avoid implementing a program slicer for Java, w
propose a scheme which approximates a precise static slice.

The Real World: Our Approximation to a Precise Slice We
want the collector to be able to reproduce the operations on re
ences that are performed by the mutator. To do this, we exploit
type-safety and lack of reference arithmetic of Java. A referen
variable can be assigned only one of the following three value
NULL, a return value from a system call (including the memor
allocator) or the value of another reference variable. Non-referen
variables do not contribute via data-flow to thevaluesused to
assign references, unlike weakly-typed languages such as C
C++ which allow pointer arithmetic as well as arbitrary castin
between pointer and non-pointer types. However, non-referen
variables do contribute via control dependences (control flow
determined by non-references which affects reference-manipu
3
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class C
{

int i,j,k;
String s1,s2;

void f(int n)

String s;

s = new String(“foo”);
s1 = s;
j = n;
k = j;
if (i>5) k = i;
if (k>3) s2 = s1;

}
}

class C
{

int i,j,k;
String s1,s2;

void f(int n)
{

String s;
s = new String(“foo”);

s1 = s;
j = n;
k = j;
if (i>5) k = i;

if (k>3) s2 = s1;
}

}

WRITE_LOG(s);

WRITE_LOG(k>3);

+

class C_s
{

C orig;

String_s s1,s2;

void f_s()
{

String_s s;

s =

if (READ_LOG()) s2 = s1;

}
}

int ref_cnt;

FIGURE 1. An example of our slice approximation scheme. We use source-to-source transformations for purposes of
illustration only; our scheme will operate on an intermediate representation. On the left, we have part of a sample application
program consisting of a single class C, where underlined constructs directly involve references. In the middle, we have the
modified mutator generated by our scheme which logs the return value of the memory allocation as well as the condition that
controls the reference assignment ‘s2 = s1’. On the right, we have the generated collector where the class C has a corresponding
shadow class C_s which only includes the reference members of C, as well as a pointer to the object which it shadows and its
reference count. Inside the shadow member function f_s(), only mutator statements which manipulate references are preserved,
with occasional reads from the log. For clarity, we do not show the subsequent transformation of this “slice” to actually
maintain the reference counts of the objects whose references are being created and assigned in the function. If we used a precise
static slice instead of our approximation, then the collector would have had to include the variables i,j,k and n as well as the
statements that operate on them while on the other hand, the mutator would not have to log the condition k>3 since the collector

s1 = s;
String_s(READ_LOG());

new

Original Mutator Modified Mutator Generated Collector

{

tions) and reference-address generation (a non-reference value
used to index into an array of references). Our slice approximation
scheme makes a copy of all instructions (statements in class meth-
ods) and data (object and class members, local variables, method
parameters and return values) in the mutator that directly involve
object references, and makes the mutator log all control depen-
dences and address generation that depend on non-reference values
and affect reference values. In addition, all system calls that return
references as results have their return values logged.

This scheme is biased towards producing a small collector slice. It
copies the absolute minimum required mutator code (the refer-
ence-manipulations instructions which are the slice criteria) along
with some reads from the log as opposed to including the code and
data that would re-compute the logged information in the collector.
Due to lack of space, we do not present a formal algorithm to gen-
erate the collector according to what we have just described. To
illustrate our scheme in practice, we present an example of a gen-
erated collector for a simple mutator class in Figure 1.

More on the Shadow HeapA shadow object in the collector con-
tains only the reference data fields of the corresponding mutator
object1, though of course they point to other shadow objects rather
than mutator objects. Thus, one can imagine the shadow objects in
the collector literally representing the connectivity graph of muta-
tor objects, since each shadow object only contains references to
other shadow objects. The collector’s working set is then the total

size of all the live shadow objects which translates into the fracti
of the live mutator heap locations that contain references.

We are not restricted to shadowing every reference in a muta
object. We could choose to shadow some (and not have to log th
updates) while we could leave some unshadowed (thus having
log their updates)2. This gives us a means of bounding shado
heap overhead by deciding how much gets shadowed. Furth
more, sophisticated encoding and compression schemes coul
used to trade-off collector execution time with space overhea
The specific scheme we used for our evaluation in Section 4.2 c
ates shadow objects only for mutator objects which contain ref
ences, where each shadow object contains, in addition to
shadowed references, a pointer to its corresponding mutator ob
(into whose unused bits we squeeze a reference count).

Mutator Logging We have the mutator log relevant information to
avoid having to compute a precise mutator slice as well as to ke
the collector small in size. This information includes all syste
calls that return references, certain control flow conditions whi
control reference manipulation, and indices into arrays of refe
ences. We only need to log control flow if the control flow affect
manipulation of reference variables, and the control flow conditio
is determined by contents of non-reference variables. Other con
flow can either be omitted, copied into the collector (e.g., all no
virtual method calls) or be reproduced by the collector (e.g., virtu
method calls can use the same virtual method table index in b
mutator and collector). The control-flow information we do lo

1.  Note that an obvious optimization for classes with no reference data members is
not to have a shadow object but directly manipulate book-keeping information in the
mutator object header. 2.  Note that arrays of references need to be shadowed in their entirety.

would have enough information to be able to compute that on its own.
4
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consists of 1 bit for two-way branches and a few bits (jump table
index) for multi-way branches (switch statements). Similarly, we
expect the index into an array of references to be much less than 16
bits worth of data, on average.

This information could be accumulated in spare processor registers
in the mutator and then logged before allowing the collector to
advance (described in the next subsection). Apart from the logging
operation itself, this does not involve extra memory operations and
we expect these computations not to be on the mutator’s critical
path (assuming no resource constraints). These operationsare on
the collector’s critical path and that is alright since we are willing
to let the collector lag behind while we want the mutator to con-
tinue executing without ever having to pause. This logging could
be reduced further by using a more precise (though larger) slice of
the mutator that included enough data fields for the collector to
reproduce the information in the log.

At first blush, our scheme might seem like it involves too much
logging. For example a loop that walks over a linked list and which
has reference manipulations in its body needs to log the loop exit
condition for each iteration of the loop. However, one must keep in
mind that a traditional concurrent reference-counting scheme
would involve logging more information since it needs to remem-
ber two pointer values for each update of a reference in a heap-
allocated object, coupled with periodic mutator pauses for stack
scanning. Hence in the case of the loop, it would record two point-
ers per iterationper reference-update in the loop bodywhile our
scheme would only log a boolean loop exit condition per iteration
and not require mutator pauses. This is because our collector can
reproduce the values of the references being updated thanks to its
shadow heap.

To be fair, it is not clearly evident at this stage whether our logging
will be cheap and whether the collector size (code and data) will be
manageable: these are the issues which our final implementation
and evaluation will resolve. Preliminary tests indicate that the size
of the shadow heap is reasonable (see Section 4.2).

3.3.2  Keeping the Collector behind the Mutator
The collector must run at a safe distance behind the mutator. That
is, the reference count maintenance corresponding to a mutator
operation may be performed only after that operation has been exe-
cuted (see Table 1). This is non-trivial since not all mutator opera-
tions are logged in a FIFO queue and the collector now reproduces
some mutator computation on its own.

Our solution is to divide the execution of the mutator into disjoint
sections which we callepochs. We ensure that the collector per-
forms reference count manipulations of an epochonly after the
mutator has finished executing that epoch. One simple way of
doing this is to use a counter stored in memory shared between the
mutator and collector and have the mutator increment the counter
frequently as it executes. Counter increments demarcate epochs.
We will ensure that epochs are of bounded length to avoid the case
of the collector waiting for a long (or possibly infinite) time before
it can proceed to the next epoch. One easy way to ensure this is to
insert an increment on each loop backedge or function call. Values
that have to be logged in an epoch can be accumulated in registers
or scratch memory and then flushed to the log in a single operation
just before indicating the end of that epoch (by incrementing the

counter). There is a corresponding division into epochs of the c
lector’s instruction stream where it checks the counter agains
private copy of the counter to make sure that the mutator has co
pleted execution of an epoch before it proceeds to read the log
update reference counts for that epoch. Wedo notuse explicit syn-
chronization to access the counter. There is a data race for
shared counter but it is harmless since the collector does not w
to the counter and proceeds forward only when it reads an inc
mented value i.e., stale values only block the collector from pr
ceeding to the next epoch and hence are a performance prob
rather than a correctness problem. The placement of these cou
updates is similar to the placement of thread-yield points in no
preemptive multithreaded systems.

4  Implementation Status and Evaluation
A full implementation of a concurrent collector is currently unde
development. Initially, we implemented asequentialreference-
counting collector designed to be extended to our concurrent c
lector scheme. In this section, we use the sequential collector
estimate some of the overheads of a concurrent collector.

4.1  Infrastructure and Benchmarks
Our implementation infrastructure consists of the Strata [22] Ja
compiler and multithreaded processor simulators develop
locally at Wisconsin. Strata (written in Java) statically compile
Java bytecodes into SPARC or MIPS executables and perform
number of standard local and global optimizations, including nu
pointer and array-bounds check elimination. Currently, the com
lation is entirely intraprocedural and multithreaded applicatio
are not supported. The sequential collector we implemented u
the standard Deutsch-Bobrow scheme with 2-bit reference cou
squeezed into object headers. The run-time system was ins
mented to simulate the shadow scheme outlined in Section 3.3

We used 8 benchmarks in all: the Strata compiler itself (more th
40K lines of Java), five programs from SPECjvm98 (the remainin
three, mtrt and jess and javac, cannot currently be compiled w
Strata) and Java versions of two well-known object-oriente
benchmarks, Richards and Deltablue1. All benchmarks were com-
piled with Strata for the SPARC architecture with maximum opt
mizations. Strata was executed with one of its larger source fi
(1358 lines) as input, the SPECjvm98 benchmarks were run w
their largest inputs (speed 100) while Richards and Deltablue w
run for 100 iterations.

4.2  Preliminary Results
Table 2 shows the number and average sizes of all objects a
cated. Our measurements are in general agreement with th
reported by Dieckmann andHölzle [6], with discrepancies mainly
due to the difference in execution environments and object layo
Instance objects, on average, have 1 or 2 references, which imp
small shadow objects. Moreover, the small size of instance obje
suggests that overhead could be reduced by co-locating the sha
object with its associated mutator object. Note too that arrays
references typically contain a large fraction of null elements wh
they are reclaimed. This suggests that a sophisticated shadow

1.  Obtained from http://www.sun.com/research/people/mario/java_benchmarking
5
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Benchmark
All Objects Instance Objects Array-of-reference objects

Number
Allocated

Avg size
(bytes)

Number
Allocated

Avg size
(bytes)

Avg Ref
fields

Number
Allocated

Avg size
(bytes)

Avg %
non-null

Strata 1.6M 40 1.2M 22 2.0 20K 347 16

Jack 6.9M 22 3.9M 17 1.3 160K 93 1.5

Raytrace 309K 20 251K 15 1.2 32K 29 58

Db 3.2M 20 3.1M 12 1.0 16K 1376 81

Compress 8K 15K 4.4K 19 2.1 19 2356 56

Mpegaudio 10K 366 5.3K 18 2.2 154 350 56

Richards 5.9K 37 3.4K 22 2.0 11 1689 52

Deltablue 418K 28 237K 18 1.5 89K 51 10

TABLE 2. Distributions of object sizes and densities relevant to our collector generation scheme. Instance objects refer to
objects that are not arrays (i.e., instances of some class). Note that the average percentage of non-null elements of arrays of
references (shown in the last column) is calculated over all reclaimed (garbage) arrays of references only.

Benchmark

Mutator Heap Shadow Heap Efficacy of reference counting

Total
memory

requested

Allocator
High-water

mark

Total
memory

requested

Allocator
High-water

mark

Total
memory

reclaimed

Total live
memory
at end

Total
unclaimed
garbage
at end

Total
unclaimed
garbage
with ref

count stuck

Strata 67MB 34MB 22MB 12MB 34MB 2MB 31MB 6MB

Jack 174MB 18MB 56MB 9.7MB 158MB 1.2MB 15MB 3.6MB

Raytrace 6.4MB 4MB 1.8MB 1.2MB 2.7MB 613K 3MB 0.5MB

Db 77MB 9.4MB 46.5MB 2.4MB 69MB 1.4MB 6.8MB 130K

Compress 119MB 119MB 101K 83K 45K 9.7MB 110MB 94MB

Mpegaudio 3.7MB 3.8MB 109K 92K 47K 3.6MB 0 0

Richards 224K 357K 61K 57K 20K 204K 0 0

Deltablue 12MB 5.1MB 6.8MB 2MB 7.2MB 149K 4.7MB 1.4MB

TABLE 3. The memory overheads of our collector’s shadow heap as well as reference counting in general. The statistics for
scheme that tracks only non-null references could further reduce
shadow heap overhead.

Table 3 shows memory overheads of the shadow heap. It also
details the effectiveness of using reference counting to collect the
mutator’s heap. We believe that the measurements for Strata, Jack
and Raytrace (and to some extent, Db) are representative of large,
real applications written in an object-oriented style.

The shadow heap overhead (measured by the ratio of the high-
water marks) usually varies between 25% to 53%, with the excep-
tion of Compress, Mpegaudio and Richards which do not seem to
be very interesting from a garbage collection point of view. There
is more variance in reference counting’s overall efficacy. To sim-
plify our initial implementation, we use 2-bit reference counts, so
any object with a reference count of 3 is “stuck” and cannot be col-
lected. In general, reference counting (due to saturated counts and
cyclic structures) does not leak excessively with the notable excep-
tions of Compress which seems to need more reference count bits
and Strata which seems to be using a lot of cyclic data structures.
We expect that for many applications reference counting, with at
most an occasional full collection, will suffice.

5  Conclusions and Ongoing Work

We have proposed a new concurrent reference counting algorit
that maintains reference counts with a collector slice that execu
in parallel with the mutator on a multithreaded processor. Prelim
nary experiments show that space overheads for the shadow h
are reasonable (25%-53% of the mutator heap). With more eff
of the collector’s part, shadow heap sizes can be further reduce

Work currently in progress aims to complete the implementation
the collector generation algorithm and to compare our schem
performance to that of conventional mark-and-sweep and gene
tional collectors. We expect to produce effective multithreaded c
lectors that impose little mutator overhead.

6  Acknowledgements

This research was supported by the National Science Founda
under grant CCR-9974613. We would like to thank Timothy He
and Subramanya Sastry for critical support with Strata, as well
Harish Patil, Rastistav Bodik, Anne Mulhern, Denis Gopan, Ha
Modi, Ravi Rajwar and the anonymous reviewers for their ma
helpful comments and suggestions.

unclaimed garbage were calculated by performing a mark-and-sweep of the heap just prior to the end of execution.
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