
Bill-Pay Control: An Interactive User Interface to Select
IP Service Quality

Aaron Bergstralh
bergstralh@wisc.edu

Erik Paulson
epaulson@cs.wisc.edu

David Plonka
plonka@cs.wisc.edu

University of Wisconsin - Madison
Computer Sciences Department

February 7, 2007

Abstract

The future Internet may be built to deliver better service totraffic that is accompanied by
additional payments. In such a scenario, changes in payments and the resulting performance
impact could be realized on very fine timescales, such as within seconds. Thus, users would
benefit from (1) a desktop instrument that measures and presents their applications’ Internet
traffic in a user-friendly fashion and (2) desktop controls that allow the adjustment of desired
service level, and corresponding payment, for their application traffic in real time.

In this paper we presentBill-Pay Control, an interactive, web-based user interface that
we designed and implemented as part ofBill-Pay Sim, a simulation system that emulates the
performance that such a future Internet might exhibit. Bill-Pay Control runs on a user’s work-
station, continually displays application-level networktraffic statistics, and allows the user to
select accompanying service levels. This functionality provides the user with the flexibility
to improve network and application performance by controlling payments tied to the chosen
traffic. We also report our initial experience with the system and make observations about its
efficacy as an evaluation environment for proposed Internetbilling schemes.

1 Introduction

Traffic in today’s network is prioritized and purchased at a very coarse granularity. Most traffic
is treated as a flat-rate best effort, and whatever other arrangements exist were negotiated by ad-
ministrators or ISPs between networks, and subsume all users. In a future network, users may use
a micro-payment system for purchasing and prioritizing their own network traffic[4]. A tool to
monitor traffic and adjust traffic priority will be necessaryfor such a network to be possible.

We have built a system called Bill-Pay Sim (BPS) in which we provide a user interface, Bill-
Pay Control, to both monitor traffic and influence its performance. Amongst other things, this

1

prototype interface could be used in future user surveys formicro-payment systems. The BPS
system is comprised of a traffic logger, web based user interface, traffic policer, and a central
daemon that coordinates the system.

The BPS traffic logger (bpslog) is a tool that wraps any chosendynamically-linked application,
such as a web browser, and captures all of the network-relevant function calls to get a true view of
a user application’s network activity. The output of bpslogis then used by the central BPS daemon
(bpsd) to relay this information to the user interface.

The BPS user interface allows end-users to view a summary of their recent traffic through
any common web browser. This interface allows the end user toview various information about
their traffic including current and peak transfer rates, path to the remote host, and current level of
service. The user may then use this information to make a decision to increase or decrease the level
of service given to a particular traffic aggregate.

In order to allow the user to adjust the service level of theirtraffic, BPS uses the traffic policer
built into Linux to rate limit traffic on the machine. Given that one cannot currently increase the
performance of the Internet along arbitrary paths, bpsd intially constrains all incoming traffic to a
low level. Lowering the baseline performance of the networkallows us to subsequently simulate
increasing the performance of the network by loosening thatconstraint. When a user modifies the
service level for some traffic the bpsd modifies the maximum rate for the remote hosts involved.

The final component of BPS is the central bpsd daemon. The bpsdtakes the output of the traffic
logger and parses and prepares it for the user interface. When a user makes a change in the user
interface, the bpsd takes the request and translates it intorules for the traffic policer.

The rest of this paper is organized as follows. Section 2 explains some of our design choices.
Section 3 presents the system usage and implementation details. Section 4 discusses our results
and observations. Section 5 notes some related work. Our conclusions follow.

2 Design

Our primary design goals for a Bill-Pay Control and simulation system were for it to have: (1) a
web-based user interface that is simple and responsive, (2)a network traffic logger forunmodified
applications that doesn’t adversely affect user experience with respect to performance, and (3)
traffic control that is implemented solely within the user’sworkstation so that the overall system is
self-contained.

One of the motivating uses for our system is for a “mall-test”environment, where users could
be recruited from the general public and asked to interact with the fine-grained control a Bill-Pay
system provides. In this environment, we wish to have a system that can be deployed on a single
laptop without needed a complicated support infrastructure. An emulated environment that could
skew experiences is undesirable; the applications we are using to test network performance should
themselves operate at full speed.

In addition, we need an effective way to summarize application traffic so that the user can
conveniently express their performance preferences. We would like to display aggregates of IP
conversations, both spatially (within the IP address space) and temporally (spanning a sequence
of conversations involving the same hosts), so that the useris not overwhelmed by the numerous
interactions between their local host and the many remote Internet hosts with which it communi-
cates. Two areas of design concern were how best to associatetraffic with abstract handles called

2

traffic descriptors, and how to best simulate poor Internet performance.

2.1 Traffic Descriptors

It is challenging to displaying Internet traffic in real timesuch that it can be understood by a typical
user. The number of remote hosts involved in an application session can be overwhelming. For
instance, when ostensibly visiting even only a few web sites, “hidden” references can result in
communication withhundredsof hosts. It is desirable to group the traffic involving remote hosts
together into the the smallest possible set that still allows the user to meaningfully differentiate
between sets of traffic that experience similar network performance. Thus we consider traffic
aggregated and named with identifiers that we call “traffic descriptors.” These traffic descriptors
are displayed in the user interface and identify the entriesthat can have their desired service level
set by the user.

As we discuss the design issues involving traffic descriptors we will use the example of access-
ing “www.cnn.com”, the web server for the Cable News Network.

2.1.1 IP Addresses

IP addresses are confusing for the user. For instance, accessing “http://www.cnn.com” currently
yields this set of IP addresses: 64.236.16.20, 64.236.16.52, 64.236.16.84, 64.236.16.116, 64.236.24.12,
64.236.24.20, 64.236.24.28, 64.236.29.120. IP addressesare not persistent, they are foreign, com-
plicated looking and contain too many digits for most to remember. Since IP addresses make poor
candidates for traffic descriptors, we chose to only use themas a last resort, i.e. when an applica-
tion connects to a service using just the IP address, for instance in a URL, and we can find no other
reasonable descriptor, such as when it is within the local domain and thus there is no other service
provider that carries traffic along the end-to-end path to that remote host.

2.1.2 Domain Names

Domain names are somewhat familiar to users. Users see them as the server names in URLs to
which they direct their web browsers, such as “www.cnn.com”. As such they are potentially useful
as traffic descriptors.

However, when accessing “http://www.cnn.com” the index document contains very many sub-
references to foreign domain names that never appear on the user’s web browser display. In fact,
a recent loading of that URL yielded sixteen domain names resolved by the browser, only five of
which contained “cnn”.

Still, domain name resolution can be passively interceptedin the application. This enables pro-
cessing in real time because the system will know the associations between names and IP addresses
before connections are made to those IP addresses.

An improvement we considered was to drop variable length prefixes from the domain name.
For instance, we could aggregate names matching “*.cnn.com” to just the traffic descriptor “cnn.com”.
Unfortunately, automatic abbreviations of this sort are difficult to generalize. For instance, in the
United Kingdom, CNN’s web site might be known as “www.cnn.co.uk”. If we simply dropped
all but the last two domain name components, we would be left with only “co.uk”. As a traffic

3

descriptor, this would aggregate all commercial domain names in the UK together, losing desirable
fine-grained user control of service levels on a service by service basis.

While we find this domain name abbreviation to be fruitful, convenient automated abbreviation
is left for future work.

2.1.3 Reverse Domain Names

Since the socket-based library and system calls generally use IP addresses rather than names, we
first intended to capture IP addresses and lookup their “reverse” domain names as the basis for
traffic descriptors, then perhaps abbreviate by the method just discussed. These names are entries
in the “in-addr.arpa” domain namespace, indexed by the reversed bytes in a given IP address. The
notion was that we would observe the application establishing communication with a given IP
address and then quickly lookup the associated reverse domain name before reporting that traf-
fic to the user. For instance, the reverse domain name for the IP of “www.cnn.com” is again
“www.cnn.com”, which is sensible.

There are a number of problems with this technique. First, a domain name lookup is a blocking
operation that can take a prolonged amount of time and can ultimately fail, and often does due
to misconfigured pointers or disfunctional reverse name servers. Secondly, the values for reverse
domain names are often missing since they are not generally required for proper Internet opera-
tion, but exist primarily just for reference. To further complicate matters, these reverse names are
sometimes in error. Because reverse domain names are not used to identify services, there is no
continuous verification that they are reasonably maintained on the Internet. In any case, even with
correct resolution, the resulting names are often unfamiliar to the user since they need not match
the “forward” domain names contained in, for instance, web URLs.

Because of the practical complication of performing many concurrent blocking reverse domain
name resolutions in near real-time and the potential confusion the resulting names might produce
anyway, we decided not to use reverse domain names as traffic descriptors.

2.1.4 IP Address Prefixes

The current BGP table’s IP prefix that best matches for “www.cnn.com” is 64.236.16.0/20. Like
IP addresses, IP prefixes, which consist of a base IP address and netmask bit-width, are foreign
and confusing to users. For this reason we rejected them as traffic descriptors.

However, these IPv4 prefixes from the global BGP table are likely to have a useful granularity
for choosing service levels in that they are often contain a set of co-located servers for services
operated by one service provider, and thus match a subnet that might exhibit poor performance
such that the user might be willing to pay that provider.

2.1.5 Autonomous System Numbers

Autonomous System Numbers (ASNs) are the identifiers used toroute inter-domain traffic for the
entire Internet, but they are totally foreign to typical endusers. At first this makes them seem
a poor choice as traffic descriptors. However, in a system that offers payments to commercial
entities, it is these ASNs that likely exactly represent those entities that are responsible for the
network performance involving the remote host.

4

With the aid of the Regional Internet Registry (RIR) databases, such as that of the American
Registry for Internet Numbers (ARIN), we can replace the ASNs with short names that are easier
for users to understand. For instance, “cnn.com” is operated by an Autonomous System named
“ASN-TBS-1” for Turner Broadcast System, the owner of the Cable News Network (CNN).

2.1.6 Autonomous System Paths

Autonomous System paths are simply the sequences of ASNs that are on the path to a particular
destination prefix in the whole Internet’s BGP routing table. For instance, the path from our univer-
sity to CNN is “WISCNET1-AS, LEVEL3, AOL-ATDN, ASN-TBS-1”,meaning that traffic from
here to CNN is likely to traverse WiscNet, Level 3 Communication’s network, the AOL Transit
Data Network, and ultimately the Turner Broadcasting network. For demonstration purposes, we
assume that the AS paths are symmetric such that the reverse of that path would contain identify
the Autonomous Systems from CNN to our university.

Ultimately, we chose to use a combination of Autonomous System (AS) paths and domain
names as traffic descriptors in our system. The domain names give the user the opportunity to
associate the traffic descriptor with the domain names they typically see as server names in URLs.
The AS path gives the user some sense of network distance to the remote host and provides the
number and identities of the commercial entities along the end-to-end path. Those commercial
entities are exactly those that the user may wish to offer payments for improved service.

2.2 Traffic Control

2.2.1 Traffic Control Method

Our design goals and implementation issues left us with a fewoptions to lower baseline network
performance. Network emulation tools such as NIST Net[3] and dummynet[6] have more features
than necessary for our purpose, so we feared that they would complicate our system and/or require
another machine to perform rate-limiting. An embedded traffic shaper inside the application or
kernel would be complicated to write. We eventually chose the traffic control mechanisms built into
Linux. The Linux Traffic Control system[5] was built-in to most versions of Linux, simplifying
deployment. It adds no execution overhead to the application. It also supported ingress traffic
control as easily as outgoing control. This combination allowed us to meet our goal of being able
to influence the rate at which traffic is delivered to the application in a self-contained system.

2.2.2 Traffic Control Service Levels

The BPS system presents users with a limited set of “service levels.” We allow the user to change
the service level of a particular traffic descriptor rather than allowing the user to specify an an
arbitrary bit or payment rate. The primary motivations for this approach were that the average
user of a micro-payment system may find named service levels easier to choose amongst than
arbitrary numbers. Another motivation for this approach isthat service levels yield traffic rate
changes in noticeable steps allowing users to experience a near instantaneous improvement in their
traffic. A final motivation is that service levels allow otherparts of the system more flexibility in
what characteristics a descriptor should exhibit. For example, a “silver” service level might yield
twice the throughput of the “bronze” level, whereas the “platinum” level might also be at twice

5

the bandwidth of “bronze” and exhibit reduced latency. However, at present our simulator only
implements bandwidth rates.

2.2.3 Traffic Control Granularity

We next consider effective ways of turning the user’s requests into Traffic Control rules. The
Traffic Control utilities can operate on IP/port address pairs, individual IP addresses, and entire
network blocks. IP/Port address pairs are too fine-grained to apply Traffic Control rules. Many
applications, such as the world web web, result in short-lived sessions involving ephemeral port
numbers. Rules for one IP/Port pair would not affect subsequent connections with different IP/Port
pairs, and our network activity monitor needs a few seconds to propagate information about new
network activity to the Traffic Control rule writer.

Network blocks derived from the BGP table entries are too coarse-grained to apply Traffic
Control rules. A rule for an entire BGP prefix would limit all matching traffic in aggregate to a
given rate. However, we intend the service level to apply to the traffic involving each individual
remote host. For example, consider a traffic descriptor thatthe user has set to “silver” level,
meaning traffic can flow at up to 2Mbps. If there are 20 remote host addresses matching that
descriptor, a prefix-based traffic control rule would cause all 20 to share 2Mbps of bandwidth.
However, if the Traffic Control rules are written for each individual host, each of the 20 hosts
would get their own 2Mbps. This more closely approximates Bill-Pay in that remote hosts that
are associated with the same micro-payment amounts still behave individually with respect to their
performance. We therefore choose to generate Traffic Control rules for individual remote host IP
addresses.

3 Implementation

The Bill-Pay Sim system contains three major components: a user interface, a network activity
logging utility, and a daemon. Respectively, these components are “Bill-Pay Control”, the “Bill-
Pay Sim Logger” (bpslog), and the “Bill-Pay Sim Daemon” (bpsd). Their relationship is shown in
figure 1.

The system’s components are implemented in about 3300 lineslines of javascript, perl, and
original C code. The library interposition by bpslog and traffic control techniques employed by
bpsd are somewhat Linux-specific and function on systems based on, at least, the Linux 2.4 and
2.6 kernels. The user interface requires a javascript-enabled web browser such as Firefox, but need
not necessarily be run on the simulation’s workstation.

3.1 System Operation

Typical operation of the system is described below. The pertinent system elements are annotated
with corresponding numbers in figure 1.

1. The user runs the bpslog command to launch an Internet application of their choosing such
as the Firefox web browser. The bsplog shared object libraryintercepts interesting calls and

6

{qdisc,filter}
{add,del}

/sbin/tc

Traffic Control
Linux

1. 2.

status.xml

index.html

5.

6.

reads from file

writes to file

process/
executable

legend

data object/file

process

FireFox

4.

3.

process

update

bpsd:

(HTTP Server)

/tmp/rocks
(log)

BillPay Control
(web browser)

bpslog:
BillPay Sim Logger

(library call interposer)

Media
Player

(web
browser)

AJAX
JavaScript,

bgp.txt
("show
route"
output)

ARIN
asn.txt

BillPay Sim Daemon

servicelevel

GET

GET

Figure 1: Bill-Pay Simulation System Overview

bpslog’s “-L” option instructs it to log those calls’ arguments and results with high-resolution
timestamps to a regular file named “/tmp/rocks”1. For example:

$ bpslog -L firefox &

3. The bpsd process runs as root and is launched prior to or shortly after one or more bpslogged
processes are launched. For example:

bpsd.pl -v -B

The bpsd follows the tail of the “/tmp/rocks” log file, parsing and processing the per-process
internet socket related calls reported therein.

3. The user runs Bill-Pay Control in their web browser by fetching an “index.html” document
from bpsd. This document contains the HTML and javascript code that forms the interactive
user interface. For example:

$ firefox http://localhost:12345/index.html &

1This file name is a legacy from the Rocks[7] software, on whichbpslog is based.

7

4. The javascript portion of Bill-Pay Control fetches “status.xml” from bpsd. This virtual XML
document continually summarizes all Internet activity performed by bpslogged applications.
Bill-Pay Control repeatedly fetches this document at regular intervals, such as every 5 sec-
onds, and updates the user’s display accordingly. The user can then alter the service level for
traffic, as identified by traffic descriptor. For instance, they could promote the service level
from “default” to “bronze”, which is then conveyed by an HTTPGET request to bpsd.

5. When bpsd receives a request to alter the service level, it uses the Linux “tc” command to alter
the ingress traffic control filter rules that it installed at initialization time. The “tc” command
modifies Linux’ traffic control table of ordered rules so thatthe traffic matching the given
descriptor has the newly requested service level.

6. If BGP-based descriptors are selected, via bpsd’s “-B” option, bpsd initially loads two text files:
the American Registry for Internet Numbers’ “asn.txt” file and the captured output from a
“show route” command from the local Autonomous System’s BGP-speaking border router.
It processes these files to form an IP prefix search tree of the entire Internet’s BGP table.
This level-compressed tree enables bpsd to quickly find the traffic descriptor for any given
IP address.

3.2 Bill-Pay Sim Logger

The simulation logger, bpslog, is a library call interposer. To generate a continuous log of chosen
applications network activity it replaces calls to functions (including socket, connect, read, write,
and close) used to create or manipulate internet sockets or to resolve domain names. Table 1
shows the entire list of functions that bpslog intercepts and logs if the call potentially involves
IPv4 sockets.

Thus bpslog causes unmodified applications themselves to produce a continuous stream of
library system call events that our system can use to track application network operations in real
time.

3.3 Bill-Pay Sim Daemon

The simulation daemon (bpsd) is a perl script that has a number of responsibilities. First, it main-
tains traffic byte counters and rates and aggregates them by traffic descriptor based on reports
(BPS::Report objects) delivered by the BPS::InetLog object that are prepared from the logged ap-
plications function calls by process ID and socket/file descriptor. When BGP-based descriptors are
used, bpsd instead uses BPS::InetLogBGP - a derived class that further translates IP addresses
into descriptors based on the AS path for the prefix that best matches the remote IP address.
BPS::InetLogBGP uses Net::ParseRouteTable and Net::Patricia to perform fast lookups of IPv4
prefixes and corresponding AS paths in a current routing table for the whole Internet.

Second, bpsd is an HTTP server that processes requests from the user interface. The main
requests are: (1) request for the “index.html” file that contains the HTML and javascript code that
forms the user interface, (2) request for the virtual “status.xml” file containing the list of current
descriptors with their traffic rates, total byte count, service level, and descriptor details, and (3)
request to update a descriptor’s service level to a new value.

8

Table 1: Intercepted Library Calls
Functionality Library Calls
socket creation dup

dup2
fcntl
socket

resolver inet addr
inet aton
inet pton
gethostbyname
gethostbyname2
gethostbynamer
gethostbyname2r
getaddrinfo

socket operations accept
bind
connect
listen
getsockname
getpeername
shutdown

socket input read, read
readv
recv
recvfrom

socket output write
writev
send
sendto

socket termination close
exit

Lastly, when run with root privilege, bpsd performs traffic control according to requests for
service level updates from the user interface.

3.4 Bill-Pay Traffic Control

Bill-Pay Sim (BPS) uses Linux’s traffic control (tc) mechanisms to degrade traffic performance by
default. BPS uses tc through two perl classes. The BPS::TcOps class provides wrapper functions
around the actual Linux tc binary where as the BPS::TrafCtrlclass provides the bookkeeping for the
traffic control element of BPS. The BPS::TrafCtrl class keeps track of all of the rate modification
rules for BPS and calls the necessary subroutines in BPS::TcOps when changes need to be made.
When using BPS::TrafCtrl, BPS passes a list of IP addresses and a service level. The service level

9

is simply one of several traffic rates that is setup by BPS uponstartup. Currently BPS sets up
five basic service levels:default, bronze, silver, gold, andplatinumat the traffic rates of 128Kbps,
512Kbps, 1Mbps, 2Mbps, and 100Mbps, respectively.

In our current BPS implementation, BPS::TrafCtrl is only performing rate limiting on the
ingress path since most user applications use much more downstream than upstream traffic. We
are currently rate limiting by IP address however, given theflexibility of the tc mechanisms built
into Linux, our approach could be modified to take into account almost any field in the TCP/IP
headers. The Linux tc mechanism is also somewhat limited when it comes to modifying ingress
traffic since our only option is to drop packets exceeding a given rate whereas in egress mode, tc
allows for much more complex queuing based techniques.

Figure 2: Bill-Pay Control Interface. In the other tabs, we are streaming a video from YouTube
and have just completed a Google search.

10

3.5 Bill-Pay Control

The BillPay Control interface is implemented as a web application. We chose to implement the
interface as a web application primarily for ease of development. The functions of the Control
Interface are to display current network activity and to allow the user to adjust the performance
of individual activities. A web interface performs both of these functions easily, and modern
web techniques such as AJAX allow us to develop a web page thatbehaves interactively like a
standalone Java or C++ program. See figure 2 for an example webbrowsing session as presented
by Bill-Pay Control.

The user starts Bill-Pay Control by fetching its “index.html” from bpsd. This web page uses
javascript to periodically request the current network activity status via an HTTP request in the
background. The bpsd serializes the current status into an XML document. For each traffic de-
scriptor, the XML document contains a record of the current rate, the peak transfer rate, the number
of bytes transmitted, the service level, and an array of extra information the display can use to help
explain the traffic descriptor to the user. In our current system, the traffic descriptor is usually the
AS path used to reach the end hosts, and the extra informationfields for the descriptor are the
domain names that resolved to hosts matching this path. The meaning of the descriptors is opaque
to the BillPay Control display. When the request completes,a javascript callback in the control
page is invoked automatically by the web browser and the XML status file is parsed. Any new or
updated descriptors are discovered, and the list of descriptors is sorted and converted into appro-
priate elements for display on the control page. The callback schedules the next status request for
a few seconds in the future, and the cycle continues.

When the user clicks on an arrow to request a change to a trafficdescriptors service level,
the javascript sends a request to the bpsd via HTTP in the background and prevents the browser
from leaving the page. The javascript updates the service level on the display for that page to
“Updating.” The next periodic refresh of the status information will receive the updated service
level, if the bpsd was able to make the change.

The traffic descriptors are displayed sorted by the current rate with higher rates first. If there is
a tie for the current rate, the total number of bytes receivedis the tiebreaker. As the user interacts
with sites, the descriptors associated with those sites will change their position in the list as the
current transfer rates change. The hope is that the currently active descriptors will be the ones that
the user is interested in monitoring and controlling, so they are at the top of the page.

We expect that future operating systems will make heavy use of small widgets to replace small
system controls and applications. The Apple Dashboard widgets and Yahoo! Konfabulator wid-
gets are implemented using HTML and javascript, and Microsoft XAML is similar in spirit. The
eventual Bill-Pay control system might well be a similar widget.

4 Results & Observations

4.1 Traffic Descriptor Aggregation Effectiveness

Tables 2 shows some of the traffic descriptors resulting fromone sample Firefox web browser ses-
sion. (A full list of descriptors from this sample session isshown in table 3 and 4 in appendix A.)
The browsing session lasted about five minutes and consistedof a visit to “http://www.cs.wisc.edu”,
a visit to “http://www.cnn.com” and selecting an article, then a visit to “http://www.youtube.com”

11

Table 2: Traffic Descriptor Aggregation for CNN’s Web Site
AS Path Domain Name IP Address Reverse Domain Name

WISCNET1-AS, LEVEL3, AOL-ATDN, ASN-TBS-1 www.cnn.com 64.236.24.20 www5.cnn.com
64.236.24.28 www7.cnn.com
64.236.29.120 www.cnn.com
64.236.16.20 www2.cnn.com
64.236.16.52 www4.cnn.com
64.236.16.84 www6.cnn.com
64.236.16.116 www8.cnn.com
64.236.24.12 www3.cnn.com

i.cnn.net 64.236.24.136 i1.cnn.net
64.236.24.137 i3.cnn.net
64.236.24.138 i5.cnn.net
64.236.24.139 i7.cnn.net
64.236.16.136 i2.cnn.net
64.236.16.137 i4.cnn.net
64.236.16.138 i6.cnn.net
64.236.16.139 i8.cnn.net

ads.cnn.com 64.236.29.103 64.236.29.103
64.236.22.63 64.236.22.63
64.236.22.103 64.236.22.103
64.236.29.63 64.236.29.63

cl.cnn.com 64.236.22.12 cl4.cnn.com
64.236.29.11 cl1.cnn.com
64.236.29.12 cl2.cnn.com
64.236.22.11 cl3.cnn.com

cnn.dyn.cnn.com 64.236.29.20 cnn3.dyn.cnn.com
64.236.29.21 cnn4.dyn.cnn.com
64.236.22.20 cnn1.dyn.cnn.com
64.236.22.21 cnn2.dyn.cnn.com

and selecting and playing one video. Within each AS path, thedomain names and IP addresses are
listed in the order contacted. IP addresses in the Revere Domain Name column indicate a lookup
failure. The name server is misconfigured or inoperative or that a corresponding in-addr.arpa entry
did not exist for that IP address.

For this sample session, there was a total of 106 IP address and/or reverse domain names in-
volved. By our domain name traffic descriptor technique those were summarized to 51 descriptors.
By our AS path traffic descriptor technique those were, in turn, summarized into just 13 AS path
descriptors. Thus, we propose that these two steps employedby our system are effective at pro-
ducing a relatively concise set of manipulable traffic descriptors to the user. If the autonomous
systems are the commercial entities that wish to receive payments, then this summary is likely the
most concise that allows the user complete flexibility with their spending.

4.2 Identifying Critical Paths

Our Bill-Pay Control display uses AS paths as traffic descriptors and sorts those descriptors with
recent activity to the top. This is an attempt to help the userto locate the descriptor thatmight
be critical to the performance of their application. In manysituations this is effective. However,
when the user’s application is performing unacceptably butinvolves Internet traffic having many
or varying descriptors, it may be difficult for that user to identify which descriptors’ service levels
to increase.

For instance, it is common for web content or advertisementspresented on one web page to
be gathered from multiple autonomous systems. Advertisingand content distribution networks are

12

typical causes of this phenomenon.
To direct performance improvement efforts, Barford and Crovella[2] developed a method of

critical path analysis for bulk TCP transfers. Likewise, a system such as Bill-Pay would benefit
from enhancements that would similarly enable the end user to better identify which components
along which paths determine or limit their application’s performance, so that they can better direct
their tuning effort and payments.

5 Related Work

While the basic elements of BPS could be used for almost any micro-payment system, our simu-
lator is closely related to the proposed Bill-Pay[4] systemfrom which our simulator gets its name.
Bill-Pay is a system in which an end-user places micro-payments into their outgoing packets and
different entities along the traffic path may take a portion of the micro-payments in order to give
better service to the traffic. Our BPS system provides one example of how an end-user may add
micro-payments to their traffic along with visualizing who may be taking their micro payments
along the way.

The INDEX project[1] is also loosely related to Bill-Pay Control. In the INDEX project users
were allowed to choose from different rate ISDN lines at various price points along with different
methods of paying for services such as a flat rate or per byte. While this project looked at how users
were willing to pay for service on a bulk service basis, our system could be used in a similar project
to examine how users might be willing to pay for service. The overall results from the INDEX
project showed that user activity is sensitive to the methodby which they are being charged. If
a micro-payment system were to be developed, a similar investigation with a Bill-Pay Control
interface would probably be warranted.

6 Conclusion

In conclusion, we presented Bill-Pay Control, an interactive user interface that displays application
Internet traffic in near real time and allows the user to select the desired IP service quality. We also
presented Bill-Pay Sim, the encompassing simulation system that emulates, to the degree necessary
as a testing environment, the performance of a potential future Internet in which users can improve
application performance by offering additional payments.

Through the use of our system, our observation is that domainnames and Autonomous System
paths can be used to fairly effectively and concisely present application traffic. In the absence
of additional mapping infrastructure to help identify the candidate payment recipients, our traffic
descriptor method is likely as simple as possible to achievefine-grained control, but no simpler.
Still, a Bill-Pay system would be greatly improved by providing better guidance to users so that
they may direct their payments down the critical paths that are most likely to improve network and
application performance.

Bill-Pay Control gives users the flexibility to experimentally influence Internet performance
with feedback in near real time so that they can make informedfinancial decisions.

13

7 Acknowledgments

Cristian Estan provided the inspiration for a Bill-Pay simulator and referred us to related work.
Barton Miller provided useful hints to understanding library call interposition behaviors. Victor
Zandy wrote Rocks[7], on which bpslog is based. Mike Blodgett, Ken Hahn, and Bill Taylor helped
us obtain machines for a testbed. Paul Beebe and Stefan Strandberg provided a network connection
for our demo. The original HTML design came from Google Page Creator. The mouseover code
is from Swazz.org and is made available under the terms of theGNU Public License.

References
[1] J. Altmann, B. Rupp, and P. Varaiya. Internet demand under different pricing schemes. InEC ’99: Proceedings

of the 1st ACM conference on Electronic commerce, pages 9–14, New York, NY, USA, 1999. ACM Press.

[2] P. Barford and M. Crovella. Critical path analysis of tcptransactions. InSIGCOMM ’00: Proceedings of the
conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pages
127–138, New York, NY, USA, 2000. ACM Press.

[3] M. Carson and D. Santay. Nist net: a linux-based network emulation tool. SIGCOMM Comput. Commun. Rev.,
33(3):111–126, 2003.

[4] C. Estan, A. Akella, and S. Banerjee. Achieving good end-to-end service using bill-pay. Technical Report 1582,
University of Wisconsin Computer Sciences Department, November 2006.

[5] Linux advanced routing and traffic control.http://lartc.org/.

[6] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols.SIGCOMM Comput. Commun.
Rev., 27(1):31–41, 1997.

[7] V. C. Zandy and B. P. Miller. Reliable network connections. In MobiCom ’02: Proceedings of the 8th annual
international conference on Mobile computing and networking, pages 95–106, New York, NY, USA, 2002. ACM
Press.

14

A Sample Traffic Descriptors

Table 3: Sample Traffic Descriptor Aggregationcontinued in Table 4
AS Path Domain Name IP Address Reverse Domain Name

PRIVATE pc-i1-23-j 10.2.23.124 10.2.23.124
10.0.0.2 10.0.0.2 10.0.0.2

WISCNET1-AS, GOOGLE pagead2.googlesyndication.com72.14.223.104 ar-in-f104.google.com
72.14.223.147 ar-in-f147.google.com
72.14.223.99 ar-in-f99.google.com

WISCNET1-AS spe.atdmt.com 205.213.110.44 akamai-44.wiscnet.net
img-cdn.mediaplex.com 205.213.110.7 akamai-7.wiscnet.net

205.213.110.9 akamai-9.wiscnet.net
cdn5.tribalfusion.com 205.213.110.8 akamai-8.wiscnet.net

WISCNET1-AS, LEVEL3, YOUTUBE www.youtube.com 208.65.153.242 www.youtube.com
208.65.153.245 www.youtube.com
208.65.153.251 208.65.153.251
208.65.153.241 www.youtube.com

sjc-static15.sjc.youtube.com 64.15.124.95 64.15.124.95
sjc-static9.sjc.youtube.com 64.15.124.89 64.15.124.89
sjc-static2.sjc.youtube.com 64.15.124.84 64.15.124.84
sjc-static8.sjc.youtube.com 64.15.124.88 64.15.124.88

208.65.153.150 208.65.153.150 208.65.153.150
sjl-static16.sjl.youtube.com 208.65.153.151 208.65.153.151

208.65.153.146 208.65.153.146 208.65.153.146
208.65.153.14 208.65.153.14 sjl-static6.sjl.youtube.com
64.15.124.83 64.15.124.83 64.15.124.83

sjc-static11.sjc.youtube.com 64.15.124.91 64.15.124.91
64.15.124.96 64.15.124.96 64.15.124.96

208.65.153.11 208.65.153.11 sjl-static3.sjl.youtube.com
64.15.124.97 64.15.124.97 64.15.124.97
64.15.124.90 64.15.124.81 64.15.124.81

sjc-static1.sjc.youtube.com 64.15.124.81 64.15.124.81
sjl-static1.sjl.youtube.com 208.65.153.9 sjl-static1.sjl.youtube.com

sjc-static13.sjc.youtube.com 64.15.124.93 64.15.124.93
sjl-static9.sjl.youtube.com 208.65.153.144 208.65.153.144

sjc-static6.sjc.youtube.com 64.15.124.86 64.15.124.86
208.65.153.15 208.65.153.15 sjl-static7.sjl.youtube.com

208.65.153.145 208.65.153.145 208.65.153.145
208.65.153.12 208.65.153.12 sjl-static4.sjl.youtube.com

sjc-static12.sjc.youtube.com 64.15.124.92 64.15.124.92
sjl-static5.sjl.youtube.com 208.65.153.13 sjl-static5.sjl.youtube.com

64.15.124.87 64.15.124.87 64.15.124.87
64.15.124.85 64.15.124.85 64.15.124.85

sjl-v61.sjl.youtube.com 208.65.153.98 sjl-v61.sjl.youtube.com
WISCNET1-AS, LEVEL3, VALUECLICK altfarm.mediaplex.com 216.34.207.71 ad.la.mediaplex.com

WISCNET1-AS, SPRINTLINK, DOUBLECLICK ad.doubleclick.net 209.62.176.52 eqnjmegaadvip1.doubleclick.net
...

13 total 51 total 106 total 106 total

15

Table 4: Sample Traffic Descriptor Aggregationcontinued from Table 3
AS Path Domain Name IP Address Reverse Domain Name

...
WISCNET1-AS, LEVEL3, AOL-ATDN, ASN-TBS-1 www.cnn.com 64.236.24.20 www5.cnn.com

64.236.24.28 www7.cnn.com
64.236.29.120 www.cnn.com
64.236.16.20 www2.cnn.com
64.236.16.52 www4.cnn.com
64.236.16.84 www6.cnn.com
64.236.16.116 www8.cnn.com
64.236.24.12 www3.cnn.com

i.cnn.net 64.236.24.136 i1.cnn.net
64.236.24.137 i3.cnn.net
64.236.24.138 i5.cnn.net
64.236.24.139 i7.cnn.net
64.236.16.136 i2.cnn.net
64.236.16.137 i4.cnn.net
64.236.16.138 i6.cnn.net
64.236.16.139 i8.cnn.net

ads.cnn.com 64.236.29.103 64.236.29.103
64.236.22.63 64.236.22.63
64.236.22.103 64.236.22.103
64.236.29.63 64.236.29.63

cl.cnn.com 64.236.22.12 cl4.cnn.com
64.236.29.11 cl1.cnn.com
64.236.29.12 cl2.cnn.com
64.236.22.11 cl3.cnn.com

cnn.dyn.cnn.com 64.236.29.20 cnn3.dyn.cnn.com
64.236.29.21 cnn4.dyn.cnn.com
64.236.22.20 cnn1.dyn.cnn.com
64.236.22.21 cnn2.dyn.cnn.com

WISCNET1-AS, LEVEL3, ALTERNET-AS, WAN ad.trafficmp.com 65.216.123.144 65.216.123.144
t.trafficmp.com 65.216.123.148 65.216.123.148

http300.content.ru4.com 4.78.48.114 4.78.48.114
WISCNET1-AS, LEVEL3, AOL-ATDN i.a.cnn.net 64.236.44.157 64.236.44.157

64.236.44.158 64.236.44.158
64.236.44.166 64.236.44.166
64.236.44.167 64.236.44.167
64.236.44.181 64.236.44.181
64.236.44.128 64.236.44.128
64.236.44.136 64.236.44.136
64.236.44.151 64.236.44.151

ar.atwola.com 64.12.174.57 ads.web.aol.com
64.12.174.121 ads.web.aol.com
64.12.174.185 ads.web.aol.com
64.12.174.249 ads.web.aol.com
152.163.208.185 ads.web.aol.com
152.163.208.249 ads.web.aol.com
205.188.165.57 ads.web.aol.com
205.188.165.121 ads.web.aol.com
205.188.165.185 ads.web.aol.com
205.188.165.249 ads.web.aol.com
152.163.208.57 ads.web.aol.com
152.163.208.121 ads.web.aol.com

WISCNET1-AS, BTN-ASN, MII-XPC leadback.advertising.com 204.0.99.194 vadv1.dfw.xpc-mii.net
http-2081.edge.ru4.com 204.0.99.124 vspd1.dfw.xpc-mii.net

WISCNET1-AS, LEVEL3, TRIBAL-FUSION a.tribalfusion.com 204.11.109.63 a.tribalfusion.com
204.11.109.64 a.tribalfusion.com
204.11.109.61 a.tribalfusion.com
204.11.109.62 a.tribalfusion.com

local www.cs.wisc.edu 128.105.7.31 www.cs.wisc.edu
WISCNET1-AS, LEVEL3, INTERNAP-2BLK cnn.122.2o7.net 66.150.208.9 66.150.208.9

66.150.208.54 66.150.208.54
66.150.208.55 66.150.208.55
66.150.208.106 66.150.208.106
66.151.244.162 omniture.122.2O7.net
66.151.244.166 omniture.122.2O7.net

13 total 51 total 106 total 106 total

16

