
An Analysis of Network Configuration Artifacts

David Plonka and Andres Jaan Tack
University of Wisconsin-Madison

Abstract
Computer networks and the Internet have become nec-

essary tools in many daily activities; as such, they share
the expectation to be “always on” and highly available.
Throughout a decades-long evolution of increasing re-
liance, campus/enterprise networks and Wide-Area Net-
works (WANs) have been engineered and maintained by
an increasingly large set of skilled practitioners,i.e.,net-
work operators or engineers. While strikingly similar to
the evolution of software and software development by
programmers and software engineers, there has not been
similar attention to the discipline of network operations
as there has to that of software engineering.

In this work, we analyze the deployment and operation
of two large networks over a period of five to ten years.
Our analogy-basedapproach is to apply software source
code artifact analysis techniques to network device con-
figurations. Specifically, we analyze the repositories of
router and switch configurations of both a large cam-
pus and a service-provider network; these repositories
store the actions of hundreds of practitioners maintain-
ing thousands of pieces of equipment over more than ten
years time. Our results expose the evolution of these net-
works both longitudinally in time and by network device
types and topological roles. We reverse-engineer oper-
ators’ work behavior in terms of how they use version
control tools, how they change network device configu-
rations, and how long their changes last in a production
network. Lastly, we evaluate our proposed analogy be-
tween software engineering and network operations,i.e.,
that network operators are programmers, by comparing
and contrasting the analysis of software development to
that of modern network operations.

1 Introduction

The evolution of network engineering and operation has
brought it to the point of being the respected profes-
sion of increasingly skilled practitioners. This evolution

has brought with it tools and techniques which make the
administration of large networks feasible. Networking
practitioners in these large networks use integrated devel-
opment environments (IDEs) to guide and control their
changes and they use source code management tools
to communicate with each other and record a history
of their work. Networks, like software projects, have
“bugs,” i.e., configurations that have negative effects on
the system. Also like software projects, networks are
subject to the culture of its governing practitioners.

An artifact is defined as “any object created by hu-
mans, especially one remaining from a particular pe-
riod.” The software engineering profession has coined
the term, “software artifacts,” to mean specifically any
such object produced by human beingduring the course
of software development. These artifacts include code,
bug databases, communications, design documents, and
revision histories by Source Code Management (SCM)
and Version Control Systems (VCS). Following from
this, we definenetwork artifactsas anything produced
by network practitioners in the course of their practice.
Matching the world of software, these include device
configurations (code), trouble tickets (“bug” reports),
communications, design documents, and configuration
change histories.

We find the similarity between the software and net-
working professions compelling. It suggests to us that
the two professions may be closely related. However,
whereas software has received a great deal of attention
from the research community with respect to artifacts
and practitioner workflow, the artifacts of network prac-
titioners have gone woefully unstudied. We hypothesize
that, just as the analysis of software artifacts has made an
impact in the software domain, a similar analysis would
be prudent in the networking domain.

We herein propose an analogy-based approach to the
analysis of network artifacts, concentrating specifically
on the VCS repositories of two long-standing networks
as case studies. Our examination makes use of existing

tools designed for software version histories as well as
our own longitudinal static analysis of device configura-
tions. While we test our hypothesis, we point out that
our approach is unprecedented in the networking com-
munity. Therefore, while we might expect some natural
similarities, we must be prepared to witness patterns in
network practice which do not have obvious counterparts
in software development. It is discovering the extent of
their similarity that is our motivation.

In this paper, we use the following set of terms to refer
to elements of network configuration management repos-
itories and network configurations (similarly to source
code management and software source code):

practitioner regardless of domain, the actor or author
that is responsible for a configuration change. In
the network domain, the practitioner is a network
operator or engineer; in the software development
domain, this is the programmer or software engi-
neer.

revision a file revision expressing a change to asingle
device configuration. This is the smallest repre-
sentable change in the systems under study and typ-
ically is the work of one authoring practitioner.

commit a set of one or more supposedly related revi-
sions, submitted for storage in a repository by a
practitioner. In some prior work, the commit is
known as a transaction; we use the CVS command
name,commit , instead. (In this work we used a
window of six hours to coalesce related revisions
with cvs2cl .)

module a component of the system under study. In the
networks we study, the modules are either collec-
tions of devices by similar topological role (e.g.,
core, distribution, access) or by device type (e.g.,
router, switch, firewall, uninterruptable power sup-
ply). In software development a module is typically
is a sub-directory containing a subsystem or a class
of components, such as header files or library func-
tions.

stanza a line, set of adjacent related lines, or a para-
graph of configuration with a common purpose. For
instance, a singleinterface or access-list
definition in Cisco’s Internet Operating System
(IOS) configuration language. (See Listing 1 for a
sample IOS configuration fragment.)

LOC lines of configuration. Network devices are typ-
ically configured using a vendor-specific declara-
tive language. This metric is roughly comparable
to lines of code in more general programming lan-
guages.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the two networks that we study. We
subsequently present, in Section 3, the existing tools that
we applied to our task. We describe the preparation of
the network configuration data in Section 4 and point
out some of the similarities and differences between soft-
ware development and network operations. In Section 5,
we first present the results of processing this repository
essentially as if it contained software source code. Fol-
lowing those results, we introduce two network-specific
analyses and results:(i) revision lifetimes and(ii) stanza-
based activity in Subsections 5.5 and 5.6, respectively.
Section 6 reports on our expert interview-based valida-
tion of our analyses. Lastly, we report related work in
Section 7, propose future work in Section 8, and con-
clude.

2 Networks Under Study

We studied two large networks: acampusnetwork and a
service-providernetwork.

Table 1 summarizes the characteristics of the two net-
works under study.

2.1 Campus Network

The campus network under study is a very large network,
with approximately 90,000 ethernet access ports and per-
vasive wireless ethernet access in many campus build-
ings. In Table 1 note that the number of operators for
the campus network is very high, 343 in total. This is
due to the fact that the access layer of this network is
partially administered by “authorized agents” employed
in “end user” departments throughout the campus that
use a sort of a network IDE with a web interface to per-
form changes, rather than a command-line interface as
the super-users often use. (AANTS [16] is one example
of such a network IDE.) Of the 343 campus operators,
64 of them are network “super users,”i.e., the most priv-
ileged operators (with similar responsibilities to the 31
operators of the service-provider network). In summary,
the campus network is a large IP and ethernet network,
with a 3-tiered layout: a set of core and distribution layer
routers and switches providing redundant paths to a very
large set of ethernet access layer switches.

2.2 Service-Provider Network

The service-provider network is significantly different
from the campus network. It is a mostly router-based
Wide-Area Network (WAN), with approximately 500
customer sites in nearly as many cities and municipali-
ties. In Table 1, we see that it has been continually op-
erated for more than ten years under the SCM system;

Network Period (years) Operators (super users) Files Revisions Lines of Code

Campus 5+ 343 (64) 3,839 128,394 2,898,362
Service Provider 10+ 31 (31) 519 41,787 163,882

Table 1: Network Characteristics.

actually, the network was created in the late 1980s, and
thus has been operated for nearly 20 years in total. We
also see that there are many fewer operators, and devices
(files) than the campus network. This is to be expected
though, given that it contains almost no access layer
equipment; the customers of this service-provider oper-
ate their own ethernet Local-Area Networks (LANs) and
thus access devices are not part of the service-provider
network under study.

3 Tools

As mentioned above, our goal is to utilize existing tools
to form a database from our repository of RCS files
for the Campus and Service-Provider networks. To this
end, we surveyed and experimented with many freely-
available tools, both from the research and the open
source software developer communities. In general, the
former seemed more applicable to our research, however
the latter were more easily available and functional in
that they were often still currently maintained. For in-
stance, we initially intended to use Bloof [8] because
it was feature-rich and extensible, but we found it un-
satisfactory in that has not been maintained in years,
would not build in our modern development environ-
ments, and was also lacking set-up documentation. Since
most tools were introduced for use with the popular CVS
source code management system, it was convenient that
we were able to directly convert our two networks’ direc-
tories of RCS files to modules within a CVS repository.
(CVS actually uses RCS underneath.)

In this study we used the following existing tools to
analyze both the campus and service-provider network
repositories:

StatCvs-XML StatCvs-XML [3] is a statistics tool for
CVS repositories that generates a hierarchy of
HTML documents and images from CVS log files.
It conveniently supplies a web presentation of both
longitudinal and summary statistics.

cvs2cl cvs2cl [1] is a tool of singular purpose: it con-
verts a cvs log to a more concise “ChangeLog ”
file. This is useful to us primarily because it im-
plements the sliding-window algorithm described in
German and Mockus’ work [9], that coalesces indi-

vidual file revisions into the author’s commit trans-
actions.

From the tool selection process, we’ve learned that
there area lot of tools available but many, while per-
haps useful to practitioners, do not expose enough of the
details (e.g., they only produce bit-mapped graphs rather
than tabular numeric data) to facilitate new analyses.

4 Data Preparation and Transformation

In this work, we report on two case studies each involv-
ing the analysis of a repository of configuration files for
the devices in a large network. Combined, the data com-
prises over four thousand files, maintained over approx-
imately ten years, by hundreds of authors. Furthermore,
the data was managed in two custom network configu-
ration management systems written in 1997; these sys-
tems were similar, and both stored device configurations
in files such as that shown in Listing 1, using the legacy
file revision control system, RCS. Our analyses, how-
ever, expect the data to be in a more modern form. Con-
sequently, perhaps it is not surprising that the raw data
needed to be pre-processed, and then transformed. Here
we describe the ways in which the network configuration
data was prepared for our analogy-based analysis as if it
were source code for large software systems.

4.1 Converting From RCS to CVS

Most of converting an RCS-based repository to CVS is
straightforward because CVS is based on RCS. We sim-
ply created a directory structure ofmodulesand move the
RCS files into that structure. We chose to use modules
which represented the position of each device in the hi-
erarchical topology of a network,e.g.,core, distribution,
or access layers.

One limitation of our conversion to CVS is that, be-
cause RCS does not record when a file has been removed,
our CVS repository does not contain file deletions in-
formation, so network device removal is not exposed by
our analysis. While there are some creative proposals for
how this limitation might be addressed (such as using the
final revision date as an approximate removal date), we
chose to simply not report on any devices whose config-
urations were ever removed in the years studied. Overall

' $
v e r s i o n 12 .2
no s e r v i c e pad
s e r v i c e t imes tamps debug d a t e t i m e l o c a l t i m e
s e r v i c e t imes tamps log d a t e t i m e l o c a l t i m e
s e r v i c e password−e n c r y p t i o n
!
hostname s−bldg−5−2−a c c e s s
!
i n t e r f a c e F a s t E t h e r n e t 1 / 0 / 1

d e s c r i p t i o n sample 100Mbps e t h e r n e t i n t e r f a c e
s w i t c h p o r t a c c e s s v lan 42
s w i t c h p o r t mode a c c e s s
. . .

!
i p access−l i s t ex tended n o d h c p s e r v e r

remark Id : ndhcp . ac l , v 1 .2 2005−05−20 11 :2 6 :03 a s h l e y Exp
deny udp any eq boo tps any
p e r m i t i p any any

!
access−l i s t 5 p e r m i t 1 9 2 . 2 . 0 . 1
access−l i s t 5 remark Allow foo , bar , and baz s e r v e r s
access−l i s t 5 p e r m i t 1 9 2 . 2 . 0 . 1 0
access−l i s t 5 p e r m i t 1 9 2 . 2 . 0 . 1 1
!
end

&& %
Listing 1: A representative example of IOS configura-
tion code. Most multi-line stanzas types are separated by
exclamation points.

it is relatively uncommon to remove devices completely;
more often they are replaced, but keep the same device
and file name, so are represented accurately.

4.2 Cleaning the Data

In the course of our analysis work, we discovered a few
interesting features of the data itself. Some of these (in-
cluding some non-printable characters) required manual
attention to permit a clean analysis. Others appeared as
systemic properties of the network revision control sys-
tem, and deserve attention as they would have appeared
as quite distracting anomalies in visualizations of the net-
work history.

For some devices, we discovered revisions where the
change committed removed every line of the configura-
tion. These revisions, then, were immediately replaced
by whole files (as they were before the removal). We
identified the source of this problem as an intermittent
failure of the network devices themselves; these failures
were not handled sensibly by the network configuration
management systems. Although there were a relatively
small number of these “empty” revisions (111 in campus
and 21 in service-provider), they needed to be removed
so that the subsequent revisions would not have all the
configuration lines erroneously attributed to a single au-
thor. We cleaned these sources with the heuristic that
any revision removing 90% or more of the configuration
lines, based on the most lines that had ever been observed
prior, should be ignored. After manual inspectection of
just that subset of candidates, we found that this heuristic
yielded zero false positives and we removed all the errant

revisions.

Note that the presence of these empty revisions is a
side effect of one major difference between how SCM
is done in network operations versus software develop-
ment. In software development, especially at a large
scale, there are many developers, perhaps in many re-
mote locations, that periodicallypushtheir changed files
back to a central repository, from which software re-
leases are subsequently built. By contrast, in network op-
erations, the operators typically operate the SCM system
from one central server and theypull the configuration
file content from the devices’ persistent storage (such as
non-volatile RAM) back to that central repository. While
this pushversuspull model is dramatically different, it
has only limited effects on the analysis results. That said,
it is worth remembering that networks typically do not
have full “development” environments (as in software);
the network configuration changes pulled back from de-
vices in the network areimmediately in production, if
they weren’t in production already before the revision
was committed. (By contrast, software changes typically
don’t affect a production system until after a software re-
lease.)

4.3 Authors and Author Groups

The campus network had very many active operators at
343 in total. Rather than deal with this overwhelming
number of authors for visualizations, a portion of our
analyses report on groups of operators rather than indi-
viduals. The task of translating the practitioner names
to their corresponding group was non-trivial because, in
ten years, some practitioners had left their jobs, changed
to different groups, or even changed names. However,
we were able to accurately assign practitioners by us-
ing a revision history of their group assignments, kept
as described in [12], combined with expert knowledge of
the operator employees by other employees that had re-
mained for the duration. Manual effort was also required
to combine multiple author (account) names that were
really the same practitioner.

5 Analysis and Results

In this section we present graphical and tabular analy-
sis results and comment on characteristics, prominent
features, and anomalies that are either similar or dif-
ferent between the campus and service-provider net-
works under study. Wherever our results mention user
login names or real names, these names have been
anonymized.

(a)

(b)

Figure 1: Campus (a) and service-provider (b) file/device
count over time. These two networks experienced very
different growth rates and changes in rate.

5.1 Network Evolution

First, we present the entire lifetime of each network in
time series,i.e.,each network’s evolution in time. While
the active portion of the campus network is approxi-
mately only five years, both networks are shown in an
approximately ten year time range that allows the plots
to be easily compared.

Figure 1 shows the number of devices, such as routers
and switches, that existed at each point in time for
both the campus and service-provider networks. In the
campus graph, Figure 1a, notable elements include the
growth rate, and its change over time, nearly reaching
4,000 total devices. The shape of this curve suggests
that we’ve captured the network deployment from its in-
ception and that it has gone through periods of differing
growth rates. In the service-provider graph, Figure 1b,

the adoption of the configuration management system is
marked by a sudden increase in device count. There have
been two other prominent increases in new devices, be-
ginning roughly September, 1998 and January, 2006, ul-
timately reaching more than 500 devices in total. Our
expert interview from Section 6 was able to offer an ex-
planation for these events.

In Figure 2 we see a time series plot over that same
time as Figure 1, but here we show the evolution of the
portions of the topology,i.e., by plotting the total LOC
for all devices that serve a particular role in the net-
work. We see in both the campus and service-provider
networks, that the periphery (campus access layer and
service-provider customer sites) are responsible for the
most LOC, and that the peripheral topological layers
most contribute to the overall growth in configuration
content. This is perhaps to be expected as these de-
vices are the most numerous, connecting approximately
90,000 ethernet ports plus wireless access points in the
campus and all the service-provider’s customers. An-
other prominent feature is the addition of management
equipment after January 2007, and firewall devices after
September 2007. However, It is not clear whether these
devices were very quickly deployed or whether they were
merely inducted into the configuration management sys-
tem at this time.

5.2 Activity by Topological Role and De-
vice Type

In Tables 2a and 2b we show how much of each mod-
ule (collections of devices by their topological role) con-
tributes to activity in terms of commits and LOC, for
the campus and service-provider networks, respectively.
One points of interest is that more than 75% of the
commits are performed within each network’s periph-
ery (campus access and wireless, and service-provider’s
customer sites). However, the LOC per commit is quite
different between campus and service-provider. This
suggests that campus/enterprise access switches require
much less fine-tuning than do site routers in this service-
provider WAN. We also see that, in both networks, out-
of-band management equipment and firewall services
represent a much smaller portion of the work, in terms
of commits.

5.3 Author Activity

Figure 3 presents the activity foreverypractitioner that
authored revisions in the campus and service-provider
networks. Because the number of practitioners involved
in the campus network is clearly overwhelming, we
present the same campus data in Figure 4 based on the
group in which they are employed. Specifically, “net”

Module Commits LOC Added LOC LOC per Commit

campus/access/ 89833 (70.0%) 1912430 (66.0%) 2883860 (68.2%) 21.29
campus/access/wireless/18164 (14.1%) 601836 (20.8%) 657409 (15.5%) 33.13

campus/dist/ 7598 (5.9%) 98921 (3.4%) 143155 (3.4%) 13.02
campus/core/ 6022 (4.7%) 47272 (1.6%) 97295 (2.3%) 7.85

campus/firewall/ 5557 (4.3%) 120147 (4.1%) 319426 (7.6%) 21.62
campus/mgmt/ 1220 (1.0%) 117756 (4.1%) 126903 (3.0%) 96.52

(a)

Module Commits LOC Added LOC LOC per Commit

isp/dist/site/ 31931 (76.4%) 92977 (56.7%) 309604 (55.7%) 2.91
isp/dist/hub/ 5203 (12.5%) 28116 (17.2%) 98581 (17.7%) 5.40

isp/border/ 3373 (8.1%) 18665 (11.4%) 98985 (17.8%) 5.53
isp/firewall/ 445 (1.1%) 12516 (7.6%) 25939 (4.7%) 28.13

isp/mgmt/ 835 (2.0%) 11608 (7.1%) 22434 (4.0%) 13.90

(b)

Table 2: Commits by topological role of the device for campus (a) and service-provider (b) networks.

is the network engineers, “contract” represents the con-
tractors, “noc” is the Network Operations Center (NOC)
staff, “field” the field service agents, “authorized-agents”
are employees in various peripheral campus departments
that are authorized to make access layer changes only,
and “security” is an IT security group. From this pie
chart, we see that the operators responsible for most of
the LOC are network engineers proper. Also, the con-
tractors performed a significant amount of similar work.

In Tables 3a and 3b, we show the top ten most active
practitioners based on their number of commits. Note
also that the LOC per commit is approximately an order
of magnitude different between the campus and service-
provider network operators. This suggests that the cam-
pus, with very many switches rather than routers, is in a
higher state of flux and perhaps recently in a deployment
mode. In contrast, the service-provider network experi-
ences relatively small changes in terms of LOC per com-
mit, perhaps suggesting that it is largely stable and in a
maintenance mode.

5.4 Anomalies

Here, we describe a number of curiosities or anomalies
discovered in the networks studied, solely based upon the
results presented thus far.

5.4.1 Activity by Campus “system” Author

In the campus network, and shown in Table 3a, we can
see that one of the “Top 10” most active authors is the
software system itself (by the namesystem), rather
than a real person/practitioner. This entry is additionally

interesting in that overall it has removed more lines that
it has added and thus is very different from the real prac-
titioners. Further investigation identified two reasons for
this unexpected significant authorship of changes by the
SCM system itself:(1)some of the operators often do not
“follow the rules,” i.e., they do not commit their changes
in a timely fashion and thus the system sometimes has
to commit their changes implicitly just prior to applying
a subsequent automated change (so as not to mix unre-
lated changes together), and(2) a few operators have dis-
covered an unintended feature of their automated change
system; namely, that they can cause their earlier changes
to be committed implicitly to the version repository. This
avoids those changes being reported as unfinished in a
nightly email report to all operators. Both of these causes
demonstrate to how a VCS can produce both efficien-
cies and inefficiencies in the everyday work flow of net-
work operators. This suggests that the process by which
changes are merged into a network configuration version
control system can be improved. It is an open question as
to whether existing merging techniques from SCM sys-
tems will be similarly effective, but there are certainly
both syntactic and semantic differences between the net-
work device configuration files in a production network
and the source files in software development.

5.4.2 Outstanding Service-Provider Author

Considering the question of which operators perform
most commits, we see in Table 3b that both the most
commits and most of the LOC are authored a sin-
gle, seemingly “super human,” outstanding author, here
named “robert.” This suggests that operator involvement

(a)

(b)

Figure 2: Campus (a) and service-provider (b) LOC by
topological role over time. Most of the LOC are config-
uration of the periphery of each of these networks,i.e.,
the campus access layer and service-provider’s customer
sites.

varies widely amongst networks and amongst individual
practitioners with respect to the tasks of introducing de-
vices (i.e., introducing many LOC of their initial config-
uration) and subsequently managing a network’s device
configurations.

5.4.3 Common Commit Comments

Tables 4a and Tables 4b show the most common com-
ments provided by the operators in the campus and
service-provider networks, respectively. In Table 4a we
see that the second most common comment is “asdf,”
from the home row on a qwerty keyboard, suggesting
it’s a cavalier refusal to supply a meaningful comment.
Further investigation showed that this comment isal-

(a)

(b)

Figure 3: Campus (a) and service-provider (b) LOC per
author. In both networks, five authors are responsible for
approximately 75% of the LOC.

wayssupplied by only one of the authorized agents us-
ing a web interface to perform changes. Unlike with the
CLI interface, here the comment is required, and thus the
practitioner is forced to supply something. Our hypothe-
sis is that this practitioner likely sees only himself as the
“audience” of the comments, and deems it unnecessary
to exert effort to carefully explain the changes he com-
mits.

In Table 4b we see that nearly 6% of all log comments
are empty. Like the campus “asdf” comment, these
empty comments are being supplied by only a small sub-
set of the practitioners, again perhaps ones that don’t see,
or have never realized, any value from such comments.
In the service-provider environment, the “?” comment
was occasionally supplied by the outstanding practitioner
that performs most of the commits. Further investiga-
tion suggests that he is stumbling across changes made

Author Commits LOC Added LOC LOC per Commit

ashley 16430 (12.8%) 570408 (19.7%) 952945 (22.5%) 34.72
kevin 9296 (7.2%) 658818 (22.7%) 703006 (16.6%) 70.87

system 8164 (6.4%) -6595 (-0.2%) 49117 (1.2%) -0.81
nathan 5257 (4.1%) 279484 (9.6%) 329512 (7.8%) 53.16

sara 4790 (3.7%) 381178 (13.2%) 410738 (9.7%) 79.58
edith 4755 (3.7%) 122640 (4.2%) 134277 (3.2%) 25.79

brandon 4666 (3.6%) 75641 (2.6%) 91540 (2.2%) 16.21
ruby 4626 (3.6%) 99700 (3.4%) 190530 (4.5%) 21.55

peggy 3958 (3.1%) 345232 (11.9%) 365551 (8.6%) 87.22
emma 3483 (2.7%) 54658 (1.9%) 63449 (1.5%) 15.69

(a) Note that the third most active campus author, “system,” is not a practitioner but records automated commit
activity by the configuration management system itself.

Author Commits LOC Added LOC LOC per Commit

robert 30385 (72.7%) 85596 (52.2%) 396634 (71.4%) 2.82
michael 1489 (3.6%) 9439 (5.8%) 16443 (3.0%) 6.34

brian 1444 (3.5%) 3036 (1.9%) 15698 (2.8%) 2.10
joseph 1431 (3.4%) 6900 (4.2%) 13688 (2.5%) 4.82

linda 1174 (2.8%) 3716 (2.3%) 13091 (2.4%) 3.17
william 1058 (2.5%) 10326 (6.3%) 14566 (2.6%) 9.76

daniel 673 (1.6%) 2332 (1.4%) 7254 (1.3%) 3.47
john 628 (1.5%) 1644 (1.0%) 4952 (0.9%) 2.62

kenneth 511 (1.2%) 1318 (0.8%) 5461 (1.0%) 2.58
david 459 (1.1%) 2638 (1.6%) 6137 (1.1%) 5.75

(b) Note that the most active service-provider author, “robert,” is a single most outstanding operator that per-
formed more than 70% of the commits and was responsible for more than half of the LOC.

Table 3: Commits by author for the (a) campus and (b) service-provider networks. The bold entries are discussed in
Sections 5.4.1 and 5.4.2.

Figure 4: Campus LOC per author group. We note that
the “net” (network engineering staff) group is responsi-
ble for approximately 80% of the LOC, followed dis-
tantly by contractors, field service agents, and authorized
agents.

by others, and is essentially using the “?” to say that
he’s checking in changes performed by someone else,
for which he does not readily have an explanation. He
thus commits that change, and carries on with his tasks
without having to wait for such an explanation.

These anomalous results of system authorship of com-
mits and common log comments both speak to the issue
of operator conformance with the system used in these
networks. In large part, practitioners appear to use the
tools as intended, and with a high degree of compliance.
However a subset of the operators seem to find it cumber-
some and sometimes find workarounds that make their
tasks easier. Such discoveries can effectively guide new
tools and features.

5.5 Revision Lifetimes

In Figure 5, we see a pair of plots demonstratingrevision
lifetimes, or the time from a revision’s appearance within
a file to the first subsequent revision which affects any
of the same lines of configuration. Both plots are for the
campus network (the service-provider network does not
change often enough for this plot to be valuable). We are
particularly interested in short-lived changes, here clus-
tered to the bottom of the graph. Note that this version
history is unique in that it always reflects a production
environment.

In Figure 5a, we are surprised to see that such short re-
visions as to occur within a day or two of each other (sug-
gesting a network “bug”) are treated only during business
days, and very infrequently require overnight attention

Comment Frequency
Initial revision 1442 (2.8%)

asdf 584 (1.1%)
test 437 (0.9%)

‘newer bulk checkin’ 411 (0.8%)
change vlan 308 (0.6%)

(a)

Comment Frequency
*** empty log message *** 768 (5.9%)

Initial revision 350 (2.7%)
router swap 117 (0.9%)

config cleanup 107 (0.8%)
? 75 (0.6%)

(b)

Table 4: Top five commit comments for (a) the campus
network and (b) the service-provider network. In each
of these results, garbage comments indicate operator non
conformance and other habits. The bold entries are par-
ticularly unexpected and are discussed in Section 5.4.3.

from network operators even though these revisions are
ostensibly part of the production network.

Figure 5b, essentially the same data on a finer time
scale, tells its own story about change lifetimes from dif-
ferent contributor groups. Thenetgroup (squares) repre-
sents super-users on the network, whose access is com-
pletely unrestricted. This group makes relatively few
changes in the ten-minute window shown here. The
other group, authorized agents working at all levels of
the network infrastructure, composes the vast majority
of the plotted points (crosses). These agents make their
changes through a web interface (essentially an IDE for
the network) which automatically checks in the change
as soon as it is applied to the router.

Based on this last observation, we see that we have two
different data sets available to us in the revision history
for the campus network. For network engineers (thenet
group), we see a traditional software-like history of com-
mits, where the user commits his changes most often af-
ter he has observed their effect and deemed them a valu-
able contribution. From the commits made byagents,
since they are not privileged to interact with the devices
directly, we actually have a richer version history. Their
history not only includes those changes which survive in
the long term, but also the changes that they make as part
of their efforts from one minute to the next. It is, one
may consider, an extrapolation of revisions to a perfectly
fine granularity of change. Thus, in the recorded history
of this network, we find an artifact which is entirely un-
available from any known software project.

A
pr

-2
00

3
Ju

n-
20

03
A

ug
-2

00
3

O
ct

-2
00

3
D

ec
-2

00
3

Fe
b-

20
04

A
pr

-2
00

4
Ju

n-
20

04
A

ug
-2

00
4

O
ct

-2
00

4
D

ec
-2

00
4

Fe
b-

20
05

A
pr

-2
00

5
Ju

n-
20

05
A

ug
-2

00
5

O
ct

-2
00

5
D

ec
-2

00
5

Fe
b-

20
06

A
pr

-2
00

6
Ju

n-
20

06
A

ug
-2

00
6

O
ct

-2
00

6
D

ec
-2

00
6

Fe
b-

20
07

A
pr

-2
00

7
Ju

n-
20

07
A

ug
-2

00
7

O
ct

-2
00

7
D

ec
-2

00
7

Ja
n-

20
08

M
ar

-2
00

8
M

ay
-2

00
8

Ju
l-

20
08

Se
p-

20
08

N
ov

-2
00

8

0
4h
8h

12h
16h
20h
1d

1d 4h
1d 8h

1.5d
1d 16h
1d 20h

2d
2d 4h
2d 8h

2.5d
2d 16h
2d 20h

3d
3d 4h
3d 8h

3.5d

T
im

e
to

 f
ir

st
 m

od
if

ic
at

io
n

(d
ay

s,
 h

ou
rs

)

net
agents

Campus Network
Revision Lifetimes

(a)

A
pr

-2
00

3
Ju

n-
20

03
A

ug
-2

00
3

O
ct

-2
00

3
D

ec
-2

00
3

Fe
b-

20
04

A
pr

-2
00

4
Ju

n-
20

04
A

ug
-2

00
4

O
ct

-2
00

4
D

ec
-2

00
4

Fe
b-

20
05

A
pr

-2
00

5
Ju

n-
20

05
A

ug
-2

00
5

O
ct

-2
00

5
D

ec
-2

00
5

Fe
b-

20
06

A
pr

-2
00

6
Ju

n-
20

06
A

ug
-2

00
6

O
ct

-2
00

6
D

ec
-2

00
6

Fe
b-

20
07

A
pr

-2
00

7
Ju

n-
20

07
A

ug
-2

00
7

O
ct

-2
00

7
D

ec
-2

00
7

Ja
n-

20
08

M
ar

-2
00

8
M

ay
-2

00
8

Ju
l-

20
08

Se
p-

20
08

N
ov

-2
00

8

0

1m

2m

3m

4m

5m

6m

7m

8m

9m

10m

T
im

e
to

 f
ir

st
 m

od
if

ic
at

io
n

(m
in

)

net
agents

Campus Network
Revision Lifetimes

(b)

Figure 5: Campus revisions, time to next modification: 3.5 days (a) and 10 minutes (b).

5.6 Activity by Stanza Type

The relatively simple structure of IOS configurations al-
lows some static analyses which considerstanzas, rather
than lines, as the basic units of change from one revision
to the next. Tables 5 describe the results of this analysis.
These results can guide the creation of tools to manage
the network under inspection: In both cases described
here, we confirm that any service built for the configu-
ration of these network devices would be well-advised
to cater specifically to the management ofinterface
andglobalstanzas.

5.7 Discussion

We close this section with our observation about LOC
as a metric for networks rather than software. While we
have not yet done analysis of code complexity, early in-
dications suggest that there are a number of reasons that
numbers of lines of configuration (LOC) is a poor candi-
date as a measure of complexity or work. First, the initial
versions of our configuration files (source code) contain
very many “boiler-plate” lines produced by the network
device itself; attributing these lines of code to the oper-
ator that introduced the device to the network dramat-
ically exaggerates the volume of the work done by that
operator. Secondly, the configuration files are rigidly for-
matted by the device rather than the operator (program-
mer), i.e., it is not a free format language. Thus, the
vendor-specific network device configuration language,
itself, dictates the numbers of lines more so than mod-
ern general software programming languages dictate the
number of lines of program source code.

Stanza Type Total Revisions
Revisions

per Instance
interface 471,238 4
vlan 25,591 1
global 12,534 4
logging 12,390 9
ip 12,006 1
bridge 4,353 1

(a) Campus network: the ratio ofinterface stanza revisions to
globalstanza revisions is 19:1.

Stanza Type Total Revisions
Revisions

per Instance
interface 25,288 4
global 11,737 26
ip 8,207 4
line 6,146 14
router 3,974 4
policy-map 2,783 4

(b) Service provider network: the ratio ofinterface stanza revisions
to globalstanza revisions is roughly 2:1.

Table 5: Number of revisions made per each IOS stanza
type, for the campus (a) and service provider (b) net-
works. Theglobal meta-stanza included all unindented
lines at the top of a file, preceding the appearance of any
others in this list.

6 Validation

This being an initial study of it’s kind, to the best of
our knowledge, we were left to interview domain experts
in network operations to validate our approach. For the
campus network, we interviewed the manager to whom
most of the super-user operators have reported. For the
service-provider network, we interviewed the director.

6.1 Campus Expert Feedback

Here are highlights of the feedback offered by our cam-
pus network expert:

• The top authors by LOC agrees with manage-
ments knowledge of their respective performance,
i.e., these are outstanding practitioners in that they
indeed have the most responsibility for network
equipment deployment.

• The data points,e.g.,commit volume and common
comments, would be useful to demonstrate to cus-
tomer departments that we know how authorized
agents use the tools provided.

• The visualizations are useful to show the evolution
of the network’s architecture over time,e.g., the
wireless access deployment and the use of contract
labor to do so.

• The author-specific visualizations, such as activity
by days of week and times of day would be an inter-
esting addition to existing tools, such as the network
IDE provided to the practitioners themselves.

6.2 Service-Provider Expert Feedback

Here are highlights of the feedback offered by our expert
on the service-provider network:

• The file count evolution over time clearly shows in-
flections due to two significant events:(i) a $200M
influx of funding resulting in membership growth
by more than 100 sites and(ii) the merging of the
service-provider network with a similarly scoped
network, resulting in many devices being replaced
(to switch from T1 circuits to 10Mbps ethernet).

• One practitioner, a temporary employee, was re-
sponsible for an unexpectedly large number pro-
portion of the code. However, this coincides with
the person’s role, which was to deploy replacement
equipment. (Consequently, they were responsible
for much of the initial device configuration, thus a
large number of lines of configuration.)

• The similarity between network operations [when
viewed this way] and software development is strik-
ing.

• Common commit comments suggest the need for a
new standard operating procedure that would en-
courage practitioner’s to supply meaningful com-
ments; this would also aid analysis.

• Such linear trends over time were not expected.
There are some events that had significant costs
(such as router replacements by alternate brands)
that do show prominently in the time series graphs.
(This is akin to, perhaps, changing programming
languages in a portion of a software system.)

While clearly a subjective assessment, the feedback
from both experts showed the utility of our results, and
consequently the value of the analogy-based application
of these analyses.

7 Related Work

We are aware of one study in the literature, the recent
work of Sung,et al. [15], that longitudinally examined
network configuration repositories of network devices
such as routers and switches. Similarly, our work also ex-
amines and reports on the configuration changes in mul-
tiple real-world networks over time, examines stanzas by
type, and evaluates results by expert interview. However,
our work differs in that we apply software development
analysis techniques to expose practitioner behaviors and
network evolution over time, whereas they apply differ-
ent data mining techniques to identify correlated config-
uration changes. More generally, our work is informed
by related work in three areas: programming languages,
network management, and systems administration.

The Revision Control System (RCS [17]) is the ver-
sion control sub-system with which the versions of con-
figurations we consider are stored. In [4], Ball,et al.,
demonstrate some of the uses of the information stored in
such VCSs for software source code. Our work applies
analysis and visualization techniques to expose charac-
teristics of network management in a similar fashion to
that early examination of software development via VCS.
In [7], Draheim and Pekack introduced a freely-available
tool, Bloof [8]. Tools such as Bloof and cvsanaly2 [2],
introduced in work [14] by Robles, et al., could poten-
tially be used similarly to the one we used (StatCvs-
XML).

In this work, we study repositories of network config-
urations maintained by the Network Configuration Man-
agement System (NetCMS [11]) and AANTS [16]. An
alternative technique often used by network operators is
to retrieve device configurations using RANCID [13, 10]

and subsequently store them using tools such as CVS. A
very recent work [5] by Benson,et al., introduces a code
complexity metric for network devices configurations.
Their metric uses attributes including Lines of Code and
inter-stanza references (within and amongst configura-
tion files) to arrive at a numeric measure of complexity;
they subsequently validate their proposed metric by op-
erator interview. In this work, instead, we develop a way
to measure programmer effort by revision lifetimes, but
have not yet used it to evaluate a complexity metric.

There is a large literature concerning the profession
of system administrator and improvement to the pro-
cesses involved in system configuration. System admin-
istrators sometimes similarly use VCSs for their config-
urations [12] and researchers seek to improve configu-
ration management. For instance, Sun and Couch de-
velop a state-machine model of configuration manage-
ment in [6].

8 Future Work

While we have completed an analysis of two ostensibly
different, large networks, the process and results suggest
some directions for future work.

In our consideration of revision lifetimes, we have not
considered the author of the subsequent revision. It may
be useful to classify or characterize practitioners based
upon the lifetimes of the revisions they make. Also, one
might consider whether or not practitioners do a revi-
sion that modifies the configuration that they introduced
in a earlier revision, or whether or not practitioners just
as easily (and often) maintain each others configuration
fragments.

In this work, we did not much consider how the declar-
ative configuration can be influenced by the revising
practitioners intent or style. This because the layout of
the configuration is nearly completely dictated by the
device operating system. However, there are a subset
of stanza types that allow for more variety in the ex-
pression of their purpose. For instance, access control
lists (ACLs) contain statements that can be ordered by
the operator, and multiple orderings and arrangements
can have the same effect; some orderings are likely more
concise or understandable than others. Therefore, it may
be fruitful to consider whether or not some revisions are
simply refactorings, like in software development. Fur-
ther, the identification of cloned configuration fragments
amongst devices, as in code clone analysis of software,
could identify oft used configuration idioms.

Lastly, the goal of measuring effort in terms of revi-
sions lifetimes was to provide a measurement of com-
plexity. For instance, one might wonder which stanza
types are more complex as evidenced by their modifica-
tion (presumable fixes) in rapid succession. We did not

implement nor even propose a complexity metric in this
work, but future work could explore this topic, and de-
termine whether or not certain refactorings are more or
less complex.

Conclusion

In this paper we presented two techniques:(i) an ini-
tial application of software development analysis tools
to network operations and(ii) the beginnings of net-
work operations-specific approach to measuring practi-
tioner effort to guide new tool development. We applied
these techniques in case studies of the network configu-
ration repositories of both a large campus network and
a service-provider network. By analysis and visualiza-
tion, we compared and contrasted the two networks, in-
vestigating the value of metrics (e.g.,LOC) and expos-
ing practitioner behaviors when using SCM and IDE-like
tools. Lastly, we evaluated the analogy-based applica-
tion of software development mining tools to the disci-
pline of network operations by performing expert inter-
views. This expert feedback suggests the promise of our
approach as both a technique to visualize the operation
of real networks and as an aid to management and other
stakeholders in understanding where operational effort is
concentrated in large computer networks.

In closing, we have provided evidence that existing
software development analysis techniques are of signif-
icant value when applied in the network operations do-
main. These methods expose practitioner behavior and
essentially show that network operatorsare program-
mers, at least in their use of similar tools. By analogy
to software development, this suggests that the study of
network operations can effectively inform and direct net-
work management tool development. Our hope is that
the resulting improved tools will liberate the network op-
erator from mundane tasks, will reduce mistakes in con-
figuration, and will enable skilled operators to focus their
efforts more completely on the goal of continually in-
creasing network reliability.

References

[1] cvs2cl. http://www.red-bean.com/cvs2cl/ .

[2] cvsanaly2. http://forge.morfeo-project.org/
projects/libresoft-tools/ .

[3] StatCvs-XML. http://statcvs-xml.berlios.de/ .

[4] BALL , T., MIN K IM , J., PORTER, A. A., AND SIY, H. P. If Your
Version Control System Could Talk. InIn ICSE ’97 Workshop on
Process Modelling and Empirical Studies of Software Engineer-
ing (1997).

[5] BENSON, T., AKELLA , A., AND MALTZ , D. Unraveling the
Complexity of Network Management. InNSDI ’09: Proceedings
of the 6th USENIX Symposium on Networked Systems Design and
Implementation(2009).

http://www.red-bean.com/cvs2cl/
http://forge.morfeo-project.org/projects/libresoft-tools/
http://forge.morfeo-project.org/projects/libresoft-tools/
http://statcvs-xml.berlios.de/

[6] COUCH, A., AND SUN, Y. On Observed Reproducibility in
Network Configuration Management.Science of Computer Pro-
gramming 53, 2 (November 2004), 215–253.

[7] DRAHEIM , D., AND PEKACKI , L. Process-Centric Analytical
Processing of Version Control Data. InIWPSE ’03: Proceedings
of the 6th International Workshop on Principles of Software Evo-
lution (Washington, DC, USA, 2003), IEEE Computer Society,
p. 131.

[8] DRAHEIM , D., AND PEKACKI , L. The Bloof Project.http:
//bloof.sourceforge.net , 2003.

[9] GERMAN, D., AND MOCKUS, A. Automating the Measurement
of Open Source Projects. InProceedings of the 3rd Workshop on
Open Source Software Engineering(2003), pp. 63–67.

[10] GOULD, W. Backing up your network with RANCID.http:
//www.linux.com/feature/55873 , 2006.

[11] PLONKA , D. NetCMS - Network device Configuration Manage-
ment System.http://net.doit.wisc.edu/ ∼plonka/
NetCMS/ , 1997.

[12] PLONKA , D. Sys Admin File Revision Control with RCS.SysAd-
min - the Journal for UNIX Systems Administrators(1998), 8–24.

[13] RANCID - Really Awesome New Cisco Config Differ.http:
//www.shrubbery.net/rancid/ .

[14] ROBLES, G., KOCH, S., AND GONZALEZ-BARAHONA , J. Re-
mote Analysis and Measurement of Libre Software Systems by
Means of the CVSAnalY Tool. InProceedings of the 2nd ICSE
Workshop on Remote Analysis and Measurement of Software Sys-
tems (RAMSS), Edinburg, Scotland, UK(2004), pp. 51–55.

[15] SUNG, Y., RAO, S., SEN, S., AND LEGGETT, S. Extracting
Network-Wide Correlated Changes from Longitudinal Configu-
ration Data. InProceedings of the 10th Passive and Active Mea-
surement Conference (PAM)(2009), Springer, pp. 58–67.

[16] THOMAS, C., AND PLONKA , D. AANTS: Web-Based Tools for
Cooperative Campus Network Administration. InProceedings of
the Fall 2005 Internet2 Member Meeting, Philadelphia, PA, USA
(2005).

[17] TICHY, W. F. Design, implementation, and evaluation of a Re-
vision Control System. InICSE ’82: Proceedings of the 6th In-
ternational Conference on Software Engineering(Los Alamitos,
CA, USA, 1982), IEEE Computer Society Press, pp. 58–67.

http://bloof.sourceforge.net
http://bloof.sourceforge.net
http://www.linux.com/feature/55873
http://www.linux.com/feature/55873
http://net.doit.wisc.edu/~plonka/NetCMS/
http://net.doit.wisc.edu/~plonka/NetCMS/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/

	Introduction
	Networks Under Study
	Campus Network
	Service-Provider Network

	Tools
	Data Preparation and Transformation
	Converting From RCS to CVS
	Cleaning the Data
	Authors and Author Groups

	Analysis and Results
	Network Evolution
	Activity by Topological Role and Device Type
	Author Activity
	Anomalies
	Activity by Campus ``system'' Author
	Outstanding Service-Provider Author
	Common Commit Comments

	Revision Lifetimes
	Activity by Stanza Type
	Discussion

	Validation
	Campus Expert Feedback
	Service-Provider Expert Feedback

	Related Work
	Future Work

