Bill-Pay Control: An Interactive User Interface to Select

1

IP Service Quality

Aaron Bergstralh Erik Paulson
bergstral h@v sc. edu epaul son@s. w sc. edu

David Plonka
pl onka@s. w sc. edu
University of Wisconsin - Madison
Computer Sciences Department

February 7, 2007

Abstract

The future Internet may be built to deliver better servicéradfic that is accompanied by
additional payments. In such a scenario, changes in pagnaeigt the resulting performance
impact could be realized on very fine timescales, such asnéconds. Thus, users would
benefit from (1) a desktop instrument that measures andmiseteeir applications’ Internet
traffic in a user-friendly fashion and (2) desktop contrdiattallow the adjustment of desired
service level, and corresponding payment, for their apfiba traffic in real time.

In this paper we presemill-Pay Control an interactive, web-based user interface that
we designed and implemented as parBdl-Pay Sim a simulation system that emulates the
performance that such a future Internet might exhibit.-Badly Control runs on a user’s work-
station, continually displays application-level netwarffic statistics, and allows the user to
select accompanying service levels. This functionalitgvtes the user with the flexibility
to improve network and application performance by conitiglipayments tied to the chosen
traffic. We also report our initial experience with the systend make observations about its
efficacy as an evaluation environment for proposed Intdsifiedig schemes.

Introduction

Traffic in today’s network is prioritized and purchased ateayvcoarse granularity. Most traffic
is treated as a flat-rate best effort, and whatever othengeraents exist were negotiated by ad-
ministrators or ISPs between networks, and subsume al.ulsea future network, users may use
a micro-payment system for purchasing and prioritizingrtbesn network traffic[4]. A tool to
monitor traffic and adjust traffic priority will be necessdoy such a network to be possible.

We have built a system called Bill-Pay Sim (BPS) in which wevide a user interface, Bill-

Pay Control, to both monitor traffic and influence its perfarmoe. Amongst other things, this

prototype interface could be used in future user surveysmioro-payment systems. The BPS
system is comprised of a traffic logger, web based user aderftraffic policer, and a central
daemon that coordinates the system.

The BPS traffic logger (bpslog) is a tool that wraps any chage@mically-linked application,
such as a web browser, and captures all of the network-maiéwaction calls to get a true view of
a user application’s network activity. The output of bpsiethen used by the central BPS daemon
(bpsd) to relay this information to the user interface.

The BPS user interface allows end-users to view a summarkenf tecent traffic through
any common web browser. This interface allows the end useiete various information about
their traffic including current and peak transfer rateshatthe remote host, and current level of
service. The user may then use this information to make aidedio increase or decrease the level
of service given to a particular traffic aggregate.

In order to allow the user to adjust the service level of thraiffic, BPS uses the traffic policer
built into Linux to rate limit traffic on the machine. Givenahone cannot currently increase the
performance of the Internet along arbitrary paths, bpsdliptconstrains all incoming traffic to a
low level. Lowering the baseline performance of the netwalt&ws us to subsequently simulate
increasing the performance of the network by looseningdbastraint. When a user modifies the
service level for some traffic the bpsd modifies the maximume fiar the remote hosts involved.

The final component of BPS is the central bpsd daemon. Thetbked the output of the traffic
logger and parses and prepares it for the user interface n\Whiser makes a change in the user
interface, the bpsd takes the request and translates tules for the traffic policer.

The rest of this paper is organized as follows. Section 2amplsome of our design choices.
Section 3 presents the system usage and implementatialsdé&action 4 discusses our results
and observations. Section 5 notes some related work. Ogtu=ians follow.

2 Design

Our primary design goals for a Bill-Pay Control and simulatsystem were for it to have: (1) a
web-based user interface that is simple and responsiva,r{@)work traffic logger founmodified
applications that doesn't adversely affect user expeéemith respect to performance, and (3)
traffic control that is implemented solely within the usevarkstation so that the overall system is
self-contained.

One of the motivating uses for our system is for a “mall-testvironment, where users could
be recruited from the general public and asked to interattt thie fine-grained control a Bill-Pay
system provides. In this environment, we wish to have a sy#iteat can be deployed on a single
laptop without needed a complicated support infrastrectdin emulated environment that could
skew experiences is undesirable; the applications we amng testest network performance should
themselves operate at full speed.

In addition, we need an effective way to summarize appbecatraffic so that the user can
conveniently express their performance preferences. Wedalike to display aggregates of IP
conversations, both spatially (within the IP address spand temporally (spanning a sequence
of conversations involving the same hosts), so that theiasest overwhelmed by the numerous
interactions between their local host and the many remagégriat hosts with which it communi-
cates. Two areas of design concern were how best to asstrafitewith abstract handles called

traffic descriptorsand how to best simulate poor Internet performance.

2.1 Traffic Descriptors

It is challenging to displaying Internet traffic in real tirmech that it can be understood by a typical
user. The number of remote hosts involved in an applicatemsion can be overwhelming. For
instance, when ostensibly visiting even only a few web siteglden” references can result in
communication witthundredsof hosts. It is desirable to group the traffic involving rembbsts
together into the the smallest possible set that still adlthe user to meaningfully differentiate
between sets of traffic that experience similar networkqrerbnce. Thus we consider traffic
aggregated and named with identifiers that we call “traffiscdptors.” These traffic descriptors
are displayed in the user interface and identify the enthiascan have their desired service level
set by the user.

As we discuss the design issues involving traffic descripar will use the example of access-
ing “www.cnn.com”, the web server for the Cable News Network

2.1.1 IP Addresses

IP addresses are confusing for the user. For instance,saegesittp://www.cnn.com” currently
yields this set of IP addresses: 64.236.16.20, 64.2321646236.16.84,64.236.16.116, 64.236.24.12,
64.236.24.20, 64.236.24.28, 64.236.29.120. IP addressawst persistent, they are foreign, com-
plicated looking and contain too many digits for most to rember. Since IP addresses make poor
candidates for traffic descriptors, we chose to only use thewmnlast resort, i.e. when an applica-

tion connects to a service using just the IP address, faamestin a URL, and we can find no other
reasonable descriptor, such as when it is within the localaip and thus there is no other service
provider that carries traffic along the end-to-end path &b temote host.

2.1.2 Domain Names

Domain names are somewhat familiar to users. Users see théne derver names in URLS to
which they direct their web browsers, such as “www.cnn.cofis'such they are potentially useful
as traffic descriptors.

However, when accessing “http://www.cnn.com” the indegutoent contains very many sub-
references to foreign domain names that never appear orséns web browser display. In fact,
a recent loading of that URL yielded sixteen domain nameslved by the browser, only five of
which contained “cnn”.

Still, domain name resolution can be passively intercepiéoe application. This enables pro-
cessing in real time because the system will know the adsmassbetween names and IP addresses
before connections are made to those IP addresses.

An improvement we considered was to drop variable lengthixa® from the domain name.
For instance, we could aggregate names matching “*.cnri.tmjust the traffic descriptor “cnn.com”.
Unfortunately, automatic abbreviations of this sort aféalilt to generalize. For instance, in the
United Kingdom, CNN's web site might be known as “www.cnnuwd. If we simply dropped
all but the last two domain name components, we would be lgft anly “co.uk”. As a traffic

descriptor, this would aggregate all commercial domainegimthe UK together, losing desirable
fine-grained user control of service levels on a service byicebasis.

While we find this domain name abbreviation to be fruitfulpeenient automated abbreviation
is left for future work.

2.1.3 Reverse Domain Names

Since the socket-based library and system calls genersélyRiaddresses rather than names, we
first intended to capture IP addresses and lookup their fseVa&lomain names as the basis for
traffic descriptors, then perhaps abbreviate by the metlstddjscussed. These names are entries
in the “in-addr.arpa” domain namespace, indexed by thesedebytes in a given IP address. The
notion was that we would observe the application estalmigslsommunication with a given IP
address and then quickly lookup the associated reverseidarame before reporting that traf-
fic to the user. For instance, the reverse domain name forRhaf 'www.cnn.com” is again
“www.cnn.com”, which is sensible.

There are a number of problems with this technique. Firsbraain name lookup is a blocking
operation that can take a prolonged amount of time and canaitly fail, and often does due
to misconfigured pointers or disfunctional reverse nameessr Secondly, the values for reverse
domain names are often missing since they are not geneegjlyired for proper Internet opera-
tion, but exist primarily just for reference. To further cplicate matters, these reverse names are
sometimes in error. Because reverse domain names are mbtagkentify services, there is no
continuous verification that they are reasonably mainthorethe Internet. In any case, even with
correct resolution, the resulting names are often unfamib the user since they need not match
the “forward” domain names contained in, for instance, w&ti_bl.

Because of the practical complication of performing manyotorent blocking reverse domain
name resolutions in near real-time and the potential coorfiubie resulting names might produce
anyway, we decided not to use reverse domain names as tredficipitors.

2.1.4 |IP Address Prefixes

The current BGP table’s IP prefix that best matches for “wwaw.com” is 64.236.16.0/20. Like
IP addresses, IP prefixes, which consist of a base IP addndsseamask bit-width, are foreign
and confusing to users. For this reason we rejected theraféis ttescriptors.

However, these IPv4 prefixes from the global BGP table amdylito have a useful granularity
for choosing service levels in that they are often contaietao$ co-located servers for services
operated by one service provider, and thus match a subrtetnipht exhibit poor performance
such that the user might be willing to pay that provider.

2.1.5 Autonomous System Numbers

Autonomous System Numbers (ASNSs) are the identifiers usealite inter-domain traffic for the
entire Internet, but they are totally foreign to typical emgkers. At first this makes them seem
a poor choice as traffic descriptors. However, in a systerndfiars payments to commercial
entities, it is these ASNs that likely exactly representsthentities that are responsible for the
network performance involving the remote host.

With the aid of the Regional Internet Registry (RIR) data@sasuch as that of the American
Registry for Internet Numbers (ARIN), we can replace the AShth short names that are easier
for users to understand. For instance, “cnn.com” is opdrajean Autonomous System named
“ASN-TBS-1" for Turner Broadcast System, the owner of thd@aNews Network (CNN).

2.1.6 Autonomous System Paths

Autonomous System paths are simply the sequences of ASNarthan the path to a particular
destination prefix in the whole Internet’s BGP routing tatfler instance, the path from our univer-
sity to CNN is “WISCNET1-AS, LEVEL3, AOL-ATDN, ASN-TBS-1"meaning that traffic from
here to CNN is likely to traverse WiscNet, Level 3 Communimat network, the AOL Transit
Data Network, and ultimately the Turner Broadcasting nekw&or demonstration purposes, we
assume that the AS paths are symmetric such that the revieitsat path would contain identify
the Autonomous Systems from CNN to our university.

Ultimately, we chose to use a combination of Autonomous &ystAS) paths and domain
names as traffic descriptors in our system. The domain namedie user the opportunity to
associate the traffic descriptor with the domain names yyagdlly see as server names in URLSs.
The AS path gives the user some sense of network distance temmote host and provides the
number and identities of the commercial entities along the-te-end path. Those commercial
entities are exactly those that the user may wish to offemaants for improved service.

2.2 Traffic Control
2.2.1 Traffic Control Method

Our design goals and implementation issues left us with adjetions to lower baseline network
performance. Network emulation tools such as NIST Net[8] danmmynet[6] have more features
than necessary for our purpose, so we feared that they wouni@lacate our system and/or require
another machine to perform rate-limiting. An embeddeditrahaper inside the application or
kernel would be complicated to write. We eventually chogdtéffic control mechanisms built into
Linux. The Linux Traffic Control system[5] was built-in to rebversions of Linux, simplifying
deployment. It adds no execution overhead to the applicatlbalso supported ingress traffic
control as easily as outgoing control. This combinatioova#id us to meet our goal of being able
to influence the rate at which traffic is delivered to the aggilon in a self-contained system.

2.2.2 Traffic Control Service Levels

The BPS system presents users with a limited set of “sereiadd.” We allow the user to change
the service level of a particular traffic descriptor rathsart allowing the user to specify an an
arbitrary bit or payment rate. The primary motivations foistapproach were that the average
user of a micro-payment system may find named service leaeai®rto choose amongst than
arbitrary numbers. Another motivation for this approaclthiat service levels yield traffic rate
changes in noticeable steps allowing users to experieneardmstantaneous improvement in their
traffic. A final motivation is that service levels allow othgairts of the system more flexibility in
what characteristics a descriptor should exhibit. For eamna “silver” service level might yield
twice the throughput of the “bronze” level, whereas the tiplam” level might also be at twice

5

the bandwidth of “bronze” and exhibit reduced latency. Hegveat present our simulator only
implements bandwidth rates.

2.2.3 Traffic Control Granularity

We next consider effective ways of turning the user’s retpuego Traffic Control rules. The
Traffic Control utilities can operate on IP/port addresggdndividual IP addresses, and entire
network blocks. IP/Port address pairs are too fine-grainegpply Traffic Control rules. Many
applications, such as the world web web, result in shogdigessions involving ephemeral port
numbers. Rules for one IP/Port pair would not affect subseticonnections with different IP/Port
pairs, and our network activity monitor needs a few secoagsapagate information about new
network activity to the Traffic Control rule writer.

Network blocks derived from the BGP table entries are toasmgrained to apply Traffic
Control rules. A rule for an entire BGP prefix would limit allatching traffic in aggregate to a
given rate. However, we intend the service level to apphhtottaffic involving each individual
remote host. For example, consider a traffic descriptor teatuser has set to “silver” level,
meaning traffic can flow at up to 2Mbps. If there are 20 remot&t laodldresses matching that
descriptor, a prefix-based traffic control rule would caus@@to share 2Mbps of bandwidth.
However, if the Traffic Control rules are written for each iindual host, each of the 20 hosts
would get their own 2Mbps. This more closely approximatesmBay in that remote hosts that
are associated with the same micro-payment amounts diéMaeindividually with respect to their
performance. We therefore choose to generate Traffic Claniiess for individual remote host IP
addresses.

3 Implementation

The Bill-Pay Sim system contains three major componentssea interface, a network activity
logging utility, and a daemon. Respectively, these comptsare “Bill-Pay Control”, the “Bill-
Pay Sim Logger” (bpslog), and the “Bill-Pay Sim Daemon” (@psTheir relationship is shown in
figure 1.

The system’s components are implemented in about 3300 limes of javascript, perl, and
original C code. The library interposition by bpslog andficacontrol techniques employed by
bpsd are somewhat Linux-specific and function on systemsdoas, at least, the Linux 2.4 and
2.6 kernels. The user interface requires a javascriptiedateb browser such as Firefox, but need
not necessarily be run on the simulation’s workstation.

3.1 System Operation

Typical operation of the system is described below. Thepant system elements are annotated
with corresponding numbers in figure 1.

1. The user runs the bpslog command to launch an Internet agiplicof their choosing such
as the Firefox web browser. The bsplog shared object librdeycepts interesting calls and

Linux

BillPay Control
Traffic Control

(web browser)

BillPay Sim Daemon

(HTTP Server)
bgp.txt
("show
BillPay Sim L FOLiE
illPay Sim Logger output)
(library call interposer) @ /tmp/rock@ legend
lo process/
(g) ARIN O executable
FireFox asn.txt D data object/file
(web
browser) process

process
reads from file

Cawrites to file

Figure 1: Bill-Pay Simulation System Overview

bpslog’s “-L” option instructs it to log those calls’ argunts and results with high-resolution
timestamps to a regular file named “/tmp/rocks?or example:

$ bpslog -L firefox &

3. The bpsd process runs as root and is launched prior to orsladter one or more bpslogged
processes are launched. For example:
bpsd.pl -v -B

The bpsd follows the tail of the “/tmp/rocks” log file, pargiand processing the per-process
internet socket related calls reported therein.

3. The user runs Bill-Pay Control in their web browser by fenchan “index.html” document
from bpsd. This document contains the HTML and javascripiedbat forms the interactive

user interface. For example:

$ firefox http://1ocal host: 12345/i ndex. htm &

1This file name is a legacy from the Rocks[7] software, on whipblog is based.

7

4. The javascript portion of Bill-Pay Control fetches “statusl” from bpsd. This virtual XML
document continually summarizes all Internet activityfpened by bpslogged applications.
Bill-Pay Control repeatedly fetches this document at ragirtervals, such as every 5 sec-
onds, and updates the user’s display accordingly. The asethen alter the service level for
traffic, as identified by traffic descriptor. For instancesytitould promote the service level
from “default” to “bronze”, which is then conveyed by an HTGET request to bpsd.

5. When bpsd receives a request to alter the service levekg e Linux “tc” command to alter
the ingress traffic control filter rules that it installedmitialization time. The “tc” command
modifies Linux’ traffic control table of ordered rules so thia¢ traffic matching the given
descriptor has the newly requested service level.

6. If BGP-based descriptors are selected, via bpsd’s “-B"aptbpsd initially loads two text files:
the American Registry for Internet Numbers’ “asn.txt” filedathe captured output from a
“show route” command from the local Autonomous System’s BSpPaking border router.
It processes these files to form an IP prefix search tree ofritidnternet’'s BGP table.
This level-compressed tree enables bpsd to quickly findrtfct descriptor for any given
IP address.

3.2 Bill-Pay Sim Logger

The simulation logger, bpslog, is a library call interposkr generate a continuous log of chosen
applications network activity it replaces calls to funaqincluding socket, connect, read, write,
and close) used to create or manipulate internet sockets masblve domain names. Table 1
shows the entire list of functions that bpslog interceptd kExgys if the call potentially involves
IPv4 sockets.

Thus bpslog causes unmodified applications themselvesoaupe a continuous stream of
library system call events that our system can use to trapkcapion network operations in real
time.

3.3 Bill-Pay Sim Daemon

The simulation daemon (bpsd) is a perl script that has a nuoflyesponsibilities. First, it main-
tains traffic byte counters and rates and aggregates thematfig tdescriptor based on reports
(BPS::Report objects) delivered by the BPS::InetLog ditjeat are prepared from the logged ap-
plications function calls by process ID and socket/file dgsor. When BGP-based descriptors are
used, bpsd instead uses BPS::InetLogBGP - a derived clas$utither translates IP addresses
into descriptors based on the AS path for the prefix that begtimes the remote IP address.
BPS::InetLogBGP uses Net::ParseRouteTable and NeicRatn perform fast lookups of IPv4
prefixes and corresponding AS paths in a current routing tiolthe whole Internet.

Second, bpsd is an HTTP server that processes requeststieoasér interface. The main
requests are: (1) request for the “index.html” file that eomd the HTML and javascript code that
forms the user interface, (2) request for the virtual “statml” file containing the list of current
descriptors with their traffic rates, total byte count, sggevel, and descriptor details, and (3)
request to update a descriptor’s service level to a new value

Table 1: Intercepted Library Calls
| Functionality Library Calls |

socket creation | dup

dup2

fentl

socket
resolver inetaddr
inetaton

inet pton
gethostbyname
gethostbyname?2
gethostbyname
gethostbyname?®
getaddrinfo
socket operationg accept

bind

connect
listen
getsockname
getpeername
shutdown
socket input read,__read
readv

recv

recvfrom
socket output | write

writev

send

sendto
socket termination close

exit

Lastly, when run with root privilege, bpsd performs traffantrol according to requests for
service level updates from the user interface.

3.4 Bill-Pay Traffic Control

Bill-Pay Sim (BPS) uses Linux’s traffic control (tc) mechsmis to degrade traffic performance by
default. BPS uses tc through two perl classes. The BPS::3 clags provides wrapper functions
around the actual Linux tc binary where as the BPS:: Trafilads provides the bookkeeping for the
traffic control element of BPS. The BPS::TrafCtrl class lepck of all of the rate modification
rules for BPS and calls the necessary subroutines in BPRSp3evhen changes need to be made.
When using BPS::TrafCtrl, BPS passes a list of IP addressa gervice level. The service level

is simply one of several traffic rates that is setup by BPS wiartup. Currently BPS sets up
five basic service levelslefault bronze silver, gold, andplatinumat the traffic rates of 128Kbps,
512Kbps, 1Mbps, 2Mbps, and 100Mbps, respectively.

In our current BPS implementation, BPS::TrafCtrl is onlyfpeming rate limiting on the
ingress path since most user applications use much moresti@am than upstream traffic. We
are currently rate limiting by IP address however, givenftlebility of the tc mechanisms built
into Linux, our approach could be modified to take into ac¢almost any field in the TCP/IP
headers. The Linux tc mechanism is also somewhat limitechvitheomes to modifying ingress
traffic since our only option is to drop packets exceedingvarmyrate whereas in egress mode, tc
allows for much more complex queuing based techniques.

File Edit View Go Bookmarks Tools Help

S0 - & L) @) [L nttp-inocainost: 12345/index htmi ©co |G
|_| Red Hat Network | | Training | | Support | | Software | | Hardware | | Developers | | Embedded | | Search >
| | BlllPay Control YouTube - Lady Sovereign intervi...“@ Google | %]

BillPay Control

Total this month: $0.00

WISCNET1-AS,LEVEL3,YOUTUBE

A
Current connection class is gold
Current rate: 421.7 kbps, Peak rate: 629.1 kbps, Total: 4.8 Mbytes

A
WISCNET1-AS,GOOGLE v
Current connection class is platinum
Current rate: 156.0 kbps, Peak rate: 0.0 bps, Total: 12.9 kbytes
WISCNET1-AS,LLNW v

Current connection class is default
Current rate: 0.0 bps, Peak rate: 459.2 kbps, Total: 8.1 Mbytes

[4
Done

Som
A

Figure 2: Bill-Pay Control Interface. In the other tabs, we streaming a video from YouTube
and have just completed a Google search.

10

3.5 Bill-Pay Control

The BillPay Control interface is implemented as a web apgibm. We chose to implement the
interface as a web application primarily for ease of dewalept. The functions of the Control
Interface are to display current network activity and towllthe user to adjust the performance
of individual activities. A web interface performs both dfese functions easily, and modern
web techniques such as AJAX allow us to develop a web pagebttaves interactively like a
standalone Java or C++ program. See figure 2 for an examplémelsing session as presented
by Bill-Pay Control.

The user starts Bill-Pay Control by fetching its “index.litdinom bpsd. This web page uses
javascript to periodically request the current networkvagt status via an HTTP request in the
background. The bpsd serializes the current status intoMh document. For each traffic de-
scriptor, the XML document contains a record of the curratd,rthe peak transfer rate, the number
of bytes transmitted, the service level, and an array obdrtormation the display can use to help
explain the traffic descriptor to the user. In our currenteys the traffic descriptor is usually the
AS path used to reach the end hosts, and the extra informiigiois for the descriptor are the
domain names that resolved to hosts matching this path. Bamimg of the descriptors is opaque
to the BillPay Control display. When the request completegvascript callback in the control
page is invoked automatically by the web browser and the Xklus file is parsed. Any new or
updated descriptors are discovered, and the list of deecsis sorted and converted into appro-
priate elements for display on the control page. The calllsabedules the next status request for
a few seconds in the future, and the cycle continues.

When the user clicks on an arrow to request a change to a tds§icriptors service level,
the javascript sends a request to the bpsd via HTTP in thegbaigkd and prevents the browser
from leaving the page. The javascript updates the servied n the display for that page to
“Updating.” The next periodic refresh of the status infotioa will receive the updated service
level, if the bpsd was able to make the change.

The traffic descriptors are displayed sorted by the curiaetwith higher rates first. If there is
a tie for the current rate, the total number of bytes receise¢he tiebreaker. As the user interacts
with sites, the descriptors associated with those sitdscivilnge their position in the list as the
current transfer rates change. The hope is that the cuyractive descriptors will be the ones that
the user is interested in monitoring and controlling, sy @@ at the top of the page.

We expect that future operating systems will make heavy tismall widgets to replace small
system controls and applications. The Apple Dashboardet&dgnd Yahoo! Konfabulator wid-
gets are implemented using HTML and javascript, and Midto$AML is similar in spirit. The
eventual Bill-Pay control system might well be a similar ged.

4 Results & Observations

4.1 Traffic Descriptor Aggregation Effectiveness

Tables 2 shows some of the traffic descriptors resulting fsomsample Firefox web browser ses-
sion. (A full list of descriptors from this sample sessiosl®wn in table 3 and 4 in appendix A.)
The browsing session lasted about five minutes and consisedsit to “http://www.cs.wisc.edu”,
a visit to “http://www.cnn.com” and selecting an articleeh a visit to “http://www.youtube.com”

11

Table 2: Traffic Descriptor Aggregation for CNN’s Web Site

| AS Path | Domain Name |

IP Address

| Reverse Domain Name|

WISCNET1-AS, LEVEL3, AOL-ATDN, ASN-TBS-1

www.cnn.com

i.cnn.net

ads.cnn.com

64.236.24.20
64.236.24.28
64.236.29.120
64.236.16.20
64.236.16.52
64.236.16.84
64.236.16.116
64.236.24.12
64.236.24.136
64.236.24.137
64.236.24.138
64.236.24.139
64.236.16.136
64.236.16.137
64.236.16.138
64.236.16.139
64.236.29.103
64.236.22.63
64.236.22.103

www5.cnn.com
www7.cnn.com
www.cnn.com
www2.cnn.com
www4.cnn.com
wwwe6.cnn.com
www8.cnn.com
www3.cnn.com
il.cnn.net
i3.cnn.net
i5.cnn.net
i7.cnn.net
i2.cnn.net
i4.cnn.net
i6.cnn.net
i8.cnn.net
64.236.29.103
64.236.22.63
64.236.22.103

64.236.29.63
64.236.22.12
64.236.29.11
64.236.29.12
64.236.22.11
64.236.29.20
64.236.29.21
64.236.22.20
64.236.22.21

64.236.29.63
cld.cnn.com
cll.cnn.com
cl2.cnn.com
cl3.cnn.com
cnn3.dyn.cnn.com
cnn4.dyn.cnn.com
cnnl.dyn.cnn.com
cnn2.dyn.cnn.com

cl.cnn.com

cnn.dyn.cnn.com

and selecting and playing one video. Within each AS pathdtdmeain names and IP addresses are
listed in the order contacted. IP addresses in the Revereaiddtame column indicate a lookup
failure. The name server is misconfigured or inoperativéat @& corresponding in-addr.arpa entry
did not exist for that IP address.

For this sample session, there was a total of 106 IP addrel4sraeverse domain names in-
volved. By our domain name traffic descriptor technique ¢h@sre summarized to 51 descriptors.
By our AS path traffic descriptor technique those were, in,tsummarized into just 13 AS path
descriptors. Thus, we propose that these two steps emplyyedr system are effective at pro-
ducing a relatively concise set of manipulable traffic dggors to the user. If the autonomous
systems are the commercial entities that wish to receivenpays, then this summary is likely the
most concise that allows the user complete flexibility witait spending.

4.2 ldentifying Critical Paths

Our Bill-Pay Control display uses AS paths as traffic desorgpand sorts those descriptors with
recent activity to the top. This is an attempt to help the usdocate the descriptor thatight
be critical to the performance of their application. In maityations this is effective. However,
when the user’s application is performing unacceptablyitnglves Internet traffic having many
or varying descriptors, it may be difficult for that user temdify which descriptors’ service levels
to increase.

For instance, it is common for web content or advertisemprasented on one web page to
be gathered from multiple autonomous systems. Advertantcontent distribution networks are

12

typical causes of this phenomenon.

To direct performance improvement efforts, Barford andvehla[2] developed a method of
critical path analysis for bulk TCP transfers. Likewiseyatem such as Bill-Pay would benefit
from enhancements that would similarly enable the end wsketter identify which components
along which paths determine or limit their application’sfpemance, so that they can better direct
their tuning effort and payments.

5 Related Work

While the basic elements of BPS could be used for almost anyorpiayment system, our simu-
lator is closely related to the proposed Bill-Pay[4] sysfeom which our simulator gets its name.
Bill-Pay is a system in which an end-user places micro-payemto their outgoing packets and
different entities along the traffic path may take a portibthe micro-payments in order to give
better service to the traffic. Our BPS system provides onenpl@of how an end-user may add
micro-payments to their traffic along with visualizing whaynbe taking their micro payments
along the way.

The INDEX project[1] is also loosely related to Bill-Pay Gaol. In the INDEX project users
were allowed to choose from different rate ISDN lines ataasiprice points along with different
methods of paying for services such as a flat rate or per byt@le\this project looked at how users
were willing to pay for service on a bulk service basis, owtegn could be used in a similar project
to examine how users might be willing to pay for service. Therall results from the INDEX
project showed that user activity is sensitive to the metbypdvhich they are being charged. If
a micro-payment system were to be developed, a similar tiga®n with a Bill-Pay Control
interface would probably be warranted.

6 Conclusion

In conclusion, we presented Bill-Pay Control, an interactiser interface that displays application
Internet traffic in near real time and allows the user to setexdesired IP service quality. We also
presented Bill-Pay Sim, the encompassing simulation sytat emulates, to the degree necessary
as a testing environment, the performance of a potentiatéuhternet in which users can improve
application performance by offering additional payments.

Through the use of our system, our observation is that donaimes and Autonomous System
paths can be used to fairly effectively and concisely preaeplication traffic. In the absence
of additional mapping infrastructure to help identify thendidate payment recipients, our traffic
descriptor method is likely as simple as possible to achiiemegrained control, but no simpler.
Still, a Bill-Pay system would be greatly improved by prawigl better guidance to users so that
they may direct their payments down the critical paths thanaost likely to improve network and
application performance.

Bill-Pay Control gives users the flexibility to experimelhtanfluence Internet performance
with feedback in near real time so that they can make inforfimaghcial decisions.

13

7 Acknowledgments

Cristian Estan provided the inspiration for a Bill-Pay slatar and referred us to related work.
Barton Miller provided useful hints to understanding lityr&all interposition behaviors. Victor
Zandy wrote Rocks[7], on which bpslog is based. Mike Blotlg&tn Hahn, and Bill Taylor helped
us obtain machines for a testbed. Paul Beebe and StefarBémgprovided a network connection
for our demo. The original HTML design came from Google Pageafr. The mouseover code
is from Swazz.org and is made available under the terms dbiile Public License.

References

[1] J. Altmann, B. Rupp, and P. Varaiya. Internet demand wdd&rent pricing schemes. IBC '99: Proceedings
of the 1st ACM conference on Electronic commepages 9-14, New York, NY, USA, 1999. ACM Press.

[2] P. Barford and M. Crovella. Critical path analysis of ttpnsactions. I'8IGCOMM '00: Proceedings of the
conference on Applications, Technologies, Architectusgsl Protocols for Computer Communicatjgmages
127-138, New York, NY, USA, 2000. ACM Press.

[3] M. Carson and D. Santay. Nist net: a linux-based netwankilation tool. SIGCOMM Comput. Commun. Rev.
33(3):111-126, 2003.

[4] C. Estan, A. Akella, and S. Banerjee. Achieving good #mend service using bill-pay. Technical Report 1582,
University of Wisconsin Computer Sciences Department,dvaver 2006.

[5] Linux advanced routing and traffic contrdit t p: //l artc. org/.

[6] L. Rizzo. Dummynet: a simple approach to the evaluatibnedawork protocols SIGCOMM Comput. Commun.
Rev, 27(1):31-41, 1997.

[7] V. C. Zandy and B. P. Miller. Reliable network connectsonin MobiCom '02: Proceedings of the 8th annual

international conference on Mobile computing and netwagkpages 95-106, New York, NY, USA, 2002. ACM
Press.

14

Sample Traffic Descriptors

Table 3: Sample Traffic Descriptor Aggregaticontinued in Table 4

AS Path | Domain Name [IP Address | Reverse Domain Name
PRIVATE pc-il-23-j | 10.2.23.124 10.2.23.124
10.0.0.2(10.0.0.2 10.0.0.2

WISCNET1-AS, GOOGLE

pagead2.googlesyndication.co

n72.14.223.104
72.14.223.147
72.14.223.99

ar-in-f104.google.com
ar-in-f147.google.com
ar-in-f99.google.com

WISCNET1-AS

spe.atdmt.com
img-cdn.mediaplex.com|

cdnb5.tribalfusion.com

205.213.110.44
205.213.110.7
205.213.110.9
205.213.110.8

akamai-44.wiscnet.net
akamai-7.wiscnet.net
akamai-9.wiscnet.net
akamai-8.wiscnet.net

WISCNET1-AS, LEVEL3, YOUTUBE

www.youtube.com

sjc-static15.sjc.youtube.con
sjc-static9.sjc.youtube.con
sjc-static2.sjc.youtube.con
sjc-static8.sjc.youtube.con
208.65.153.150
sjl-static16.sjl.youtube.com
208.65.153.146
208.65.153.14
64.15.124.83
sjc-static11.sjc.youtube.con
64.15.124.96
208.65.153.11
64.15.124.97

64.15.124.90
sjc-staticl.sjc.youtube.con
sjl-staticl.sjl.youtube.com
sjc-static13.sjc.youtube.con
sjl-static9.sjl.youtube.com
sjc-static6.sjc.youtube.con
208.65.153.15
208.65.153.145|
208.65.153.12
sjc-static12.sjc.youtube.con
sjl-static5.sjl.youtube.com
64.15.124.87

64.15.124.85
sjl-v61.sjl.youtube.com

208.65.153.242
208.65.153.245
208.65.153.251
208.65.153.241

n 64.15.124.95
64.15.124.89
64.15.124.84
64.15.124.88
208.65.153.150
208.65.153.151
208.65.153.146
208.65.153.14
64.15.124.83

n 64.15.124.91
64.15.124.96
208.65.153.11
64.15.124.97
64.15.124.81
64.15.124.81
208.65.153.9

n 64.15.124.93
208.65.153.144
64.15.124.86
208.65.153.15
208.65.153.145
208.65.153.12

N 64.15.124.92
208.65.153.13
64.15.124.87
64.15.124.85
208.65.153.98

www.youtube.com
www.youtube.com
208.65.153.251
www.youtube.com
64.15.124.95
64.15.124.89
64.15.124.84
64.15.124.88
208.65.153.150
208.65.153.151
208.65.153.146
sjl-static6.sjl.youtube.com
64.15.124.83
64.15.124.91
64.15.124.96
sjl-static3.sjl.youtube.com
64.15.124.97
64.15.124.81
64.15.124.81
sjl-staticl.sjl.youtube.com
64.15.124.93
208.65.153.144
64.15.124.86
sjl-static7.sjl.youtube.com
208.65.153.145
sjl-static4.sjl.youtube.com
64.15.124.92
sjl-static5.sjl.youtube.com
64.15.124.87
64.15.124.85
sjl-v61.sjl.youtube.com

WISCNET1-AS, LEVEL3, VALUECLICK

altfarm.mediaplex.com|

216.34.207.71

ad.la.mediaplex.com

WISCNET1-AS, SPRINTLINK, DOUBLECLICK

ad.doubleclick.net

209.62.176.52

egnjmegaadvipl.doubleclick.ng

13 total |

51 total |

106 total

106 total

15

Table 4: Sample Traffic Descriptor Aggregaticontinued from Table 3

AS Path | Domain Name [IP Address | Reverse Domain Name|
WISCNET1-AS, LEVEL3, AOL-ATDN, ASN-TBS-1 www.cnn.com | 64.236.24.20 www5.cnn.com
64.236.24.28 Www?7.chn.com
64.236.29.120 www.cnn.com
64.236.16.20 www2.chn.com
64.236.16.52 www4.chn.com
64.236.16.84 wwwe6.cnn.com
64.236.16.116 www8.chn.com
64.236.24.12 www3.cnhn.com
i.cnn.net | 64.236.24.136 il.cnn.net
64.236.24.137 i3.cnn.net
64.236.24.138 i5.cnn.net
64.236.24.139 i7.cnn.net
64.236.16.136 i2.cnn.net
64.236.16.137 i4.cnn.net
64.236.16.138 i6.cnn.net
64.236.16.139 i8.cnn.net
ads.cnn.com| 64.236.29.103 64.236.29.103
64.236.22.63 64.236.22.63
64.236.22.103 64.236.22.103
64.236.29.63 64.236.29.63
cl.cnn.com | 64.236.22.12 cl4.cnn.com
64.236.29.11 cll.cnn.com
64.236.29.12 cl2.cnn.com
64.236.22.11 cl3.cnn.com
cnn.dyn.cnn.com| 64.236.29.20 cnn3.dyn.cnn.com
64.236.29.21 cnn4.dyn.cnn.com
64.236.22.20 cnnl.dyn.cnn.com
64.236.22.21 cnn2.dyn.cnn.com

WISCNET1-AS, LEVEL3, ALTERNET-AS, WAN

ad.trafficmp.com
t.trafficmp.com
http300.content.ru4.com

65.216.123.144
65.216.123.148
4.78.48.114

65.216.123.144
65.216.123.148
4.78.48.114

WISCNET1-AS, LEVEL3, AOL-ATDN

i.a.cnn.net

ar.atwola.com

64.236.44.157
64.236.44.158
64.236.44.166
64.236.44.167
64.236.44.181
64.236.44.128
64.236.44.136
64.236.44.151
64.12.174.57

64.12.174.121
64.12.174.185
64.12.174.249

152.163.208.185|
152.163.208.249

205.188.165.57

205.188.165.121
205.188.165.185|
205.188.165.249

152.163.208.57

152.163.208.121]

64.236.44.157
64.236.44.158
64.236.44.166
64.236.44.167
64.236.44.181
64.236.44.128
64.236.44.136
64.236.44.151
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com
ads.web.aol.com

WISCNET1-AS, BTN-ASN, MII-XPC

leadback.advertising.con
http-2081.edge.ru4.con;

204.0.99.194
204.0.99.124

vadv1l.dfw.xpc-mii.net
vspd1l.dfw.xpc-mii.net

WISCNET1-AS, LEVEL3, TRIBAL-FUSION

a.tribalfusion.com

204.11.109.63
204.11.109.64
204.11.109.61
204.11.109.62

a.tribalfusion.com
a.tribalfusion.com
a.tribalfusion.com
a.tribalfusion.com

local

WWW.CS.wisc.edu

128.105.7.31

WWW.CS.wisc.edu

WISCNET1-AS, LEVEL3, INTERNAP-2BLK

cnn.122.207.net]

66.150.208.9
66.150.208.54
66.150.208.55
66.150.208.106
66.151.244.162
66.151.244.166

66.150.208.9
66.150.208.54
66.150.208.55
66.150.208.106
omniture.122.207.net
omniture.122.207.net

13 total |

51 total |

106 total

| 106 total |

16

