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The Internet is arguably the largest and most complex artificial system in exis-
tence. Empirical measurement-based study is critical to examine this system’s
structure, behavior, and performance. These measurements inform how we
understand, operate, and improve the Internet.

By design, the Internet is a packet-switched network in which conversations
of many types are multiplexed. That is, the transmissions from unrelated parties
share the resources of network elements whose operators may have goals that
are at odds with those parties or the operators of other network elements. This
sharing necessitates careful measurement that often involves Internet traffic
classification, i.e., observing Internet packet traffic in aggregate and then sorting
packets into classes based on details. For example, a classifier might sort packets
by their senders, receivers, or associated applications. However, during the
Internet’s continual evolution, traffic classification is confronted with numerous
obstacles requiring the classification techniques to evolve as well. Classification
varies with respect to the classes or categories to which traffic is assigned and
with respect to the means by which that traffic, or a portion of traffic, is observed
and analyzed.

In this dissertation we present a set of novel approaches to measurement
based on the notion of Internet host rendezvous. Rendezvous is the means
by which hosts initially discover each other in order to establish subsequent
communication. We rely on the most pervasive rendezvous mechanism, the
Domain Name System, a hitherto underutilized resource in the flexible, scalable,
efficient, and accurate measurement of the Internet and its traffic. We present
three case studies, each employing a different rendezvous-based technique
in a different measurement problem domain. Our results demonstrate the
effectiveness of this approach in situations where prior techniques are either
inapplicable or unreliable.

Paul R. Barford
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ABSTRACT

The Internet is arguably the largest and most complex artificial system in exis-
tence. Empirical measurement-based study is critical to examine this system’s
structure, behavior, and performance. These measurements inform how we
understand, operate, and improve the Internet.

By design, the Internet is a packet-switched network in which conversations
of many types are multiplexed. Thatis, the transmissions from unrelated parties
share the resources of network elements whose operators may have goals that
are at odds with those parties or the operators of other network elements. This
sharing necessitates careful measurement that often involves Internet traffic
classification, i.e., observing Internet packet traffic in aggregate and then sorting
packets into classes based on details. For example, a classifier might sort packets
by their senders, receivers, or associated applications. However, during the
Internet’s continual evolution, traffic classification is confronted with numerous
obstacles requiring the classification techniques to evolve as well. Classification
varies with respect to the classes or categories to which traffic is assigned and
with respect to the means by which that traffic, or a portion of traffic, is observed
and analyzed.

In this dissertation we present a set of novel approaches to measurement
based on the notion of Internet host rendezvous. Rendezvous is the means
by which hosts initially discover each other in order to establish subsequent
communication. We rely on the most pervasive rendezvous mechanism, the
Domain Name System, a hitherto underutilized resource in the flexible, scalable,
efficient, and accurate measurement of the Internet and its traffic. We present
three case studies, each employing a different rendezvous-based technique
in a different measurement problem domain. Our results demonstrate the
effectiveness of this approach in situations where prior techniques are either
inapplicable or unreliable.



1 INTRODUCTION

rendezvous
Origin: Middle French, from

rendez vous present yourselves

Merriam-Webster Dictionary

The Internet is a massive and complex artificial system that has outgrown
the bounds of its original design; it has evolved. Despite being man-made and
ostensibly well-engineered, like other critical systems that evolve to accommo-
date expanded goals, it requires measurement and adjustment. Those who
study the Internet employ empirical measurement methods in order to dis-
cern this system’s structure, behavior, and performance. These measurements
inform how we understand, operate, and improve the Internet. Methods for
classifying and identifying key characteristics of network traffic, i.e., techniques
that identify what is being transmitted, have important implications for network
management, traffic engineering and network security.

1.1 Motivation

Being a packet-switched rather than connection-oriented network, the Inter-
net is a network in which conversations of many types are multiplexed. Fur-
thermore, it is a network of networks such that these conversations traverse
substructures that interconnect but operate independently. That is, the trans-
missions from unrelated parties share the resources of network elements whose
operators may have goals that are at odds with those parties or the operators
of other network elements. This sharing of fixed resources necessitates careful
measurement involving Internet traffic classification, i.e., the means by which
the mix of packets in aggregate can be sorted out in detail by their senders,
receivers, applications, and other properties. Traffic classification is the basis
for a number of important tasks including usage trend analysis, planning of
infrastructure changes, quality of service targets or guarantees, and the detec-
tion and prevention of suspicious and malicious activities. It may come as a
surprise, then, that the Internet Protocol (IP) itself has no inherent basis for
traffic classification. Instead, a community of researchers and operators devise

classification methods for use in concert with their passive monitoring and anal-



ysis of traffic. These classification methods are not static. During the Internet’s
continual evolution, traffic classification is confronted with numerous obstacles
requiring the classification techniques to evolve as well, both with respect to
the classes and categories to which traffic is assigned and with respect to the
means by which the traffic is observed and analyzed. The necessity for evolu-
tion is evidenced by the faltering performance of common early classification
techniques, such as those that rely simply on TCP and UDP port numbers.

Internet traffic classification is challenging in a number of ways. The key
challenge in accurately identifying different traffic types and their characteristics
is that there is no inherent mechanism for this task. Instead, Internet protocols
were designed with effective packet forwarding and reliable communication in
mind. This has mainly been the purpose of packet headers’ components, such
as the IP 5-tuple: protocol number, source address, destination address, source
port number, and destination port number. While there are some packet header
features that have been introduced or remissioned for classification, e.g., Type-
of-Service (TOS) and Diff-Serv Code Point (DSCP), they are not particularly
flexible and can represent only a modest number of labels, much fewer than the
number of Internet applications and services that one may wish to identify or
discriminate amongst in network operations. These fields are typically set by an
initial traffic classifier to specify desired packet treatments during subsequent
forwarding.

Also, popular and traditionally effective traffic classification techniques sim-
ply fail in some situations. While there are set of well-defined ports associated
with well-known application protocols, e.g., World-Wide Web / Hyper-Text
Transport Protocol (WWW /HTTP), Simple Mail Transfer Protocol (SMTP), and
Secure SHell (SSH), the Internet, itself, doesn’t require the standard ports to
be used. For instance, any application could use HTTP’s TCP port number
80, and thus be misclassified as World-Wide Web traffic. Even when WWW
traffic is correctly identified, the utility of the classification is dubious when it
forms too large a class of traffic. For example, an administrator may wish to
block traffic involving some WWW sites and expedite traffic involving others.
Classifying such traffic based on port number, e.g., the HTTP-Secure (HTTPS)
protocol’s TCP port 443, does not help meet that goal as the resulting class is
too broad. Additionally, the increasingly common use of encryption makes key
attributes of the packets unavailable. Indeed, with HTTPS, the Uniform Re-
source Locator (URL) is encrypted and unobservable to middle boxes, routers,
or other network elements responsible for forwarding and performance. Today,



traffic between hosts can be easily encrypted, to provide privacy or to ensure
the peer host’s identity. The traffic can also be easily obfuscated to masquerade
as another type of traffic. Since traffic payloads are arbitrarily arranged by user
applications, they are not necessarily trustworthy as the basis for classification
and their varying content presents performance challenges, both in the ability
to inspect the full payload on high capacity links and in the myriad potential
class identifiers that can overwhelm high performance database storage and
retrieval when online operation is desired.

As Internet applications and uses evolve, we have seen a move to non-
traditional patterns of communication. Traditionally, client hosts would dis-
cover the identity of a server or service, and connect to it on a well-known
port. However, with the introduction of efficient and distributed peer-to-peer
(P2P) file-sharing, that model is insufficient. Now, hosts often use proprietary
or non-standard methods of discovering each other, and then communicate
on ephemeral (non-standard) ports to exchange files. In the case where these
files are not legal to exchange as in some jurisdictions, as is often the case for
copyright music or video content, there is strong incentive for the participants
to actively obfuscate their communications so as to avoid detection. In parallel,
encryption of traffic has recently become prevalent both due to the increased
awareness of the sensitive nature of the content (e.g., personal financial in-
formation) and the threat of criminal compromise and due to increased host
processing power that makes end-to-end encryption computationally feasible.
These nascent changes in Internet traffic severely challenge the capabilities of
existing traffic classification techniques.

As empirical evidence of these challenges, consider Figure 1.1 that shows IP
traffic volume by application as classified using only packet header information
(i.e., the IP 5-tuple including port numbers) over approximately 8 years at the
border of our university network. We see early on that File Transfer Protocol
(FTP), HTTP, and P2P are the most prominent applications classified. In those
years past, e.g., circa 2000 and prior, this is indicative that port numbers could
be used to classify the majority of network traffic, primarily due to the limited
diversity of applications and the standard way in which client-server commu-
nications were established. However, as time passes, the most prominent class

is simply HTTP and half or more of the traffic remains unknown (unclassified,
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Figure 1.1: Classification of Wide-area IP traffic by volume over time, (1999-
2008) at the University of Wisconsin-Madison.

Outbound traffic is shown above the horizontal axis and inbound traffic below.
Traffic is classified based on protocol (TCP or UDP) and service port numbers
that are well-known to be used by the given applications. The proportion suc-
cessfully classified varies greatly and, unfortunately, decreases as time passes.

shown as transparent). Classification of P2P applications (by this method) de-
creases (e.g., 2003 versus 2000). Overall, these phenomena develop: (i) WWW
classification becomes increasingly dominant, (ii) the portion of unknown
traffic increases, and (iii) P2P classification becoming dubious. Consequently,
operators and researchers are left quite uninformed about exactly how the
Internet is being used.

To address such classification short-comings in the face of changing Internet
traffic, the network research and operations communities are motivated to
revise their traffic classification methods and invent new techniques to remain

informed on Internet use and capably provide reliable Internet service.

1.1.1 Motivation for Rendezvous-based Classification

Having outlined the general motivation for research and development of Inter-
net traffic classification techniques, we are additionally motivated to develop
a method that has the following characteristics as goals, driven by the three
confounding empirical phenomena mentioned above:



* employ a classification scheme that is flexible to avoid classifying too
much traffic into one common class, e.g., WWW (HTTP and HTTPS),
simply because it uses a popular transport protocol. To satisfy this goal,
we are motivated to use an extensible, hierarchical classification scheme.

¢ employ a traffic-independent source of information so that itis (1) resilient
to manipulation and obfuscation by the participants and (ii) performs
well in situations where the traffic is encrypted or monitored by packet
sampling. To satisfy this goal, we are motivate to depend on the host
behavior prior to exchanging the traffic to be classified.

* be capable of reliably separating traditional client-server traffic from
peer-to-peer traffic, so that traditional port-based and other classification
methods can be applied only where applicable and not where they clearly
yield false positives or negatives. To satisfy this goal, we are motivated to
employ information about how hosts are introduced to each other, i.e.,
the rendezvous mechanism that is starkly different in these situations.

1.2 Challenges in Traffic Classification

Given that traffic classification is of both a research and an operational inter-
est, the criteria of (i) accuracy, (ii) scalability, and (iii) robustness are often
those used to test and compare methodologies. [99] In light of these criteria,
and to address the aforementioned problems with port-based classification,
prior work has focussed on non-port based approaches to identifying network
traffic including payload-based analysis, behavioral analysis, and clustering
analysis. Payload-based approaches (e.g., [46, 94]) are standard, e.g., in network
intrusion detection systems (NIDS) and in some commercially available traffic
shaping systems. This approach tries to match packet payloads to a library
of signatures composed of unique byte sequences associated with particular
attacks or applications. In addition to failing when monitoring encrypted or
packet-sampled traffic, another disadvantage of the payload-based approach is
that byte sequences are often not unique to a particular traffic type, which leads
to the well-known false alarm problem in NIDS. Classification methods based
on behavioral characteristics such as [60, 61, 97] focus on building statistical
models of transport layer metrics such as connection duration and packet size
to distinguish applications. These methods are limited to a set of previously
observed behaviors, typically built-in to the classifier, and are challenged by



lack of information in those deployment situations where they do not have the
ability to monitor absolutely all application traffic. (We discuss this in more
detail in Chapter 2.) Cluster-based approaches such as [23, 49, 72] take the next
logical step by using standard machine learning methods to divide traffic into
groups based on similarity of transport layer characteristics. These methods are
limited by their requirement to have well-labeled training sets from which to
learn, thus have no automatic way to accommodate new protocols. We believe
that these methods have merit but are ultimately limited by the diversity of
information available to them from the protocols that are being used. While
traffic classification using methods such as the aforementioned can be useful,
they often omit key details that are required to diagnose and remedy problems
and are likely to never be able to fully distinguish all traffic types accurately. We
argue that a broader perspective is necessary, and that our approach, outlined
below, can be use in concert with any of these methods or used as a leading

indicator as to which of them may be appropriate.

1.3 Approach

In this dissertation, we present a novel approach to traffic classification based on
the notion of Internet host rendezvous, i.e., the method by which hosts discover
each other in order to establish communication. We present three empirical
measurement studies, each employing a different rendezvous-based technique
in a different measurement problem domain. Our results demonstrate the
effectiveness of this approach in situations where prior techniques are either
inapplicable or unreliable.

In our approach, we tap a traffic-independent source of information and
enable flexible organization of traffic types into arbitrary groups. Our classifica-
tion methodology is based on monitoring and analysis of the traffic generated
by rendezvous services that are used by Internet applications. A rendezvous
service is typically operated independently of its clients and enables a client
application to identify the IP addresses that are the target for communication
and are known to the user by an alpha-numeric name. The canonical example
of a rendezvous service is the Domain Name System (DNS), which is used by
most Internet applications. The first step in our method is to build and maintain
a table of active local clients by IP addresses and their respective target remote
IP addresses along with the associated alpha-numeric names extracted from
the locally-observed DNS traffic.



Next, we observe live traffic packet headers, e.g., via packet capture, or
observe a stream of flow-export records collected in the same enterprise for
local and remote IP address pairs that match entries in that table populated with
the preceding rendezvous information. If there is a match, the corresponding
alpha-numeric (DNS) name is the basis for classification.

Both the type of rendezvous mechanism employed (e.g., DNS, static, DHCP,
algorithmic, etc.) and its intrinsic characteristics offer opportunities for detailed
classification at a level that has not been possible with prior methods. For
example, the simple fact that a given host employed the DNS to rendezvous
with “www.example.com” via HTTP may allow both that client host and the
exchanged traffic to be classified as WWW and prevent misclassification as P2P.
And, since the DNS uses names that follow a well-known domain hierarchy, the
DNS name hierarchy can serve as one way to organize and aggregate resultant
traffic, but others are possible as well. For example, names can be organized
into categories that are user defined, come from a standard source (e.g., [7]),
or are based on application type (e.g., WWW, FIP, online social networks, or
streaming) or by subject (e.g., weather or sports). This ability to create arbitrary
traffic groups may offer network operators significant flexibility in how they
manage traffic going well beyond what port-based methods offer.

The key technical challenge in developing a DNS rendezvous-based classifier
is that it must monitor host rendezvous traffic and, in a timely fashion, link
the information gleaned with corresponding observations of the application
traffic to be classified. For many an institution or enterprise, the typical scenario
involves a set of client hosts that utilize a locally-designated recursive DNS
service (often located in or near their Local-Area Network (LAN)) with those
hosts” application traffic passing through some interesting observation point
within a network element such as a high-capacity switch or border router. The
observation point of the DNS rendezvous traffic need not be the same as that of
the target traffic to be classified. With this model, we develop a software classifier
that can accommodate parallel traces from multiple observation points.

Our overall development and presentation is stepwise and progressive.
First, we study the DNS rendezvous traffic itself, separating the wheat from the
chaff, i.e., identifying and organizing, in a sort of high-performance database,
the subsets of rendezvous information that can be usefully employed to perform
subsequent traffic classification. This part of the approach is a key factor in
performance because it enables us to populate a cache prior to classification,

thus enabling operation in near real time even when monitoring traffic on



heavily-utilized, high capacity links.

Second, we directly apply the rendezvous information to the task of classify-
ing Internet traffic in general. In this phase of study, we identify the classifiable
and ostensibly unclassifiable traffic, thus determining the scope and limitations
of the method. Next, we expand the method to overcome these potential lim-
itations. Specifically, we use rendezvous information to profile hosts, so that
we can meaningfully label traffic that is otherwise unclassifiable via the DNS
directly, e.g., that traffic arranged via a non-standard or unknown rendezvous
mechanism.

1.3.1 Thesis Statement

We claim that Internet rendezvous information offers compelling advantages
in Internet measurements, traffic classification, and host profiling. We further
claim that traffic classifications and host profiles based on host and service
rendezvous offer more fidelity and flexibility than labels from competing tech-
niques and represent a tacit ground truth that differs from that used to validate
prior classification and profiling techniques. Rather than comparing our meth-
ods’ results to that of many prior classification techniques (because our methods
yield different classes or classification labels), we demonstrate how our meth-
ods provide unique results and how they either complement prior methods or
replace them in situations where those methods fail. We support these claims
in three ways. First, we demonstrate the feasibility of our methods by imple-
menting a tool called TreeTop for offline and online analyses. Next, we employ
our tool in empirical studies to classify and measure traffic where classifications
from prior methods results are either suspect and too coarsely-grained or where
prior methods are simply not applicable, i.e., to compare the performance of In-
ternet services on Internet Protocol version 6 (IPv6) versus that on IPv4. Lastly,
we develop an application-specific measurement tool called Timemail, and
employ it to reverse-engineer email rendezvous information in longitudinal
study, thereby exposing the structure and delay centers in the email delivery
network over decades of operation.

1.4 Applications of Rendezvous-based Methods

Having developed our rendezvous-based methods, we apply them in novel

ways. In one application, realizing that the only link between the same services



on IPv6 and IPv4 is the rendezvous mechanism, we present a novel way to
compare availability and performance of these services during the deployment
and simultaneous operation of the pervasive legacy protocol (IPv4) to the new
protocol (IPv6) destined to replace it.

In our final study reported herein, we employ our rendezvous-based paradigm
to study the email delivery network, past and present, by reverse-engineering
rendezvous information from trace data even years after the communication oc-
curred, thus demonstrating the unique nature and efficacy of our approach both
for forward-looking online operation and offline trace and trending analyses.

1.5 Major Contributions

This thesis makes the following contributions:

* We introduce rendezvous-based traffic classification and host profiling
that relies on inspection of clearly observable transport information present
in packet headers in combination with selective inspection of rendezvous
traffic payload information, generally utilizing the Internet’s most com-
mon rendezvous service: the Domain Name System (DNS).

* Our methods represent a new privacy-respecting classification technique
in that they (i) do not inspect user application traffic payloads, and (ii)
consequently work in situations where those payloads are unavailable due
to common monitoring limitations, e.g., flow export, or where payloads

are encrypted.

* We provide an approach that is uniquely capable in comparing IPv6
to IPv4 performance since the rendezvous mechanism is one of the few
things common to an IP service operating on multiple IP protocol versions
and is, thus, key to identifying similar application traffic over them both.

* Our method can be applied to expose structure and performance of the
email delivery network based on hitherto unutilized rendezvous trace
information present in email messages, enabling longitudinal study of
this long-lived, pervasive form of electronic communication.

* Our technique has a number of novel applications, e.g., (i) distinguishing
traffic that is amenable to reliable classification by port numbers from that
which is not and (ii) exposing cloud and Content Distribution Network
(CDN) configurations that rely on indirection based on rendezvous. [25]
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1.6 Broader Impacts

In addition to the aforementioned contributions, we foresee a number of poten-
tial broader impacts of our methods, including;:

* Rendezvous-based classification methods may provide a finer-grained
level of control by which an enterprise can specify packet treatments as
in a firewall, middlebox, or router, e.g., to prohibit unwanted traffic, such
as that with unknown rendezvous mechanisms that may be malicious, or

to expedite important or time-sensitive traffic.

¢ Since rendezvous-based classification does not inspect user application
traffic payloads, it may be employed in situations where the Internet
community is concerned about privacy. That s, it could be a key technique
in situations where a policy, e.g., between a government or Internet service
provider and Internet users, specifies which portion of user traffic is
private and which is available for determining packet treatment, e.g.,
quality of service (QoS), and thus play a part in lawful intercept systems.

* Because rendezvous-based traffic analysis necessarily identifies the ren-
dezvous mechanism employed, it could be used as an initial stage in
multi-level classification, determining which subsequent classification
mechanisms are appropriate. For instance, it may revitalize and bolster
port-based classification schemes that have fallen out of favor because
they often misclassify traffic for the peer-to-peer applications that have
their own non-DNS-based rendezvous mechanisms.

e Since our classification techniques use rendezvous information that exists
outside of the IP traffic itself, they provide labels for classification and
measurement techniques that span IP protocol version changes, including
IPv6 now, and possibly others in the future. This additional layer of
indirection allows comparison and contrast of traffic in current and future
networks having different address namespaces (or numberspaces) during
simultaneous operation and in situations where network hosts have mixed
host-attachment configurations, e.g., IPv4 only, IPv6 only, or dual-stack.

¢ Lastly, by utilizing the rendezvous information, i.e., the aspect of the
Internet that revolutionary cloud-based services and CDNs exploit to
match clients with content and services, our techniques accommodate
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exactly those technologies that are being used to improve scalability and
availability today and likely continuing in foreseeable future. This may be
particularly important as cloud services and CDNs play an increasingly
important role in determining Internet performance, whereas this lay
with ISPs and Internet eXchanges in the past that were largely agnostic
with respect to rendezvous as they rely solely on transport information
to forward traffic.

1.7 Outline of this Dissertation

The remainder of this dissertation is organized as follows. We review existing
classification techniques from related work and compare or contrast our work to
these in Chapter 2. In Chapter 3, we provide an overview of the DNS, describe
our analysis software that we employ in empirical study of DNS traffic, and
present results demonstrating the feasibility of using DNS rendezvous traffic
for general traffic classification. In Chapter 4, we report the results of a larger
empirical study that classifies traffic and profiles hosts for a campus office
and residential user population and demonstrate visualization techniques for
hierarchical rendezvous-based classification. Next, in Chapter 5, we expand
our analysis software framework and present a methodology that applies our
rendezvous-based traffic classification technique to compare services’ IPv6
performance to those services’ IPv4 performance. In Chapter 6, we present a
new system for studying the structure and performance of the email delivery
network that involves reverse-engineering email rendezvous information from
trace data stored in saved email messages, past and present. Finally, in Chapter 7,
we summarize with our concluding remarks and propose future work.
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2 BACKGROUND AND RELATED WORK

The idea of using DNS for
identifying the FQDN and
subsequently the associated
service and resource is kind of
trivial in hindsight, but not so
obvious. Given all the literature in
traffic classification, I have not seen
anybody exploit this to build a

system around it.

anonymous reviewer of [25], 2012

Our work is informed by much significant prior work involving traffic clas-
sification and measurement, visualization techniques, the DNS and other host
rendezvous methods, and Internet applications or protocols. In this section we
provide an overview of these and highlight the prior work that introduces or

elucidates each of them.

2.1 Traffic Classification

Internet traffic classification methods have been proposed and evaluated in a
number of prior studies and utilized in many more. To the best of our knowl-
edge, none prior to ours has proposed a rendezvous-based approach. However,
earlier techniques relate to our work in a number of ways outlined below, and

serve as a basis for comparison and evaluation of our method.

2.1.1 In-Host Monitoring

Monitoring of traffic involving Internet end-hosts can be performed from within,
from without, or a combination of these. While in-host methods are invasive,
they set the highest standard of ground truth in traffic classification. For exam-
ple, Liao et al. [68] use context information gathered within hosts to identify
the exact application associated with each network connection in a network of
hosts under complete administrative control. Furthermore, Caballero ef al. [29]
employ static and dynamic program analysis to automate the process of reverse-
engineering custom application protocols (e.g., botnet command-and-control
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traffic) thereby determining the provenance of the IP addresses, for instance,
those addresses that an application uses to initiate remote communication.
While of the utmost accuracy and usefulness for system administrators of indi-
vidual computers [107], in-host techniques are prohibitively difficult to employ
in most network environments due to factors including user privacy, in-host
agent liability, and agent development or deployment costs. Thus in practice,
alternative methods are typically employed that inspect only the packets that

traverse external network elements and observation points.

2.1.2 In-Network Monitoring

In most traffic classification work, the data, in the form of packets, are observed
in the network as they traverse the interfaces of hosts, routers, and switches
using packet sniffer software, built-in network equipment features, or dedicated
passive wire taps.

Fairly recent work by Kim et al. [63] provides a thorough overview and
performance comparison of popular in-network traffic classification methods
and implementations from the literature and from practice. We refer the reader
to [63] for a survey of other prior work involving traffic classification based
upon port [4, 83], payload [99], host-behavior [61], or flow-features [76]. Won
et al. [115] proposes a hybrid classification technique involving both Deep
Packet Inspection (DPI)-based signature matching and transport-layer session
behaviors. Our technique also involves a similar combination, although ours
employs DPI only for the rendezvous traffic, therefore both our development
and computational costs are lower. Madhukar and Williamson [69] provide
a sample study involving P2P traffic classification using (i) port-based, (ii)
signature-based, and (iii) host transport-layer behavior approaches. These
latter works highlight the trade-offs and complications in evaluating candidate
classification methods.

2.1.2.1 Port-based Classification

Port-based classification techniques employ shallow packet inspection (SP1), i.e.,
any traffic monitoring technique which utilizes packet information from no
deeper than the packet’s header such as the transport-layer information. For
Internet traffic, this generally means the header fields that are involved in either
forwarding and demultiplexing IP traffic. These include field values such as

IP protocol, destination port number, source port number, destination IP address, and
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source IP address, this often being referred to as the IP “5-tuple.” Port-based
classes are thus often named by IP services names, e.g., ftp, http, ssh, or groups
of these services, e.g., “Login” combining ssh, rlogin, and telnet.

As early application-specific protocols were developed, they were each
assigned a reserved port number; for instance, the telnet service is assigned
TCP port 23. These port number assignments are maintained by the Internet
Assigned Numbers Authority (IANA) and are generally referred to as “well-
known” port numbers. These well-known numbers, agreed upon by consensus,
are the basis for why port-based classification can be effective. While there
is no guarantee that traffic on a given well-known port is actually that of the
application or service to which it is assigned, for decades it was simply the
case that these conventions were generally followed and, thus, port-based
classification was usually sufficient well into the 1990s.

Because it utilizes the packet transport information directly, port-based
classification is based in the TCP/IP protocol specification itself and the way an
implementation (in an operating system) delivers traffic to applications [106].
TCP/IP implementations use this transport-layer information to route traffic
and determine the host and the application on that host that should receive
(or has sent) any given packet. As such, classification based on port-based
SPI is inherently computationally-feasible in a monitoring system because
it minimally requires only the same high-performance data structures and
algorithms already used by network elements such as routers, switches, and
hosts to distinguish separate traffic flows and forward them appropriately.
For instance, the FlowScan [83] measurement and classification tool performs
lookups using code from MRT [84], which in turn, utilizes the data structure
employed in the BSD Unix TCP implementation. [101]

Common packet sniffing tools such as tcpdump [2] and wireshark [3] (for-
merly ethereal), expose and rely on this transport-layer information to deter-
mine how to display the payload of a packet. For instance, if a given packet is
destined for TCP port 80 (the “http” service), tcpdump will attempt to decode
and display the packet’s payload as a Hyper-Text Transport Protocol (HTTP)
World-Wide Web request or if it were sourced from TCP port 80, as an HTTP
response. Likewise, a typical port-based classifier (such as CoralReef [4]) would
simply classify such packets as Web traffic.

SPI is also the basis for packet filters [31, 33], a simple form of firewall or
access control. Numerous classification tools use transport-layer information
gleaned via SPI in network elements. [4, 27, 45, 83]
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2.1.2.2 Signature-based Classification

Signature-based or “application signature-based” classification is typically
used to identify specific applications or protocols (e.g., BitTorrent) or mali-
cious exploits (e.g., root shell) by inspecting the arbitrary payload of packets or
sequences of packets (e.g., “P2P” combining BitTorrent, Gnutella, and others).

Signature-based classification techniques therefore employ deep packet in-
spection (DPI): a monitoring technique that examines the packet payload, i.e.,
the full content of the packet, to detect or classify traffic of particular types.
For Internet traffic, this typically involves either looking for values at specific
packet locations beyond the packet header or scanning for strings at arbitrary
locations within the packet.

Sen et al. [99] describe how to identify P2P traffic by scanning for application
signatures via DPI. Intrusion Detection System (IDS) software such as Bro [81]
and Snort [94] can be employed to perform DPL For instance, Wanner [111]
describes how to write Snort rules that will report hosts that appear to be using
the BitTorrent P2P file sharing protocol when the string “torrent” occurs in the
name of the object fetched via an HTTP GET command.

Some commercial products used in broadband ISP environments, such
as those from Sandvine [10] and ipoque [8], use proprietary and hardware-
enhanced techniques to classify traffic by application signatures. Such ap-
proaches often hit performance barriers on very high-capacity links and are
vulnerable, i.e., likely ineffectual, in the face of packet payload obfuscation (e.g.,
by introducing chaff or employing deliberate TCP segmentation). ! Recent
work to improve performance in both software and hardware-based imple-
mentations of DPI [102, 103], serve as evidence that it is an ongoing problem.
Furthermore, the effectiveness of signature-based classification is somewhat
limited when monitoring by packet sampling and it is rendered practically
useless when packet payload is encrypted. Thus, our work, instead of relying
solely on DPI, attempts to minimize reliance on it by applying DPI only to the

easily (or feasibly) separable, unencrypted, low-volume rendezvous traffic.

2.1.2.3 Host Transport-Layer Behavior

Plonka [83] introduced a stateful classification method to identify elusive pas-
sive (PASV mode) ftp application traffic and Napster P2P application traffic by

1The file sharing community has proposed BitTorrent protocol options to obfuscate remote
peer IP address information. [56]
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inspecting only transport-layer information in flow-export data. Both of these
application protocols (that employ unreserved or ephemeral port numbers)
are classified based upon the participating host’s transport-layer behavior, i.e.,
the context determined by the host’s earlier communications rather than by
well-known port numbers.

The Napster P2P traffic classification in [83] is clearly an ancestor of our
rendezvous-based method and is similar in spirit, if not implementation. Like
rendezvous-based traffic classification, it relies on knowledge of the way in
which peer hosts introduced themselves to each other to participate in a partic-
ular service; in this case, that service involved the exchange of MP3 audio files
via TCP typically on unreserved port number pairs. Also, similarly, it uses this
knowledge to maintain state information that is subsequently used to classify
application traffic. To the best of our knowledge, this is the only classification
method that could accurately identify and measure Napster traffic without ap-
plication traffic payload inspection, which was generally infeasible at the time.
While quite effective, classification was limited to the popular Napster service
because of a requirement that the network administrator have “insider knowl-
edge” of the IP address prefixes within which centralized Napster’s servers
operated and specify these in the FlowScan measurement tool’s configuration.
In contrast, our current general rendezvous classification method automati-
cally discovers services’ IP addresses and therefore does not require insider
knowledge nor special access to the services whose traffic it classifies. Later,
Karagiannis et al. attempt transport-based identification of traffic involving
decentralized P2P services with some success. [60]

Karagiannis et al. [61] subsequently introduced BLINC, a more general
classification method based on host-behavior. BLINC classifies traffic involving
a given host by matching the host’s communication behavior to application
server behavior signatures (that are built in to BLINC.) The method we describe
in this dissertation is similar to BLINC in that we do not rely directly on ports
nor target traffic payload and is also similar in that our profile-based method
employs a kind of “social” behavior of each host. (By “target traffic,” we mean
the traffic that one intends to classify and measure. In contrast, rendezvous
traffic is typically not the target because it generally does not consume much
resource; it merely supports the use of network applications that can consume
significant resources.) However, our traffic classes are based on innumerable
domain names rather than a small, fixed set of application groups. Also, our
direct method, described in Section 4.3, neither employs heuristics (based on
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previously observed behaviors) nor requires tuning. It has been found [63,
108] that BLINC'’s graphlet approach experiences problems when the target
traffic is sampled (“1 in n” packets) or when the target traffic is not observed
symmetrically at a gateway near the end-hosts. In contrast, our technique is
robust at high traffic rates (wWhere sampling is often employed) because it gleans
social behavior of hosts from the complete, low-volume DNS rendezvous traffic
rather than attempting to divine social behavior only from observation of the
high-volume target traffic itself.

2.1.3 Hierarchical Traffic Classification

Both Cho et al. [34] and Estan et al. [50] describe and implement traffic measure-
ment systems that use the hierarchical IP address space to profile or classify
traffic in aggregates. Somewhat similarly, our method employs a hierarchy, but
instead uses the hierarchical domain name space to form aggregates classes;
domain names have advantages in terms of readability and persistence over
IP addresses. Additionally, our classification groups hosts with similar pro-
files, and thus bears some similarity to aggregation in these prior works, but
without our having to rely on structural cues from the hosts” IP addresses and
their associated blocks assigned by the Internet Assigned Numbers Authority
(IANA) and Regional Internet Registries (RIRs) or the blocks present in Internet
routing tables.

2.1.4 Domain Name-based Traffic Classification

Some commercial products perform traffic classification and filtering using
identifiers that often contain domain names. Products such as Websense [12]
and SmartFilter [9] inspect application traffic payload for identifiers such as
URLs and may, optionally, perform reverse DNS lookups. Our method differs
in that it observes the content of the participating clients” DNS rendezvous
traffic and thus can be effective in environments when it is infeasible to inspect
the target traffic (e.g., due to traffic volume, encryption, or policy). Alexa
Internet [7] provides web traffic metrics labeled by domain name, such as top
site lists and demographics. Their service is web-specific and observes Uniform
Resource Locators (URLs), whereas our work considers all traffic and observes
fully-qualified domain names (FQDNs). However, in our work we sometimes
employ Alexa’s categories as a convenient basis for our operator-defined host
profiling.
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It bears noting that “reverse DNS,” i.e., lookups in the inaddr.arpa and
ip6.arpa domains by IP address for a hosts” domain name, are typically unreli-
able and computationally infeasible in online analyses. [25] While the ability of
the DNS to query by IP address for a name is potentially extremely useful, this
mapping is not well-maintained in today’s Internet. The primary reason that
this is unreliable is that there is simply no mechanism enforcing that reverse
mappings match their forward mapping nor even that a reverse mapping ex-
ists. It seems likely this will remain the case, as the administration of forward
and reverse mappings are even delegated to different entities: one being that
which received the address allocation and the other being that which acquired
a domain name. Since our method utilizes only the forward DNS lookups, it
avoids the pitfalls that reverse DNS lookup presents.

2.1.5 Host profiling

While not exclusively a traffic classification technique, end-host profiling or
“host profiling” has been used in prior works to classify hosts and, in turn, to
inform traffic classification, especially when the traffic is particularly difficult to
observe or classify. End-host profiling is the classification of an Internet host
based on its behavior, often with the hope that it can be used to predict its
future behavior. A complication of applying end-host profiling to the task of
traffic classification is that it is coarse-grained (at the host, rather than session
transport). A given host might exchange many types of traffic at the same time
or over time; thus a given host might simultaneously fit multiple classes making
the corresponding traffic classification somewhat ambiguous. (In Chapter 4,
we employ only a small set of host classes, thus Venn diagrams are sufficient to
present our results.)

Trestian et al. [108] perform traffic classification by first classifying end-hosts
based on query results from a database of information that is available publicly
on the web, i.e.,, by supplying a host’s IP address as a query string to Google
search, with the hope that it contains correct and timely information about
end-hosts of interest. The inspiration for their work is similar to ours in that
in order for Internet communication to progress, an end-host must somehow
discover the IP address with which to communicate. Their classification based
on matching words in domain names could be applied to create aggregates for
our rendezvous-based approach.
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2.2 Passive DNS Monitoring

There are a number of prior works that involve the passive monitoring and
measurement of DNS traffic for a variety of purposes. Wessels et al. [113, 114]
provide a tool (dnstop) to measure DNS traffic by volume per client. Based on
that tool, our work introduces and develops TreeTop [85], a tool that implements
domain name-based traffic measurement in aggregate. We utilize TreeTop to
track and report individual client’s DNS activity and our results differ in that
we apply that DNS information to label both traffic for traditional client-server
applications (e.g., World Wide Web and Streaming) and peer-to-peer traffic (e.g.,
BitTorrent, Skype, and Massively Multi-player Online Gaming), the latter by
integrating end-host profiling.

In [112], Weimer introduced a tool that populates a database from passive
DNS traces and effectively identified abusive behavior including botnet activity.
Likewise, Zdrnja et al. [117] record DNS trace information to a database and
subsequently identify DNS anomalies including “fast flux” domains typically
associated with botnet activity [43, 91]. Similarly, we passively monitor DNS
query responses and store them in a sort of online database in core memory:.
However, rather than focussing on only anomalous or suspicious behaviors,
our work differs in that we monitor all DNS query responses and/or apply it
to profiling hosts and classifying those hosts” traffic.

The recent work of Bermudez et al., who developed DN-Hunter [25], is the
most similar to ours; this is a consequence of their work being based on ours.
While their goals differ and they study Content Distribution Networks and do
not assess service performance, they employ our rendezvous-based method
from prior work [85, 86] to passively monitor clients” DNS traffic and annotate
those hosts corresponding application traffic flows in an online fashion. Like-
wise, Drago et al. study cloud storage structure and performance by employing
DN-Hunter and our DNS rendezvous method. [48, 73]

Lastly, Spring and Huth [104] consider the consequences of passive DNS
monitoring on end-user privacy. Our method necessarily makes use of pas-
sive DNS monitoring, but we claim that it preserves end-user privacy more
than some competing methods in that it inspects only the rendezvous traffic
necessary for communications to be established. This is somewhat similar to
a postal service inspecting the sender and recipient address on an envelope
so that it can be delivered, but not inspecting the ostensibly private commu-
nication within. In this way, our method significantly differs from DPI-based
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classification techniques that either inspect users’ application traffic payloads
or that fail when those payloads are obfuscated or encrypted.

2.3 IPv6 Performance Measurement

Measurement study of IPv6 has primarily focused on uptake and deployment.
Indeed, there are multiple groups around the world that regularly publish
reports and offer web sites that track IPv6 prevalence in the Internet (e.g.,
see [30] for a compilation of sources) including measurements during World
IPv6 Day. Similarly, Claffy identifies both available and desired sources of
data that can be used to track IPv6 deployment in [36]. Several studies and
reports have used both active and passive measurements to characterize the
extent of IPv6 penetration at different points in time. Cho et al. use ping
and traceroute measurements to remote hosts that have both IPv4 and IPv6
addresses as a means for identifying path problems [35]. At the highest level,
their host identification method is similar to ours (i.e., based on DNS names),
our analysis method is more general and completely passive, including the
gleaning of domain names from DNS responses. A similar study was conducted
by Zhou and Mieghem in [118]. Karpilovsky et al. use a variety of measurements
from Internet registry logs to NetFlow traces to understand IPv6 including the
extent of application use [62]. Colitti et al. describe a methodology to measure
adoption and performance of IPv6 from the perspective of a web site operator
in [37]. Their work differs in that it is based on latency measurements.

Several studies have analyzed World IPv6 Day from different perspectives.
Sarrar et al. use large NetFlow and packet traffic traces gathered from two
different vantage points to characterize IPv6 volume, application mix and
tunneling protocols on IPv6 day [98]. A study by Labovitz provides similar
results in [66]. To the best of our knowledge, ours is the first study to passively
assess services’ IPv4 versus IPv6 performance.

While we augment our method with a transport and storage framework
for annotating flow export records somewhat similarly to DN-Hunter [25], our
goal to assess IPv6 performance by comparing it with that of IPv4 is unique.
To the best of our knowledge, ours is the first study that presents a scalable and
robust methodology to make such assessments for services with which clients
rendezvous via the DNS.
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2.4 Email Studies

In the final application of our method (presented in Chapter 6), we reverse-
engineer email rendezvous information based on trace data present in stored
email messages to discern the structure and performance of the email deliver
network. Prior work has reported on malicious use of email (e.g., spam [59,
90, 116]), on packet traffic volumes by service [71, 79], on email performance
and loss by active measurements [19, 20], and on social relationships from
email sets similar to those we use [70, 109]. Our work differs in that we study
the structure and performance of the email delivery network over time by
sifting and winnowing through the voluminous trace data present in stored
email messages to discover the roles of hosts, i.e., to profile hosts, such as
Mail-eXchangers (MXers) that participated in delivery and then assess their
performance in forwarding email.

2.5 Other Related Work

While we primarily focus on DNS-based rendezvous, prior work has described
alternative rendezvous mechanisms. For example, Morris et al. propose a
distributed hash table-based mechanism [77] and Walfish et al. propose re-
placing DNS with another mechanism for the World-wide Web in [110]. Baset
and Schrulzrinne [24] and Rossi et al. [96] reverse engineer and infer Skype’s
application-specific rendezvous mechanism. There are other standard ren-
dezvous protocols, e.g., DHCP Options [21], DNS SRV [55], SIP [58], and P2P
variant works in progress (e.g., P2PSIP [6]). These protocols and others are
candidates for extending our methods, especially for online rendezvous pro-
tocols where rendezvous information is easily separable (from voluminous
application traffic) and where the rendezvous traffic has a standard “clear text”
format.

Lastly, our work employs a number of visualization techniques to present
results. Presentation of classified traffic volumes in time series are generally of
the style adopted in [83]. Shneiderman [100] originated the treemap visualiza-
tion that we employ to represent hierarchical data; alternatives such as directed
graphs and Venn diagrams can not always be constructed to reliably present
such data proportionately by volume.
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3 CONTEXT-AWARE CLUSTERING OF DNS QUERY TRAFFIC

interesting idea of using DNS
analysis for traffic classification

anonymous reviewer of [85], 2008

In this chapter, we lay the foundation for rendezvous-based measurement,
traffic classification, and host profiling by performing a detailed study of DNS
queries and responses. Our goals are (i) to understand the breadth of informa-
tion present within, and (ii) to select just the DNS traffic useful for classification
and apply it to the measurement and analysis of general network traffic in an
online fashion. [85]

3.1 Overview

The Domain Name System (DNS) is a one of the most widely used services in
the Internet and it is relied upon by most Internet applications. In this chapter,
we investigate the question of how DNS queries could be used to provide im-
portant and unique insights on network traffic. Our motivation for this chapter
of our work is the conjecture that the plain-text DNS query/response traffic is
a rich source of information on network traffic that might otherwise be difficult
to understand. For example, while prior classification methods might accu-
rately identify application traffic as HTTP, information from DNS queries that
precedes this traffic could be used to further label the traffic with prominent do-
main names; we refer to standard or expected DNS traffic as “canonical”. DNS
is also now routinely used for black-listing services (throughout the remainder
of this chapter, we refer to this type of DNS traffic as “overloaded”), which are
critical for spam checking, but increasingly used for other purposes. Under-
standing the nature of this traffic could be useful in network operations. Finally,
there are many queries that never succeed, but still require DNS resources. So,
any improvement in understanding this category of DNS traffic (throughout
the remainder of this chapter, we refer to this type of traffic as “unwanted”)
will be important to network operations and security administrators.

The starting point for our work was a set of traces of DNS query/response
traffic continuously gathered from our campus network from January through
April, 2008. This data set comprised over 11 billion total query responses for
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tens of thousands of clients. With a data set this large and diverse, a principled
analysis method is required in order to extract, visualize and evaluate the
desired information.

Our approach to analyzing the DNS traces is data-driven and context-aware.
In particular, we apply a clustering methodology that is guided by DNS syntax
and semantics to decompose the query/response traces into the three major
categories described above. We also employ IP prefix and domain name search
trees to divide clusters into more detailed subclusters and aggregates. Rather
than relying on single fields, we distinguish additional unwanted and over-
loaded traffic types by identifying combinations of query names, response
codes, and answer values. Additionally, we employ a “reflexive clustering”
method that uses these multiple dimensions for creating groups where the
interpretation of one group is based on the context of the other.

We implemented our context-aware clustering method in a tool we call
TreeTop. This tool enables both off-line and real-time analysis and visualization
of DNS query/response traffic. Specifically, TreeTop analyzes query/response
traffic with a variety of filters and summarizes in tabular or graphical reports.
TreeTop is currently in operational use in our campus network and will soon
be made available to the community.

When applied to our DNS query/response traces, TreeTop highlighted a
number of interesting characteristics that demonstrate the utility of our ap-
proach. First, we found a diurnal cycle consistent with standard packet traffic.
The profile for this traffic is relatively smooth and clearly highlights a wide
variety of popular applications such as Facebook, Google, etc. Also, we auto-
matically identified approximately 200 black-lists and found black-list traffic
to be of significant volume continually while also marked by high magnitude
spikes. Our evaluation highlights both the coarse and fine level of detail that
can be revealed by our method.

Ultimately we find that, having carefully separated and indexed the canon-
ical DNS rendezvous traffic and associated host IP addresses, we can have
TreeTop capture and classify application traffic by employing the rendezvous
information gleaned earlier. We show preliminary results on how DNS analysis
can be coupled with general network traffic monitoring to provide a useful

perspective for network management and operations.
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3.2 DNS Mechanics

We are primarily concerned with analysis of DNS packets sent in response
to queries from end-hosts, i.e., those at the periphery of the Internet. As in
[117], we analyze just the responses (replies) because the details of the query
are repeated in the corresponding DNS response packet. Here we present a
partial overview of the DNS service as it is used by these hosts and provide
definitions of the terms we use in this chapter.

DNS query packets and response packets have a similar form, and are
typically exchanged between clients and name servers using the UDP “domain”
service port 53. The packet contains a header, a question section, and an answer
section.

Generally, queries are performed with query names that are Internet domain
names. The Internet domain space is hierarchical !, with a well-known set of top-

s

level domains, such as “com,” “net,” and “org.” Institutions have sub-domains,
such as “example.com” and “example.org,” in which they can arbitrarily create
sub-domains and entries such as “www.example.com.”

To perform queries DNS client hosts typically use a resolver that is sup-
plied with the operating system. The most common queries are for the IP
addresses associated with domain names. These queries have a type IPv4
Address (A) or IPv6 Address (AAAA, known as “quad A”) and contain a string-
based query name such as “www.example.org,” to which a DNS name server
typically responds with either “No Error” (NOERROR) or “Nonexistent Do-
main” (NXDOMALIN). In the NOERROR case, one or more IP addresses, such as
192.0.2.2, are returned in the response packet’s answer section. Other common
query types include those for Mail eXchanger (MX) records used to route email,
Pointer (PTR) records used to translate IP addresses to names, Service Location
(SRV) records used for automatic discovery of services, and Text (TXT) records
used for various purposes. Each query type may have its own corresponding
answer type.

We refer the reader to either [106] or [74, 75] for a thorough introduction to
DNS packet structure and service semantics.

1Gee Figure 3.5 for a graphical example of a portion of the DNS hierarchy.
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3.3 Empirical Datasets

In this chapter, we are interested in DNS traffic, i.e., queries and corresponding
replies, exchanged between Internet hosts and trustworthy recursive name
servers. To assure the legitimacy of the servers, we monitor only the traffic
involving those servers under the campus’ administrative control. This avoids
us having to question the validity of responses because the campus DNS servers
perform recursive queries, on their clients behalf, only to zone-authoritative
name servers (based on referrals from the Internet’s trusted root servers). Thus,
we avoid rogue DNS servers such as those investigated in [42].

For off-line analysis, we capture DNS traffic exchanged between campus
client hosts and the campus’ recursive anycast [18] DNS service. Our university
operates a recursive name service consisting of four geographically dispersed
server machines that answer queries received with one of the service’s two
IP addresses, which are in different campus network prefixes. As such, this
recursive anycast DNS service represents current best practice for a large, highly-
reliable lookup service that serves tens of thousands of clients. The complication
introduced by anycast is that any of the servers could handle a specific client’s
request, so we monitor all servers simultaneously, and combine the traces at
synchronized points in time to get a complete view.

In this chapter, we consider a traffic trace from January 8, 2008 through
April 21, 2008. Tables 3.1 2 and 3.2 show the query types and response codes
as percentages of total DNS traffic observed during this time. The active client
numbers are based on the count of clients observed performing queries in a five
minute interval. Figure 3.1 presents the traffic as a time series. Note the rich set
of characteristics involving multiple dimensions in the measurement data. (The
weeks of the year labeled 2, 3, and 12 are during the January inter-semester and
spring recesses, thus had traffic volume due to lower active client counts.)

For online analysis in real-time, we also monitor traffic at individual DNS
servers and on an individual workstation. That is, the traffic is observed within

the end host, either the DNS server or client host, at its network interface.

2The percentages of active clients in Table 3.1 are not expected to add to 100% because any
given active client can issue multiple types of queries in a measurement interval.
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| Query Type || Queries/Sec [ Active Clients |

A 671 (54%) 4521 (87%)
PTR 310 (25%) 1386 (26%)
AAAA 120 (10%) 906 (17%)
MX 99 (8%) 197 (3%)
TXT 25 (2%) 112 (2%)
SRV 5 (0%) 145 2%)
any 1236 (100%) | 5183 (100%)

Table 3.1: DNS query distribution: average rates and average numbers of active
clients by query type. An “active client” is one that has performed a DNS query
within a given five minute interval.

UW-Madison Anycast DNS Service: Query Types / Response Codes
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Figure 3.1: DNS query and response rates, January 8, 2008 through April
21, 2008. Query rates by type are plotted above the horizontal axis and the
corresponding response rates by code are plotted below. See Tables 3.1 and 3.2
for the rate values.

| Response Code || Responses/Sec |

NOERROR 729 (59%)
NXDOMAIN 480 (39%)
SERVFAIL 27 (2%)
any 1236 (100%)

Table 3.2: DNS response distribution: average rates by response code.
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3.4 Analysis Method

Our initial observation about the measurement data, presented in time series
in Figure 3.1, is that the DNS query responses have a rich set of characteristics
not unlike those seen when measuring all Internet traffic (i.e., not just DNS)
involving a similar number of hosts. This observation motivated our analysis

goals and the methods we developed to achieve them.

3.4.1 Goals

We have two primary goals for off-line and real-time DNS traffic analysis:

1. Distill Useful DNS Traffic Types.

The number of combinations of DNS packet fields is large, similar to
that of TCP and UDP IP headers in general IP traffic. This suggests
applying analysis techniques successful in prior work, i.e., aggregation-
based clustering techniques inspired by [34] and [50], both of which
use hierarchical, volume-based clustering to more succinctly store and
represent an otherwise overwhelming number of measures. Thus, our
foremost goal is to distill the measurement data so that we can present
essential, concentrated clusters that will be useful in both research and
operations.

2. Enable Flexible Analysis.

Our second goal is a flexible analysis of DNS traffic such that we can
answer new questions and conveniently apply the knowledge gleaned
from our analysis to broader Internet traffic applications.

For example, we wish to use the knowledge of the domain names by
which clients refer to Internet hosts for the measurement and analysis of
IP traffic in general. That is, we want to classify traffic by familiar domain
name identifiers.

3.4.2 Methods

We use two methods to achieve our goals:

1. Context-awareness.
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Our first method is to form clusters by leveraging the knowledge of DNS
syntax and semantics. Instead of attempting to apply general cluster-
ing methods (e.g., simple K-means), we use knowledge of the protocol
itself and knowledge gleaned from prior work to assemble DNS-specific
clusters.

Our starting point for context-aware clustering is based on our speci-
fication of three general types of DNS queries. While other high-level
taxonomies of DNS traffic are certainly possible, we argue that the follow-
ing three classes support the goal of making the resulting analysis useful
in both research and operations.

Unwanted Traffic Many of the prior empirical studies of DNS traffic
discuss high-volume anomalies observed in the data, and are driven
by concern of their potential impact on local and Internet-wide DNS
operations. These anomalies are within an important class of unwanted
DNS traffic including all sorts of misdirected and malformed queries,
such as those with IP addresses as query names, unknown Top Level
Domains (TLDs), RFC-1918 addresses for PTR, and for names containing
invalid characters.

Overloaded Traffic The DNS has come to be both extended and reused
for new purposes in both foreseen and creative ways, i.e., it has become
overloaded. By this we mean that an earlier function of the DNS is over-
loaded with new meaning (rather than meaning that the DNS service is
experiencing excessive load due to these new purposes). In light of these
new uses, there is the danger of misinterpreting this “overloaded” traffic
as either unwanted or typical DNS traffic, thus we wish to identify and
isolate it in analyses.

The primary examples of applications that overloads the DNS are “black-
lists.” The most common intent and use of these lists is to limit spam
or network abuse by providing a mechanism for determining whether
or not a given IP address or domain name is currently a member of a
list that is maintained by some “listing service” (both community-based
and commercial services are available). These “reputation” lists exist in
many varieties including Real-time Blackhole Lists (RBLs), DNS Black-
Lists (DNSBLs), DNS White-Lists (DNSWLs), Uniform Resource Iden-
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tifier Black-Lists (URIBLs), Spam URI Real-time Black-Lists (SURBLSs),
and Right-Hand-Side Black-Lists (RHSBLs, for testing the domain name
portion of an email address).

Black-lists employ an informal protocol [1] atop DNS and, in doing so,
they overload the meanings of the DNS A query type and its response
codes. For instance, a given IP address or fully qualified domain name
(FQDN) is tested by prepending it to the black-list’s domain name and
then performing a DNS lookup, and testing for “magic numbers” in the
returned answer. While the meaning of these numbers is defined by
the particular black-listing service, black-lists clearly overload the DNS
query types, response codes, and answers, thus requiring special context-
aware treatment in our clustering method to isolate this traffic from the
canonical. In Section 3.5, we explain in detail how we cluster this traffic

using a technique we call “reflexive clustering”.

Canonical Traffic This class of traffic is the expected, well-behaved DNS
traffic. Essentially, it is what is likely to be left over once the unwanted and
overloaded traffic is removed, and is most often used to identify hosts and
services, such as converting domain names to IP addresses or the reverse
(A, AAAA, and PTR queries), routing electronic mail (MX queries), etc.
Canonical traffic uses the RFC-defined query classes, types, and response
codes in a well-defined fashion.

We have significant interest in the canonical traffic and the clients involved
in it since our intent is to apply the information gleaned to improve iden-
tification and analysis of the subsequent IP traffic involving those clients.
The DNS query/response traffic is a compelling, transparent source of
additional information about Internet traffic beyond what is available in
packet headers. DNS traffic is of relatively low volume (compared with
all IP traffic involving a given population of clients), making it practical to
process in real-time. Lastly, it is not obscured by encryption mechanisms
that thwart general payload analysis.

With these categories, our method improves the analysis of DNS traffic
by using clusters involving multiple fields of the response packets (such
as query name, response code, and answer values) and reflexive clusters

prepared from other clusters in a DNS-specific way. That is, we form clus-
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ters using the contextual knowledge of DNS traffic and its idiosyncrasies
for unwanted, overloaded, and canonical traffic.

2. Utilize Purpose-built Data Structures.

Our method to achieve the goal of flexible clustering and analysis in real-
time is to utilize efficient, high-performance data structures to handle IP
addresses and domain names. (In contrast, a relational database as the
data store is a good choice for off-line analysis as in [112] and [117].) The
ability to store, lookup, and report IP addresses and domain names are
key functions to identify and measure the unwanted, overloaded, and
canonical types of traffic. Furthermore, an implementation will benefit
if these data structures can be combined and nested arbitrarily. This
is the online equivalent of the flexibility achieved by joins in relational
databases.

We continue in the next section by describing our implementation of these
methods to cluster DNS traffic.
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3.5 Design and Implementation

To implement and apply our clustering methodology, we developed two high-
performance data structures and an analysis tool that employs them. Both
naturally have a hierarchical structure like the IP address and domain name

systems whose elements they store. These data structures are described below.
3.5.1 Data structures

3.5.1.1 The Address Tree

Our address tree is a binary prefix search tree or trie similar to a Patricia trie, as
used in BSD UNIX to perform efficient longest-prefix matching for IP routing
lookup tables [101], but with additional features.

(19202232 (19202.332)
I

. JL

Figure 3.2: An address tree containing four IPv4 addresses, each with a count
of 1. Internal nodes are shown with dashed lines and occupied nodes with
solid lines.

An example address tree is shown in Figure 3.2. The address tree is based
on the tree implementation in Aguri that is thoroughly described in [34], and
has the following characteristics:

¢ Thetrie’s alphabet consists of only binary digits 1 and 0. Thus, the internal
node out-degree is 2.
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¢ Level-compression is employed to reduce node count and thus increase
storage efficiency. This can also benefit performance by eliminating the

traversal of a long list that terminates in just one entry.
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Figure 3.3: An address tree containing two IPv4 prefixes, each with “rolled-up’
counts of 2. This is the result of aggregating the tree shown in Figure 3.2 with a
40% threshold.

¢ Aggregation is performed by configurable threshold tests of a counter
stored in the node. This aggregation “rolls up” entries from more-specific
to less-specific. Figure 3.3 shows a 40% threshold aggregation of the tree
shown in Figure 3.2; this means that nodes with values representing less
than 40% of the total (in this case, 4) are aggregated to the parent node.

The affected leaf nodes are available for reclamation.

¢ A Least-Recently-Used (LRU) node allocation scheme is employed. This
allows total size of the tree to be bounded and to automatically aggregate
reclaimed leaf node counts to their parents whenever the list of free nodes

is exhausted.
In addition to the functionality of Aguri’s tree, we added the following;:

* The option to dynamically allocate nodes on demand rather than a fixed
pool of nodes reclaimed by LRU (with automatic aggregation). When



33

not memory-constrained, this allows us to retain all host IP addresses in
the tree, so that detail is not lost. This enables exact set representation
(for instance, to store interesting IP prefixes), accurate counting of entries

inserted into the tree, and thus additional analyses. ®

¢ Testing for exact match and longest-prefix match without modification of
the tree. Essentially, this provides general set-membership testing in the
IP address space. Since Aguri’s tree was fine-tuned to its sole purpose, it
didn’t provide an API to test for matches in the tree. (It could add entries,
increment counters, optionally aggregate, and report the tree contents.)

The address tree data structure is used as the basis for clustering. It gives
us the ability to aggregate by IPv4 and IPv6 addresses  and to test for set
membership in prefix sets.

3.5.1.2 The Domain Tree

Inspired by the effective use of prefix tries within the IP number space in
both Aguri and AutoFocus [50], we employ a similar technique to the domain
name space. Thus, we introduce the domain tree: an n-ary prefix search trie for
fully-qualified-domain names.

Figure 3.4 is an example of a domain tree structure. Domain trees differ
from address trees in the following ways:

¢ Since the presentation of a domain-name is a series of labels separated by

“” characters (e.g., “www.example.com”) with the most-specific label first
rather than last, domain trees use reversed FQDNSs, .., “com.example.www.”
Thus, the prefixes matching the FQDN “www.example.com” include

“com” and “com.example,” but not “www.”

* The alphabet representable by a domain node consists of all possible case-
nonspecific domain name labels. RFC-1035 [75] specifies a 63 character
maximum length. Thus, the maximum domain node out-degree is very

large. In our implementation we store references to child nodes in a red-

3See [34] for an analysis of the accuracy of counting when aggregation is applied.

4For brevity, we’ve shown just IPv4 addresses in the figures, however we actually use address
trees as a unified store of IPv4 and IPv6 addresses, by representing an IPv4 address as a 128-bit
“IPv4-Mapped IPv6 Address.” [57]
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Figure 3.4: A domain tree counting references to 8 fully-qualified domain
names (FQDNSs). Various prefix and exact counts for those entries are shown,
slash-separated, in the nodes as prefix_count /exact_count.

black tree [40], so that it is both space efficient (versus a hash) and exhibits

predictable performance. ®

¢ Terminal domain tree entries, i.e., FQDNs, are of variable distance from

the root and are not always leaves in the tree. For instance, “www.example.com”

and “example.com” could both be valid domain names resolving to an IP
address. In contrast, full IP address entries in an address tree are always
leaves, and thus never both a terminal entry and a prefix.

5Note that this portion of the domain tree does not play a prominent role in determining its
functionality; sub-structures other than a red-black tree may exhibit better performance here.
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example.com
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1.2.0.192.in-addr.arpa [example.neD [example.org]
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0/1 0/1 0/1 0/1

Figure 3.5: A domain tree containing 8 FQDNS; this is a level-compressed
presentation of the tree shown in Figure 3.4.

¢ Aggregation is implemented as a reporting feature rather than a data re-
structuring feature. Therefore, domain tree nodes must contain multiple
counters: one counting exact matches and one counting prefix matches.
This is also necessary because, unlike fixed-length IP address entries,
FQDNs can contain other FQDNSs, thus internal nodes that are also ter-
minal entries need exact counters.

* Level-compression is a reporting rather than a structural feature. This
retains the advantage of compacting the presentation but without intro-
ducing the need to store label sequences, i.e., varying sizes of arrays of
labels, within a node.

Figure 3.5 shows a level-compressed report of the same domain tree as
depicted in Figure 3.4. Like address trees, domain trees are employed in clus-
tering. For instance, we can aggregate by domain names queried or test query
names for prefix matches in sets of FQDN sulffixes such as known TLDs and dy-
namically discovered DNS black-lists. (Recall that the FQDNs are represented
in reverse, so a prefix match in the tree means that the suffix matches in the
canonical FQDN presentation format.)

3.5.2 The TreeTop Analysis Tool

We developed a DNS and general traffic analysis tool called TreeTop. TreeTop
is implemented as a patch to dnstop [114], and is about 8000 lines of C code
including approximately 3000 lines originally from dnstop. Thus, TreeTop has

all dnstop’s functions combined with our additional features (including the
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ability to identify additional unwanted traffic). We've run TreeTop on Intel and
PowerPC-based Linux and Mac OS X machines; it should be portable to other
UNIX-like systems.

TreeTop has two forms of output, text reports (tabular or hierarchical) and
graphical reports in which hierarchies are represented as directed graphs.

TreeTop sets the aggregation threshold in one of two ways. When run
interactively, TreeTop sets the threshold as a function of terminal window size.
It chooses a threshold with the goal of representing 100% of the observed traffic
as a level-compressed tree in the user’s window. When run non-interactively
for off-line analysis, TreeTop’s aggregation levels, and the size of the resulting
reports and tree graphs, are configurable via a command-line option.

In contrast to prior tools that employ single-level hashes with domain names
as keys (such as dnstop and nscd), TreeTop’s functionality is based on the
aforementioned data structures: address trees, domain trees, and combinations
thereof. We employ them to quantify unwanted traffic in new dimensions (such
as hierarchical counting of both the total number of clients and number of
domains queried), to identify overloaded DNS traffic (such as DNS black-list
queries), and, ultimately, to classify general IP traffic based on the domain names
by which the participating hosts know that IP traffic’s source and destination
IP addresses.

3.5.2.1 Clustering DNS Black-list Traffic

Here we describe how TreeTop clusters black-list traffic; other clustering is
done similarly, but sometimes using filters that were already present in dnstop.
In Section 3.4, we explained that DNS black-lists overload the meaning of
particular fields of the request and response packets. To identify this type
of traffic, we look for high-confidence evidence of it, then save some state
information, and interpret subsequent packets using that state, where otherwise
the interpretation would be ambiguous. We call this “reflexive clustering” and
describe it below using black-list traffic to illustrate. The term “reflexive cluster”
is analogous to “reflexive ACL”: an access control list (ACL) with entries that are
created dynamically based on the prior matching of a packet to a corresponding
ACL.

Consider an example involving the domain entries shown in Figures 3.4
and 3.5. To query a black-list, a candidate IP address or FQDN is prepended to a
black-list’s domain name and then a DNS lookup for an A (IPv4 Address) record
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is performed. Suppose there exists a DNS black-list named “dnsbl.example.com”
that black-lists IP addresses that are known sources of spam email. Suppose
further that “smtp.example.com” is a Mail-eXchange (MX) host that receives
an email message from host 192.2.0.1. Wishing to limit the propagation of
spam, this MX host queries for “1.0.2.192.dnsbl-.example.org.” If it results in
an NXDOMAIN response, it means 192.2.0.1 is not a member of the black-list.
If it results in a NOERROR response, an IPv4 address within the reserved
127.0.0.0/8 local network is returned, e.g., 127.0.0.2. In the context of black-lists,
the NOERROR response means that the given IP address is listed. Further-
more, IPv4 addresses in the answer section are overloaded; 127.0.0.2 commonly
means this is a general entry in the list. Thus, black-list domain queries are
distinguished, at least in part, by the fact that that they return bogon addresses.
Bogon addresses are addresses that should never be routed in the Internet
because they lie within either reserved address spaces (like 127.0.0.0/8) or
within prefixes that have yet to be allocated by the Internet Assigned Numbers
Authority (IANA) [44].

To identify and cluster black-list traffic, TreeTop first maintains a read-only
bogon address tree because black-listing uses bogons as answers. Next, as re-
sponse packets are processed, if the response code is NOERROR, TreeTop
performs a prefix match in the bogon address tree for any addresses present in
the packet’s answer section. If a match is found, then the answer is a bogon
(i.e., within 127.0.0.0/8) and TreeTop adds the address to a bogon seen address
tree. TreeTop next examines the packet’s query name. If the name appears
to begin with either (i) an embedded IP address (as a reversed dotted-quad,
ie., “1.0.2.192”) or (ii) a nested FQDN ending in a known TLD, it adds the
trailing domain (i.e., “dnsbl.example.org”) to a list domain tree and increments
a counter of query references to that black-list domain name. At this point
TreeTop has likely discovered a black-list and has a cluster counting references
for true positive hits in the black-list.

To count the black-list negative response misses, TreeTop performs a prefix
match in the list domain tree if a packet’s response code is NXDOMAIN. If
a match is found, TreeTop examines the packet’s query name as above; if it
begins with either an embedded IP address or nested FQDN, the count for the
matching entry in the list domain tree is incremented.

In this way, the total DNS black-list traffic is accumulated in a reflexive
cluster; the counts of NOERROR responses (that identified the black-lists) and
NXDOMAIN responses associated with all black-lists are summed in the list
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domain tree. This tree is subsequently used to quantify the black-list traffic and
to save the black-list domains to a file for initialization of the list domain tree
on subsequent TreeTop analysis runs.

3.5.2.2 General Traffic Analysis

The clustering technique described for black-list traffic that uses an assemblage
of carefully linked address trees and domain trees generalizes to other purposes.
Here we describe how we use the addresses observed in IP traffic headers to

cluster IP traffic by its domain.
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Figure 3.6: An example of TreeTop’s combined use of address and domain
trees to measure traffic by domain name. Here, traffic from 192.0.2.1 is ob-
served; the dashed edges are traversed to locate the domain node counters to
be incremented.
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Figure 3.6 is an example of a combined arrangement of address and domain
trees that TreeTop employs to measure IP traffic by domain names °. To initialize
and maintain the trees and the requisite links between them, TreeTop observes
DNS queries with valid A or AAAA answers, then adds (or updates) entries to
both this address tree and this domain tree. Then, on observing subsequent
IP traffic, an IP address (e.g., from the packet header’s source address field)
is looked-up and a series of links are traversed to maintain exact and prefix
counters in the nodes. In this way, traffic measurements by domain name are
achieved with performance similar to that of standard IP exact match look-ups.

In the DNS as it is commonly used today, it is certainly the case that multiple
IP addresses are sometimes associated with a single domain name and that
multiple domain names are sometimes associated with a single IP address. ”
TreeTop accommodates the former implicitly and accommodates the latter by
finding a common prefix (i.e., FQDN suffix) of the domain names, with the
default case being “.” (the root of the domain name hierarchy). For instance
in Figure 3.6, if both “example.com” and “www.example.com” happened to
resolve to address 192.0.2.1, we would link the node 192.0.2.1 to “example.com”
and upon traversal, increment roll-up counters (not shown) rather than exact
or prefix counters. This allows the measures of traffic involving IP addresses
with multiple names to be represented in aggregated domain tree reports, even
when there isn't an exact match to a single domain name.

We’ve described two instances of how TreeTop uses combinations of address
and domain trees to maintain counts of DNS and general IP traffic in many
dimensions. Other such arrangements, including domain trees in nodes of
address trees and vice-versa, enable counting and tracking known domain
names per client and the ability to determine the number of clients that know a
given domain name. The former, i.e., address trees of domain trees, is useful in
general traffic analysis. When domain names are tracked on a per client basis,
the measurement system is aware of which names are legitimately known
(bounded by TTL) by each client. Also, the clients’” domain name caching

behavior can be used to determine whether those clients’ applications are likely

The Time-To-Live (TTL) is not shown in Figure 3.6. TreeTop could use TTL information to
report IP to name mappings at past points in time and to cull expired mappings from the data
structures.

7 A common case of multiple domain names being associated with a given IP address is a web
server configured with many “virtual hosts”, perhaps thousands, that use a single IP address.
Popular sites such as “blogspot.com” and “ytmnd.com” employ this technique.
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utilizing stale name to IP address translations. ® The latter, i.e., domain trees
of address trees, may provide a more useful measure of a domain name’s
popularity than query rate (given that the query rate is increased with lower
TTLs.)

These analyses demonstrate the utility of these data structures when ana-
lyzing DNS traffic.

8 A common example of an application using a stale name to IP address translation is when it
utilizes inet_addr, inet_aton, or gethostbyname APIs to resolve names at initialization and thus
neither collects TTL information, nor resolves names and reestablishes connections when a domain
name expires.
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3.6 Results
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Figure 3.7: Clusters of DNS traffic during the week of March 3, 2008. Note that
many spikes have been identified as unwanted and overloaded types.

In this section we report our experiences using TreeTop to perform both
off-line and real-time analyses. Our intent is to highlight the utility of our
approach in terms of the scope and detail of information, rather than to show
all possible reports. For clarity of presentation in time series plots, we focus
on just the week of March 8, 2008. (Results for other weeks not during student
recesses are similar.) Figure 3.7 shows an overview of all DNS traffic by type. In
Figures 3.7, 3.8, and 3.9, note that the traffic types are shown “stacked” on top
of each other so that none is obscured by another and so that the the highest
values on the vertical axis are totals. Each type is examined further below.

3.6.1 Unwanted Traffic

We begin by focusing on unwanted traffic identified during the sample week.
It is decomposed as four sub-clusters in Figure 3.8.
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Figure 3.8: Unwanted DNS traffic during the week of March 3, 2008.

| Type | Queries/Sec | Active Clients |
unknown-tld 197 (87.3%) 530
nx-nested-tld 22 (9.8%) 310
rfc-1918-ptr 2 (1.1%) 78
A-for-A 4 (1.8%) 15
any 226 (100%) n/a

Table 3.3: Distribution of unwanted DNS traffic types during the week of March
3, 2008. Values are averages shown with their respective percentages of the
total unwanted traffic.

3.6.1.1 unknown-tld, rfc1918-ptr, and A-for-A Traffic

The traffic categories unknown-tld, rfc1918-ptr, and A-for-A are identified by
existing filters in dnstop and are described thoroughly in [114] as well as briefly
below. We include them here since they significantly represent one of our three

primary traffic types (i.e., unwanted) and serve as a point for comparison to



43

results published in earlier studies.

The unknown-tld queries are those for TLDs that are not officially recognized
by Internet governance organizations.

The rfc1918-ptr queries are PTR queries requesting names for private IPv4
addresses that exist in one of the private IP address ranges specified by RFC
1918. These are misdirected queries except within the private network using
that IP address range. (The campus network in which our DNS servers reside
does not use these addresses.)

A-for-A queries are queries for addresses with a query name string that
already contains an address and are typically due to a bug in one resolver
implementation: the Microsoft Windows NT stub resolver. [114] In Figure 3.8,
note the lack of diurnal fluctuations in the level of A-for-A traffic. This indicates
that this traffic’s sources are “always on” which agrees with the likely source
being a buggy resolver in a server’s operating system.

3.6.1.2 nx-nested-tlds Traffic

The unknown traffic category of nx-nested-tlds, meaning nonexistent nested
Top Level Domains, are queries resulting in NXDOMAIN response codes that
have a query string that appears to contain a domain name ending in a known
TLD embedded with an FQDN. For instance, TreeTop would count a query
for “www.example.com.example.com” that results in NXDOMAIN as an nx-
nested-tld.

These queries typically stem from resolver’s search list feature that, for con-
venience, allows users to enter names that are not FQDNs, i.e., a either a single
label or a partially qualified domain name. For instance, in the aforementioned
example, a user within “example.com” might configure their machine to search
“example.com”, then they could connect to “www.example.com” simply by
referring to it as “www”.

An issue arises when querying for names like “www.example.com” when
there is a search list configured. Technically, since it does not end in a “.”
(which would make it “rooted” and thus an FQDN), “www.example.com” is
considered a partially qualified domain name. The negative impact of this is
that a resolver might first a lookup for ‘www.example.com.example.com”, and
upon failure, lookup “www.example.com” which will succeed. From the user’s
point of view, everything works, however two queries were performed, one

unnecessarily.
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RFC 1535 [51] addresses this issue by prescribing that when a “.” exists in a
specified name, it should be assumed to be a FQDN and should be tried as a
rooted name first. From our measurements, however, it is clear that not every
name server or resolver does this: much of the nx-nested-tld traffic was due to
queries for resolvable FQDNs in our university’s domain that are incorrectly
being nested by appending our university’s domain again (presumably from a
resolver search list). A second significant source of such traffic was a campus
mail server performing black-list queries with a slight misconfiguration. Since
most black-list queries result in a negative response (NXDOMAIN), a single

Y7z

missing “.” at the end of a black-list’s domains name (thus making it only a
partially qualified domain name and therefore a candidate to apply the search
list) can cause the NXDOMAIN query to be retried after appending a domain
in the local machine’s resolver search list.

The high volume of nx-nested-tlds we observe are unnecessary repeated
queries (that always fail with NXDOMAIN) and are most often due to persistent

misconfiguration or ill-behaved resolvers rather than simply typos in FQDNS.

3.6.2 Overloaded Traffic

Next, we present an analysis of overloaded DNS traffic during a typical week.
We’ve identified two kinds of overloaded DNS traffic: black-list and dnsbugtest
traffic summarized in Figure 3.9 and Table 3.4 and described in more detail

below.
| Type | Queries/Sec |
blacklist 122 (98.4%)
dnsbugtest 2 (1.6%)
any 124 (100%)

Table 3.4: Distribution of overloaded DNS traffic types during the week of
March 3, 2008. Values are averages and their respective percentages of the total
overloaded traffic.

3.6.2.1 Black-list Traffic

Through the period of this week, TreeTop identified 220 domains as black-list
domains. Consideration of the names showed about 10% of these seem likely
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Figure 3.9: Overloaded DNS traffic during the week of March 3, 2008.

to be false positives. ? False negatives arise for black-lists that are in use, but
that never answer in the affirmative, i.e., always result in NXDOMAIN. The
accumulated NOERROR and NXDOMAIN query reply rates are shown in
Figure 3.9 and Table 3.4.

3.6.2.2 dnsbugtest Traffic

A second type of overloaded DNS traffic that we identified is what we call
“dnsbugtest” traffic. Described in [32], a system intentionally sends a malformed
DNS query to a server, in an attempt to determine the quality of service that
server is providing. Based upon the response, an assessment is made, and an

appropriate action may be taken to either rely upon or avoid that service.

?One exemplary false positive was similar to “10.mx.example.com” and resolved to 127.0.0.1.
This “example.com” domain was mistaken for a black-list because it does contain a nested TLD:
“mx” is Mexico’s country-code TLD (ccTLD). In actuality, this was a Mail-eXchanger (MX) for
“example.com,” inexplicably configured with a localnet IP address.
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As seen in Figure 3.9, dnsbugtest traffic is strongly diurnal. This suggests
that it is directly linked with user behavior. We believe the dnsbugtest technique
is used by Apple’s Bonjour Service, an implementation of Zero Configuration
Networking (Zeroconf [105]), and is thus tied to mobile computing.

3.6.3 Canonical Traffic

One of our primary interests in the canonical DNS traffic is in the query names
and the resulting A or AAAA answers. Itis this traffic that is likely the precursor
to IP traffic to and from the host IP addresses in the answers. We present
decompositions of this portion of the canonical traffic as hierarchical graphs.

3.6.3.1 DNS Queries for Addresses

In Figure 3.10, we show the domain tree hierarchy of query names which were
accompanied by address answers in DNS response traffic. We can discern the
following from this graph depicting ten minutes of DNS traffic:

® 492,586 address queries were answered and are represented in graph.

“u oy

(This is the prefix_count from the “.” root node.)

¢ Popular web services including Facebook, Google, and Weather.com,

represented approximately 15%, 5%, and 4% of those queries.

* Most of the answered queries for those services were for sub-domains.
(This suggests how the services content is distributed or how the service
is load-balanced using the DNS.)

* 47% of the answered queries for “com” sub-domains were rolled-up be-
cause those sub-domain’s query counts did not exceed the 3% aggregation
threshold. (This is the middle percentage, under the roll_up_count value
in the “com” node.)

¢ Within the campus, only queries in the IT department’s domain, “doit.wisc.edu,”

rivalled the quantities of queries to those commercial services.

¢ No TLDs other than “com” and “net” had sub-domains with 3% of the
answered queries.
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Figure 3.10: A TreeTop graph of query domains answered with Ad-
dresses during 10 minutes beginning at 1900 hours, Wednesday, March 5,
2008. The slash-separated query counts and corresponding percentages are
exact_count/roll_up_count/prefix_count. The aggregation threshold was 3%.
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3.6.3.2 IP Traffic by Domain

Lastly, we present sample general IP traffic measurements by domain, as imple-
mented in TreeTop by the method described in Section 3.5.

In Figure 3.11, we show a TreeTop graph prepared in real-time by running
TreeTop on a workstation to monitor that workstation’s own incoming traffic.
Note that this graph has the same hierarchical structure as that in Figure 3.10,
but instead of counting answered queries, the graph in Figure 3.11 counts bytes
received from source hosts known to the workstation by each node’s given
domain name.

We see, in Figure 3.11, that inbound traffic for this web browsing ses-
sion was received primarily from “facebook.com,” “collegehumor.com,” and
“youtube.com.” This includes both HTTP and HTTPS traffic; the latter demon-
strating the capability of our technique to identify the host names associated
with the sources of encrypted traffic with payloads that can not be externally
examined to determine the URL host name. 1

Lastly, in Figure 3.11, a small portion of the traffic (0.15%) was from IP
sources addresses for which no domain name was known. This traffic is counted
in the “unnamed” node and includes the DNS requests themselves (since a
host’s DNS server is necessarily identified by IP address), and would also

10Eor HTTP traffic, host names can often be identified using the “Host” field; this information
can not be externally observed in HTTPS traffic, but can be determined by our processing of the
corresponding DNS query responses.
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include, for instance, any web traffic from URLs specifying hosts by IP address
rather than DNS-resolvable host name.

This example demonstrates how the combination of just transport layer
information and the associated DNS traffic can be used to measure IP traffic in
general. Thus our technique avoids payload dependencies in traffic classifica-
tion in situations when the payload is simply unavailable, i.e., when the traffic
was either encrypted or was recorded without payload (as IP flow data).
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Figure 3.11: A TreeTop graph of traffic destined for a single workstation during
a 5-minute web browsing session. The values shown are volume of bytes received
from the domain specified in each node; the aggregation threshold was 5.5%.
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4 FLEXIBLE TRAFFIC AND HOST PROFILING VIA DNS RENDEZVOUS

The approach is interesting, and
for the reasons Plonka and Barford
note, namely that port-based
metrics no longer work. The gains
they see using DNS information is

quite impressive.

anonymous reviewer of [86], 2011

In this chapter we fully exercise our rendezvous-based methods as imple-
mented in TreeTop, developed in the prior chapter. We do this as a case study
by analyzing the traffic involving large user-populations’ client hosts. We also
define our direct and indirect DNS rendezvous-based classification methods,
and develop a host-profiling strategy that is particularly useful to classify traffic
that is not arranged via DNS rendezvous. [86]

4.1 Overview

The past decade has seen an explosion of new network applications such as
peer-to-peer (P2P) file sharing, online social networks, gaming, and VoIP. Each
application requires certain network resources so that users have a satisfactory
experience. The past decade has also seen many forms of malicious network use
and abuse such as denial-of-service attack bot nets, phishing scams, and thefts
due to compromised host or protocol insecurity. Both the ability to discriminate
between application types in live traffic streams and to identify suspicious hosts
is critical in order to ensure the desired level of application performance and
reliability in an enterprise.

In this chapter, we describe a new method for traffic classification that taps
a traffic-independent source of information and enables flexible organization of
traffic types into arbitrary groups. Our classification methodology is based on
monitoring and analysis of the DNS traffic that most Internet applications use
for host rendezvous. Specifically, through careful tracking of client IP addresses,
alpha-numeric domain names, and answer IP addresses in rendezvous traffic,
we apply classification labels to end-hosts and their traffic reported by flow-
export data. Additionally, we present the notion of host profiling as a method
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for expanding traffic classification in cases where there is not a direct match
between rendezvous traffic and application traffic.

To assess and evaluate the capabilities and effectiveness of our method, we
collect DNS query-response traffic and flow-export records from our campus
network infrastructure for over a year. Analysis of this data exposes many
interesting features such as well known diurnal behavior, frequent spikes in
DN traffic, and a qualitatively different DNS behavior for subgroups within
the user population in a case study we present that considers traffic for a typical
day. We separate two distinct user populations: a large office/staff group and
a large residential /student group. We characterize and contrast the DNS and
wide-area traffic of each group showing that, while the general types are similar,
the quantity of each type is dramatically different. In particular, over 90% of the
office traffic is classified by domain name. Less of the residential traffic can be
classified by name, ostensibly due to the use of P2P and other applications that
do not rendezvous based solely on the DNS. Serendipitously, however, we find
that any DNS rendezvous classification discriminates traditional client-server
application from P2P application traffic.
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4.2 Empirical Data sets

In this chapter we are interested in applying information gleaned from DNS
queries and corresponding replies, exchanged between end-hosts and their
trusted recursive name servers within an enterprise, to the task of classifying
that enterprise’s wide-area traffic. To this end, we monitor our campus’ traffic at
two observation points: (i) the campus clients’ name servers, and (ii) one of the
campus border routers that handles much of wide-area traffic including that for
the commodity Internet. We perform full packet capture at the campus domain
name servers, and collect packet-sampled flow data at the border router. ! Thus,
the payload of the DNS traffic is recorded, but the application traffic payload is
not. Our interest is in the “canonical” DNS traffic, i.e., the standard DNS traffic
expected to precede application traffic that consists of a query by fully-qualified
domain name (FQDN) and an answer containing one or more IP addresses
associated with the query name.

Prior work has shown that traffic classification results can vary widely
based on the trace traffic mix and observation point [63]. As such, while we
monitor traffic for a single institution, we select two of its end-host/client
populations that have very different characteristics, namely an office and a
residential population. To expose the details, we present results for a single
representative day. (Classification results from other days are consistent with
the results reported here.)

Table 4.1 summarizes the characteristics of the data sets. We studied, in
detail, the traffic on one typical day selected arbitrarily: April 17, 2009. Both
the office and residential data sets consist of (i) all the recursive DNS traffic
between end-hosts and the campus DNS service and (ii) the packet-sampled
flow records collected at the campus border that represent wide-area traffic (see
also Figure 4.4); only flow records involving campus hosts for which we’ve seen
recursive DNS traffic involving the trusted campus DNS server are considered.

4.2.1 Office Traffic

The “office traffic” involves a group of staff employees on the campus. The
office users are bound by the campus Appropriate Use Policy for information

technology resources (that tolerates incidental personal use) and their end-hosts

IThe flow data is based on a 1 in 1024 packet sampling rate using the “cflowd” feature on a
Juniper router with 10-gigabit Ethernet interfaces; we report all our target traffic volume measure-
ments by bits or bytes (approximated by multiplying sampled values by 1024).
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Data Set Clients | Unique | DNS DNS Wide-Area

FQDNs | Reply Reply Out / In

Pkts Volume Volume

(ave. bps) (ave. bps)

Office 614 194K | 560K 12.2K | 753K / 5.66M

Residential 9,819 15.7M 360K | 244M / 276M
(subpop.) (5,583) | (143 K)

Table 4.1: Characteristics of 24-hour data sets analyzed. The average wide-area
traffic volume is estimated from packet-sampled flows. The parenthesized
values are for a residential subpopulation that was used for the TreeTop-based
results in Section 4.4. From the inbound and outbound volume values, we
see that the office population primarily consumes wide-area Internet content,
whereas the residential population both consumes and provides a significant
amount of content.

are typically owned by the university and located in campus offices with wired
Ethernet connections. During the course of the day under study, we observed
614 end-hosts with an average (over 24 hours) of 180 active hosts performing
DNS queries per 5 minutes. The office wide-area traffic and DNS traffic volume
and rate values are shown in Tables 4.1.

4.2.2 Residential Traffic

The “residential traffic” involves a subset of the students living in residence
halls on a campus. The residential users are bound by the same Appropriate
Use Policy as the office users, but their end-hosts are privately-owned and
located in private residences that have wired Ethernet connections. During the
course of the day under study, we observed 9,819 end-hosts with an average
(over 24 hours) of 1,886 active hosts performing DNS queries per 5 minutes.
The residential wide-area traffic and DNS traffic volume and rate values are
shown in Tables 4.1.
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4.3 Analysis Method

In this chapter we analyze and classify the DNS and wide-area (application)
traffic using an improved version of the TreeTop tool [85]. Specifically, we've
enhanced TreeTop to track and report the relationship between IP addresses
and domain names on a per-client basis.

In short, TreeTop processes pcap traces of combined DNS and application
traffic, requiring the payload of DNS packets but only the transport header
information of other traffic to be classified. It observes all DNS replies to each
client and, when there is a successful response (i.e., NOERROR code) to a
DNS query for an IP address (i.e., type A or AAAA), TreeTop (i) stores the
query name in a central domain tree (an n-ary prefix search tree), (ii) stores
the IPv4 and/or IPv6 address answers in a client-specific address tree (a binary
prefix search tree), and (iii) links nodes in the client’s address tree to their
corresponding nodes in the domain tree. Thus, these data structures store
per-client DNS rendezvous state information as to which remote IP addresses are
known by domain name. Subsequently, when TreeTop observes application
traffic (e.g., the wide-area traffic at a network’s border router), it uses the ren-
dezvous state information to label the client traffic as either “unnamed” or
as “named,” and accumulates per-client traffic counters (in bytes or packets)
for those meta-categories as well as for hierarchical sub-categories by domain
name.

To prepare the data sets for TreeTop, we synthesize pcap files from the flow
data (with a modified flow-export utility [5, 95]) and merge them with the DNS
pcap data (using mergecap) to form one coherent input data set. Note that,
in general, it is sufficient for the DNS pcap records to be observed before the
application traffic pcap records (from the flow data); so, for off-line studies,
we can perform a single batch analysis for an entire day using TreeTop by
first reading all DNS traffic data then the application traffic data. By contrast,
performing an online analysis (at one observation point) obviates the need to
carefully interleave the DNS and target traffic records based on their packet
arrival times because the DNS responses are interspersed in the trace with the
target traffic (to be measured) and would be observed before the subsequent
associated target traffic.
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4.3.1 Traffic Labels
4.3.1.1 Direct Classes

Direct DNS rendezvous-based traffic classification involves at least two sorts of
traffic classes. The first, are the “named” and “unnamed” traffic classes, which
simply indicate whether a client end-host knows the traffic’s remote IP address
by a domain name as the result of a canonical “forward” DNS query to translate
that name to an address. The second and more challenging traffic classes are
the domain names themselves. To deal with the innumerable fully-qualified-
domain-names (FQDNSs) that may exist in the world-wide DNS, we treat them
hierarchically. For instance, traffic involving the FQDN “www.example.com”
is in the “com” class, the “example.com” class, and “www.example.com” class,
and thus can be presented at a number of levels of granularity. One can imag-
ine categorizing domain names by common owner (e.g., “facebook.com” and
“fbcdn.net”), similar purpose (e.g., weather or sports content), or even applica-
tion groups such as WWW, FTD, Streaming, etc. We leave such classification
by policy or operator objectives for future work by using readily available

references [7].

4.3.1.2 Indirect Classes

Our indirect DNS rendezvous classification utilizes host profiles that are defined
by configurable sets of domain names. We defined three such profiles for
P2P clients. The P2P profiles are: “Torrent” (BitTorrent client applications,
directories, and trackers), “Talk” (Skype and Google Chat applications), and
“Game” (Massively Multiplayer Online Games). For instance, a client end-host
that issued a DNS query trailing with “bittorrent.com” or “utorrent.com” will
be profiled as a “Torrent” client because of its ostensible interest in a popular
BitTorrent client application. Likewise, a client end-host that issued a DNS
query trailing with “thepiratebay.org” will be profiled as a “Torrent” client
because of its interest in this popular BitTorrent tracker site. These host profiles
then, are used to label traffic classes. For example, the “Torrent” label would be
used for traffic exchanged by a host having only the “Torrent” client profile; the
“Talk+Game” label would be used for traffic involving a host having both the
“Talk” and “Game” (but not “Torrent”) profile. Note that we do not claim that
“Torrent”-labeled traffic is necessarily BitTorrent traffic; instead, we claim that it
certainly involves an end-host that matched the Torrent profile and is thus (at
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least indirectly) associated with this P2P application. Each profile is defined by
a set of domains that were assembled from readily available references [7, 13].
The Torrent domains (31) are popular BitTorrent Clients from Wikipedia and
from Alexa’s top “Torrent Directories and Tracker Domains.” The Talk domains
(2) are from observed behavior of the Skype application and Google Chat. The
Game domains (35) consist of a well-known online game domain and Alexa’s

top “Massive Multiplayer Online Domains.”

4.3.1.3 Port-based Classes

In addition to our rendezvous-based labels, we use traditional port-based appli-
cation labels from an existing classifier [4] that has been used in prior work. [63]
These are: “WWW,” “P2P,” “FIP,” “Net. oper.,” “Mail/News,” “Streaming,”
“Encryption,” “Games” (distinct from “Game” which is an indirect host profile-
based label), “Chat,” “Login,” “Tunnels,” “Other,” and “UNKNOWN.” While
many services can be uniquely identified solely by that service’s FQDN, port-
based classes offer the advantage of familiarity and of distinguishing amongst
multiple services that happen to be identified by a single (unspecific) FQDN.

4.3.1.4 Classification Order

In this study, we take a pragmatic approach based on flexible classification that
emphasizes the complementary strengths of each method. First, we label the
traffic with the direct DNS rendezvous-based classes (named and unnamed).
Next, for results that involve port-based classification, we label the traffic using
port-based classes, nested within “named.” Finally, we label unnamed traffic
with indirect labels based on profiling hosts by DNS rendezvous. This initial
choice of order, we argue, is from the least to most speculative. In the general
case, a complementary method, such as port-based, could be performed at any
point; other orderings provide opportunities to explore how the rendezvous

classes overlap with other classification schemes.
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44 Results

In this section we report the results of a “day in the life” of an office and a
residential user population, in terms of their DNS and wide-area application
traffic.

4.4.1 DNS Traffic Analysis

Figure 4.1: A treemap of domain popularity for all domain names queried
that were answered with IP addresses during one day. This treemap for the
residential population represents 142,594 unique FQDNSs. The relative size of
the rectangles indicate the domain names’ relative popularity based on the
number of IP address answers that a client knows as being associated with that
name. The more clients that knew IP addresses associated with a given domain
name, the more prominently it is shown.

Figures 4.1 is a treemap of domain names based on their popularity for the
residential population. (The treemap for the office population was visually
similar and, thus, not shown here.) For the day under study, the residential
population resolved roughly 7 times more unique FQDNs than the office pop-
ulation (142.6K vs. 19.4K) in DNS queries from about 9 times as many client
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end-hosts (5,583 residential vs. 614 office clients). From values in Table 4.1
we can see that there are roughly 32 and 26 unique FQDNSs per office and
residential client end-host, respectively, on this day. Many of the most popular
domains are common between the office and residential populations, includ-
ing “google.com”, “facebook.com” and the associated Content Distribution
Network (CDN) “fbcdn.net”, “yahoo.com”, “apple.com”, “microsoft.com” or
“msn.com”, and the local campus’ domain. The least popular domains, such as
those that only a single host might know, are minuscule in the treemaps, and
thus form the light gray fields in the lower right of the rectangles.

To further explore the popularity of FQDNs amongst these populations,
Figure 4.2 shows the unique FQDNs known, ordered by popularity, i.e., the
FODN numbered 1 on the horizontal axis is the most popular and that num-
bered 10 is the tenth most popular within the given user population. This figure
clearly shows that most FQDNs are known by only a small percentage of the
population. Specifically, only those FQDNSs in the top 1000 are known by more
than 5% of the hosts. The raw data from TreeTop shows that more than 68% of
the FQDNs were known to only a single client end-host during this day. This
underscores the need to aggregate the numerous FQDNs in some fashion, and
here we do so hierarchically, beginning with TLDs, then second-level domains,
and so on.

We also examined the distribution of clients based on the number of unique
remote IP address answers known by domain name to the client. For these
data sets, we find that 95% of the office and residential hosts learned (via DNS
answer replies) of fewer than 1000 unique remote IP addresses by a domain
name, and that more than 99% of all the hosts learned fewer than 2000 unique
remote IP addresses by domain name throughout the entire course of this day.

In Section 4.4.2.4, we report the results of using these P2P profiles to classify
traffic that doesn't directly involve the DNS for rendezvous. Appendix A lists

the specific domain names associated with each of our host profiles.

4.4.2 Traffic Classification Results

Because our DNS domain name-based classification approach uses drastically
different labels than prior classification work, we do not have a straightforward
means of comparing performance. However, because our direct DNS ren-
dezvous approach classifies based on domain names and IP address answers
observed in each client’s DNS traffic, it can be considered tacit ground truth.
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Figure 4.2: Popularity of FQDNs by client end-hosts during one day. Here we
see that the most popular 10 and 100 FQDNs are known in common to more
than 50% and 10% of clients, respectively. Note that the popularity ranking for
office and residential populations were determined independently, thus it is
unlikely that they share the same FQDN at a given rank.

That is, we are certain that the client end-host had the opportunity to know the
remote IP address by that name. However, we are guided by finding 1 of Kim
etal., [63]:

[The] port-based approach still accurately identifies most legacy
applications [...] this suggests that ports still possess significant
discriminative power in classifying certain types of traffic.

Our DNS rendezvous-based approach and a port-based approach are similar in
that both of them label traffic based solely on easily-observed traffic elements,

instead of labeling using heuristics and tunable thresholds.
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4.4.2.1 Port-based Classification

We first classify the inbound and outbound traffic for our two populations
using a port-based approach to set a baseline for comparison. Specifically,
traffic identified by well-know ports is labeled either as one of 12 pre-defined
application groups or UNKNOWN.
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Figure 4.3: Port-based classification of traffic (bytes) for the office and residential
populations during one day. While 93.9% (outbound) and 96.6% (inbound)
of the office traffic is labeled (i.e., not UNKNOWN), only 18.6% (outbound)
and 76.9% (inbound) of the residential traffic is labeled due to the different
application traffic mixes. Note the coarse labeling as only the WWW, Games,
and Streaming applications represent 10% or more of the traffic by volume.

Figure 4.3 shows the classification of traffic using the simple port-based
method. 2 Here we see a stark difference between the office and residential
traffic; most of the office traffic is classified, but much less of the residential

traffic is classified. Furthermore, the application mix differs greatly in these

2Qur application group classes are those identified by CoralReef [4], specifically, coral-3.8.4,
and thus are equivalent to those used in the work of Kim et al. [63].
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two populations, with over 80% of the office traffic being labeled as WWW and
only about 5% unknown, whereas less that 10% of the outbound residential
traffic is labeled WWW, and more than 80% being left unidentified.

4.4.2.2 Direct Rendezvous-based Classification

We now classify the same office and residential traffic by our direct DNS rendez-
vous-based approach using labels as described in Section 4.3.1.1. We consider
two broad rendezvous-based classes, “named” and “unnamed,” then detailed
sub-classes by domain name.

Figure 4.4 shows the time series volume for the named and unnamed por-
tions of the office and residential traffic throughout the day under study. We see
that nearly all office traffic involves DNS rendezvous and can be named. While
a significant amount of inbound residential traffic can also be named, 32.1% (in-
bound) and 93.3% (outbound) is unnamed and, therefore, apparently does not
employ the DNS for rendezvous. Also, note the correspondence between the
portion of named traffic identified here by our method and that labeled by the
port-based method shown in Figure 4.3; this suggests that DNS-named traffic
very often uses well-known ports, e.g., traditional client-server applications.

Figure 4.6 shows treemaps of the office and residential traffic. The unnamed
traffic, to the left in each of the maps, is the traffic from remote peer source
IP addresses that the local client end-host did not know by DNS name, i.e.,
traffic for which the local end-host did not arrange via DNS rendezvous. The
named traffic, to the right in each of the maps, is sub-classified based on the
traffic volume from source IP addresses associated with each specific domain
name known by destination client end-host. In Figure 4.6a note that about
90% of the office traffic (by packet volume) is named. The following domains

a7

are amongst the most prominent sources of traffic: “msn.com”, “google.com”
and “googlevideo.com”, “facebook.com” and the associated “fbcdn.net”. In
Figure 4.6b, we see that only about half of the residential traffic is named. Since
we are confident that the significant amount of unnamed residential traffic
had no DNS preamble, thus it is likely to have been arranged by either a P2P
rendezvous mechanism, an application-specific rendezvous mechanism, or an
out-of-band rendezvous technique.

Figure 4.5 shows the time series residential traffic volume detailed by specific
domain names, specifically the five domains involving the highest traffic volume.

(This corresponds to the residential named traffic shown in Figure 4.4b.) Of
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the named residential inbound traffic, i.e., from source IP addresses that the
clients know by domain name, the following are amongst the most significant:
“facebook.com”, “googlevideo.com”, and “edgefcs.net”. The prominence of
this last domain led us to discover that the majority of traffic that is named by
our method yet UNKINOWN to the port-based method is associated with the

“edgefcs.net” domain; we discuss this in detail in Section 4.4.2.3.

4.4.2.3 Hybrid Classification

We demonstrate how we can improve port-based classification when it is per-
formed in combination with our rendezvous-based method.

First, consider Figure 4.7a which shows the port-based application groups
overlaid within the DNS rendezvous-based classes, named and unnamed. In
the lower right, a significant portion (6.9%) “named UNKNOWN" traffic is
shown. This means our DNS rendezvous method classified that traffic as being
associated with remote IP addresses that the residential clients knew by one or
more domain names. However, the port-based method did not identify this
traffic as belonging to a known application group, hence it was classified as
“UNKNOWN.”

Now consider Figure 4.7b, in which we drill down on the “named UN-
KNOWN” traffic to examine this class by domain name. We see clearly that the
majority of it is associated with the “net” TLD, and furthermore nearly all of
that with the second-level domain “edgefcs.net”. This domain hosts streaming
content (presumably on Macromedia Flash Communication Servers, hence
the name “fcs”) atop the Akamai CDN. These servers deliver content by the
proprietary Real Time Messaging Protocol (RTMP, port 1935) or by tunneling
via HTTP (port 80) and HTTPS (port 443). Now, informed by our rendezvous-
based approach, the formerly “named UNKNOWN" traffic can be labeled as
Streaming, leaving only 0.2% of the total traffic as “named UNKNOWN.” (Fig-
ures 4.7a and 4.7b are captioned with “Before” to indicate they were prepared
before this Streaming traffic was identified by port, as show in Figure 4.7a.)

This example illustrates the power of DNS rendezvous-based classification
in three ways: (i) traffic for a popular streaming protocol was shown promi-
nently (as “edgefcs.net”) even though the well-known ports database did not

have an entry for this protocol, 3 (ii) the “forward” domain name by which

3We have provided an entry for the macromedia-fcs port to CAIDA to update the CoralReef
application master.
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the clients accessed this service was the only good indication of the traffic’s ap-
plication (since the content was hosted on a CDN, neither the service’s reverse
DNS names nor its IP addresses indicated the application), and (iii) the fact
that this traffic could be named suggested that it is a traditional client-server
application and thus should be able to be labeled by an improved port-based
method.

4.4.2.4 Host Profiling and Classification Results

We now apply our indirect DNS rendezvous-based approach, using labels as
described in Section 4.3.1.2.

As shown in Figure 4.4b, our direct DNS rendezvous-based classification
method determined that only 6.7% of the outbound residential traffic was
named, and, in Figure 4.3, we see the majority of this traffic is UNKNOWN by
port. We expect this unnamed traffic might be dominated by P2P file transfer
(e.g., BitTorrent), game, and/or talk (e.g., VoIP) traffic, i.e., those groups of
applications that do not typically use the DNS for rendezvous and also often
use unreserved (not well-known) port numbers.

To classity this traffic, we employ the DNS rendezvous information indirectly
by labeling local hosts according to P2P client profiles based on their DNS ren-
dezvous activity. The resulting assignments are shown in Figure 4.8.

Then, in Figure 4.9, we correspondingly label portions of the unnamed
residential outbound traffic (93.3% unnamed, as seen in Figure 4.4b). That is,
when traffic is classified as “unnamed,” we determine if that traffic involved
one of the 1,252 P2P profiled residential hosts, and if so, we label that portion
of the traffic by the given host’s P2P profile name: “Torrent,” “Talk,” and/or
“Game.” For instance, clients running the Skype application are known to
resolve “ui.skype.com”, thus this is one of the domain names that causes it
to fit the “Talk” P2P profile. While somewhat speculative, DNS rendezvous
profiles are flexible and configurable; we find that our initial effort attributes
82.3% of the otherwise unlabeled traffic to the 22.4% of the hosts that fit a P2P
profile, indicating the traffic was sourced from hosts that had resolved popular

Torrent, Talk, or Game-related DNS domain names.

4.4.2.5 Results Summary

Table 4.2 summarizes the overall classification performance of the port-based

method and ours.
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Data Set | Port-known | DNS-named DNS- DNS-named

and | named and

Port-known DNS-Profiled

Office Out 93.9% 80.5% 81.8% 91.9%
Office In 96.6% 91.8% | 93.2% 95.4%
Residential Out 18.6% 6.2% 6.7% 83.5%
Residential In 76.9% 58.3% 67.9% 88.2%

Table 4.2: Traffic classified (bytes) by each method: Port-known (by the port-
based method), DNS-named (DNS rendezvous named), DNS-named and DNS-
Profiled (DNS rendezvous named plus unnamed matching a P2P host profile).

The significant proportion of “DNS-named” traffic that also has “Port-
known” for the office traffic (98%) suggests that one can be somewhat confident
in the port-based method there. The lesser proportion for the residential traffic
(86% outbound, 93% inbound) suggests that port-based result is suspect given
that traffic mix. Lastly, for residential outbound traffic, we realize a 64.9% in-
crease in volume classified by our DNS rendezvous method over the port-based
method.
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Figure 4.4: Wide-area traffic rate, as observed at campus border during one
day. Outbound rate (from campus) is plotted above the horizontal axis and the
corresponding inbound rate (to campus) is plotted below. Clearly the office
population is primarily a consumer of wide-area Internet content, whereas the
residential population is both a significant consumer and provider of content.
The portion of “named” traffic (i.e., by DNS rendezvous) is shaded; while
81.1% (outbound) and 93.2% (inbound) of the office traffic is named, only 6.7%
(outbound) and 67.9% (inbound) of the residential traffic is named.
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Figure 4.5: Wide-area traffic rate for the residential population, as observed
at campus border during one day, labeled by domain. Outbound rate (from
campus) is plotted above the horizontal axis and the corresponding inbound
rate (to campus) is plotted below. The portion of “named” traffic (i.e., by DNS
rendezvous) is labeled by top domains, showing that merely five domains
identify approximately half of the inbound residential traffic.
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Figure 4.6: Treemaps of inbound traffic (packets) from domain names. The
relative sizes of the rectangles indicate the proportion of traffic (packets) from
the given domain name. That is, the more traffic from that domain, inbound to
the clients, the larger its rectangle. Here we see clearly that much more of the
office traffic is arranged by DNS rendezvous than the residential traffic.
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Figure 4.7: Treemaps of residential inbound traffic (packets) and residential
“named UNKNOWN” subset of that traffic (bottom). Note there is a significant
amount of “named UNKNOWN” traffic in Figure 4.7a that we show detailed by
domain names in Figure 4.7b; the majority of this traffic was associated with the
domain “edgefcs.net” - a domain that hosts streaming content atop a content
distribution network. Thus, we can now label that content more appropriately
as Streaming traffic.
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Figure 4.8: Residential subpopulation host counts by P2P application type
based on their DNS queries during one day. Here we see that 1,252 hosts (22.4%
of 5,583 total) appear to run one or more P2P applications. (Parenthesized
values are totals for that subpopulation’s circle.)
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Figure 4.9: Residential unnamed outbound traffic volume (bytes) by P2P client
profile. Here we see that 67.1% of this unnamed outbound traffic involved local
hosts that were profiled as BitTorrent clients based on their DNS rendezvous
activity. (Parenthesized values are totals for that subpopulation’s circle.)
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5 ASSESSING PERFORMANCE OF INTERNET SERVICES ON IPV6

The fresh angle of looking at the
performance when using IPv6 vs.
IPv4 is a strength, and the
measurement methodology seems
to be a partially useful

contribution.

anonymous reviewer, 2013

In this chapter, we report on a novel application of rendezvous-based traf-
fic classification. Having realized that the only link between a given service
operating on both IPv6 and IPv4 is the rendezvous mechanism, we present a
passive measurement technique to compare performance of these services on
both protocol versions during the IPv6 deployment and simultaneous operation
with IPv4. [87]

5.1 Overview

With the exhaustion of the IPv4 address space, the deployment and operation
of Internet Protocol version 6 (IPv6) in production networks is upon us. Indeed,
years have passed since World IPv6 Day, June 8, 2011, when numerous Internet
service providers demonstrated their readiness by providing their services
over IPv6, and many continue to do so. There are myriad reports of significant
amounts of IPv6 traffic being transited [30], suggesting that more and more
users and services are utilizing IPv6.

However, achieving good end-to-end performance over IPv6 is challenging
for a number of reasons. First, [IPv6 must be deployed and operated in parallel
with the existing IPv4 infrastructure. Second, new network configuration tasks
must be introduced and performed. Also, network monitoring and performance
assessment is more complicated with IPv6 because there are now populations
of users with differing environments due to multiple IP versions; many users
have IPv4, some might have only IPv6, and an increasing number have both,
i.e., “dual-stack” hosts. Such challenges motivate the need for general methods
to assess IPv6 performance during deployment and during the long-lived
simultaneous operation of both protocol versions.
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In this chapter we present a new method for assessing the performance of
Internet services over IPv6. Our objective is to (i) accurately assess performance
based on passive measurements, (ii) provide the capability to compare and
contrast IPv6 performance with that of IPv4, and (iii) provide an assessment
that is both independent of the end-hosts and the Internet services they access.
We perform this assessment based on passive measurements gathered at two
observation points: one at or near the clients’ recursive Domain Name System
(DNS) resolver and the other at any point along the end-to-end path. Our
approach does not need privileged knowledge of the Internet services nor
special access to the end-hosts involved in the exchange of traffic. We then
develop a framework and tools to detect and inspect performance differences
between IPv6 and IPv4 for Internet services.

Our performance assessment method is predicated on the fact that client
hosts, on IPv4 and IPv6, necessarily employ some rendezvous mechanism to
discover the IP address(es) of an Internet service before interacting with it. For
many types of port-based services (e.g., HTTP, HTTPS, SMTP, and IMAP) and for
most of those with early IPv6 support, the DNS is that rendezvous mechanism.
For instance, users’ client hosts rendezvous with Facebook, an Internet service,
by resolving the domain name “www.facebook.com.” When a service supports
IPv4 and IPv6 simultaneously, clients use a common rendezvous mechanism
for both Internet protocol versions, such as the DNS.

Our framework determines service performance in three steps: (i) measure-
ment in two forms: (a) full capture of low-volume DNS query/response packets
and (b) collection of 5-tuple IP flow export records with duration and byte count
of high-volume application traffic; (ii) classification of flows source and/or
destination IP addresses by matching them to their corresponding domain
names (when possible) based on query names and the resulting IP addresses
in DNS responses; (iii) performance inference by constructing a distribution
of flow bit rates and applying statistical techniques.

The common DNS rendezvous mechanism is an aid in the transition to
IPv6 because it keeps the user from having to make the difficult decision about
whether to use IPv4 or IPv6. Modern dual-stack Internet hosts issue DNS
queries to request IPv6 and/or an IPv4 address(es) for the domain name of the
desired service. When a given service supports both IPv4 and IPv6, the client
host, having retrieved one type of address or both, makes a decision as to which
peer address to use; this decision is typically performed in the IP implementa-
tion, resolver, or application. For example, a dual-stack client wishing to access
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a World-Wide Web (WWW) service named “www.example.com” might issue a
AAAA (or “quad-A”) query for that service’s IPv6 address: 2001:0db8::2:1. It
might also, simultaneously or subsequently, issue an A address query for that
service’s IPv4 address: 192.0.2.1. One or the other of these peer addresses will
be selected, possibly influencing the resulting performance and user experience.

We demonstrate the capabilities of our method by collecting traffic trace
data for a campus population having dual-stack client hosts. This trace data,
collected on World IPv6 Day, consists of 24 hours of: (i) all recursive DNS
queries issued by those client hosts and (ii) complete flow export records (from
NetFlow configured without sampling, i.e., non-packet-sampled) for those
client hosts’ traffic as it traverses a campus core router.

During the course of this work we encountered a number of challenges. We
desire a common stream and storage format that can encapsulate rendezvous
information (i.e., DNS queries and responses), packet capture, and flow export
information, for online and offline processing. Furthermore, we require high-
performance C data structures and other APIs available in a scripting language
for rapid prototyping and ad hoc analysis and reporting. Another challenge
arose from the complication inherent in dual-stack hosts: namely, they have
multiple IP address “identities” and it is non-trivial to determine by passive
observation whether or not a given IPv4 and IPv6 address are actually bound to
the same host. This is pertinent because hosts often use one IP address for their
DNS queries and responses, and the other to interact with other remote hosts;
by observation, it can seem as if the host has a covert channel by which it gleans
rendezvous information. We addressed this by developing a consensus-based
strategy to infer IPv6 rendezvous information. Other challenges arose from the
way in which Internet operators are deploying the IPv6 portion of their services.
For instance, we found that many domain names were multiplexed to one IPv6
address, sometimes for seemingly unrelated services. This practice, sometimes
called “virtual hosting,” was popularized in the IPv4 Internet, in part, because
of address scarcity. This suggests IPv6 service architects and operators mimic
techniques used with IPv4 that may not be necessary nor be ideal with IPv6.

Our results expose various performance characteristics of Internet services
that support IPv6: (i) Robust measures of services’ flow bit rate distributions
vary significantly by time of day, numbers of active local clients, and by IP
protocol version (6 or 4). (ii) These rate characteristics differ amongst services.
(ii1) There are regimes of time in which IPv6 flow bit rates exceed those of IPv4
and others where the IPv4 rates exceed those of IPv6.
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5.2 Method and Implementation

Our goal is to develop a performance assessment framework with the following
characteristics or features:

¢ a method employing rendezvous-based traffic classification and robust
statistics to determine and expose IPv6 and IPv4 performance phenomena
for Internet services.

¢ an extensible mechanism for encapsulating the requisite rendezvous and
traffic trace data prior to classification and for annotating IP traffic trace

data afterward.

¢ a mechanism for transmitting streams of the encapsulated data to dis-

tributed framework components for online analysis in near real time.

¢ aserialized data file format for storing the encapsulated and annotated
data for offline analysis, as in this study.

* ascripting language interface for the high-performance C code data struc-
tures and APIs that can be used to build distributed framework compo-

nents and to conveniently run ad hoc analyses and reports.

We utilize this framework to assess the performance of traffic exchanged
between hundreds of IPv6-capable campus hosts and Internet services with
which these hosts rendezvous via the DNS. To this end, we’ve reimplemented
TreeTop (previously a standalone tool) by incorporating the features above as
the TreeTop Framework. The framework is shown in Appendix B. TreeTop now
processes “nmsg” streams rather than pcap input. The nmsg format [15] is an
extensible encapsulation scheme, based on Protocol Buffers [53], that provides
both transmission (for online analysis) and serialization to a data file (for storage
and offline analysis.) Here, we first give a brief overview and highlight our
TreeTop framework’s features.

TreeTop processes incoming streams of DNS and flow export data for ap-
plication traffic. The streams are network messages (nmsg) of two types: (i)
DNS query and response (dnsqr) and (ii) NetFlow data (nfdump). The dnsqr
messages contain all the interesting parts of a DNS query and response plus
the time observed and delay between the corresponding query and response.
The nfdump message contains flow data with typical transport header infor-

mation and other attributes of unidirectional 5-tuple IPv4 and IPv6 flows. We
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introduced the nfdump message type to ISC’s nmsg framework and based it
upon the records from the nfdump tool [14]. A sample nfdump message is
shown in Figure 5.1.

In an input nmsg stream, TreeTop observes the dnsqr messages that contain
DNS reply information to each client; when there is a successful response
to a DNS query for an IP address, TreeTop (i) stores the query name in a
central domain tree (an n-ary prefix search tree), (ii) stores the IPv4 and/or IPv6
address answers in a client-specific address tree (a binary prefix search tree), and
(c) links nodes in the client’s address tree to their corresponding nodes in the
domain tree. Thus, these data structures store per-client DNS rendezvous state
information as to which remote IP addresses are known by domain name(s).
Subsequently, when TreeTop observes application traffic flows (in nfdump
messages in the input stream), it uses the prior rendezvous state information
to annotate the nfdump message with source or destination domain names
(corresponding to the source and destination addresses), and accumulates per-
client traffic counters (in bytes or packets) for those meta-categories as well as
for hierarchical sub-categories by domain name.

For the data sets in chapter, we collect a pcap trace of DNS traffic on the
recursive name servers used by the campus population described in Section 5.3.
We also collect NetFlow version 9 flow export data from a campus core router
that forwards traffic between the population and the Internet beyond the cam-
pus border. To prepare the data sets for TreeTop, we convert the pcap traces
of DNS using nmsgtool [15] and convert nfdump using a tool of our own (the
nfdump2nmsg script). Subsequently, these sets of messages are merged by
timestamp so that the DNS and flow information are properly interleaved to
form one coherent input stream in which DNS query responses will be observed
prior to their associated application traffic flow data.

To annotate flows with domain names (or domain suffixes) as classification

labels, we utilize two rendezvous-based labeling methods: direct and consensus.

5.2.1 Direct Labeling

Direct DNS rendezvous-based labeling is performed when TreeTop discovers
that a given client end-host knows a peer remote IP address by a domain name
as the result of a canonical “forward” DNS query to translate that name to
an address. In this case, an nfdump record can be annotated because the
client involved has used the DNS to resolve the name of its peer; we call this
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[2011-06-08 21:52:26.000000000] [7:1 WISC nfdump]
sa: 203.0.113.71

da: 192.0.2.32

sp: 80

dp: 55983

pr: 6

ibyt: 396630

td: 0.064000

snamed: CLIENT_DNS_NAMED
sn: static.ak.facebook.com
ip_version: IPV4

Figure 5.1: An nfdump message in presentation form, annotated with source
domain name (sn).

The source name is known because the client (with the destination address in
da) performed an A query that resulted in this peer source address (sa) as the
answer.

“CLIENT_DNS_NAMED”. For instance, the sample nfdump record in Figure 5.1
has been annotated with “static.ak.facebook.com”, as shown in the sn (source
name) field.

This direct labeling is the most reliable, but it requires the client host to
use the same IP address as both the source of its DNS queries and as its local
address when exchanging related application traffic. If that is not the case or if
TreeTop does not observe a given client’s DNS query response that contained a
given peer IP address in an answer, we resort to “consensus” labeling.

5.2.2 Consensus Labeling

In our observations, the dual-stack hosts use just one of their IP addresses as the
source of their DNS queries: a host’s IPv4 address. Thus, for IPv6 flows in this
chapter’s work, we often can’t perform direct labeling since the client host’s IPv6
address is not usually the client address in the corresponding dnsqr messages.
To label these flows’ sources or destinations, we, instead, use a consensus-based
approach based on the domain names resolved by other DNS clients in the
population studied. If another host or hosts resolved a name to the peer ad-
dress in question, it is generally agreed, by rough consensus of the population,
that this host could also have used the DNS and named the peer (source or
destination) similarly; we call this “INFERRED_DNS_NAMED”. As can be
seen in Figure 5.2, the snamed annotation has been set to INFERRED_DNS_NAMED
meaning that we have determined the source name by consensus to be the
value shown in the sn source name annotation, i.e., “*.facebook.com”. Note

that this is not a fully-qualified domain name (FQDN), but rather a domain
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suffix; this is because the consensus of the population was that multiple names
resolve to the given source address. To improve the classification, it is useful to
sample and present those names.

[2011-06-08 20:14:11.000000000] [7:1 WISC nfdump]
sa: 2001:0db8::face:b00c:0:3
da: 2001:0db8::2:1

sp: 443

dp: 53646

pr: 6

ibyt: 34297

td: 0.064000

snamed: INFERRED_DNS_NAMED

sn: *.facebook.com.

sn_sample: de-de.facebook.com.
sn_sample: check6.facebook.com.
sn_sample: ar-ar.facebook.com.
ip_version: IPV6

Figure 5.2: An IPv6 nfdump message annotated with a partially ambiguous
source name (sn) determined by consensus and samples (sn_sample) of the
resolved FQDNs that matched.

The source name is inferred because this client (with the destination address in
da) was not observed to have resolved a name to this source address (sa), but
other clients in the locally monitored population resolved at least three names
to this source address.

5.2.3 Name Sampling

Whether direct or consensus labeling was performed, it is certainly possible that
a given flow’s source or destination may be known by more than one domain
name. For instance, a service with the name “www.example.com” might also
be known as “login.example.com”. In such a case, we would like to annotate

an nfdump record with a single name for the peer, such as “*

.example.com”,
but also with what caused the ambiguous label. To expose this information,
we perform “name sampling.”

In Figures 5.2 and 5.3, note that the source name sn and destination name
dn, respectively, do not contain an FQDN. Instead they contain ambiguous
domain suffixes: “*.facebook.com” and “*.” (the DNS root), respectively. This
is somewhat unsatisfactory for traffic classification, especially when we only
have the DNS root or merely a Top-Level Domain (TLD).

To deal with this situation, we sample and report a number (e.g., 3) of the
FQDNs that led to the ambiguity. Specifically, we search the resolved domain
names to report a diverse set of FQDNs that differ in the DNS label where

7Y

the ambiguity occurs, i.e., where the is in the aforementioned examples.

Once these samples are gathered (and added as annotations to the nfdump
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records) we can either (i) compose class labels from multiple domain names or
(ii) consider whether or not the names are likely associated with one common
service. In the former situation, for example, we might re-label an ambiguous
“*.com” to "Gmail" if the samples were “mail.google.com” and “gmail.com”; in
fact, this is exactly what we do for Internet services that have conflicting labels
or TLDs, such as Gmail, in the results in the Section 5.4. In the latter case, for
example in Figure 5.3, “rss.slashdot.org” and “www.beantownbloggery.com”
seem to be unrelated; this confounding ambiguity results from (i) the hosting
of unrelated services on the same IPv6 address and by (ii) using dual-stack
hosts during the transition to IPv6.

[2011-06-08 00:11:10.000000000] [7:1 WISC nfdump]
sa: 2001:0db8::2:1

da: 2001:0db8:fff4::79

sp: 56451

dp: 80

pr: 6

ibyt: 849

td: 0.128000

dnamed: INFERRED_DNS_NAMED

dn: *.

dn_sample: rss.slashdot.org.
dn_sample: www.beantownbloggery.com.
ip_version: IPV6

Figure 5.3: An IPv6 nfdump message annotated with an ambiguous destination
name (dn) determined by consensus and samples (dn_sample) of the resolved
FQDNSs that resolved to the same IP address.

5.2.4 Port-based Classification

To complement the aforementioned DNS rendezvous-based classifications,
we employ traditional port-based application labels from an existing classi-
fier [4] that has been used in prior work. [63] These are: “WWW,” “P2P,” “FTE,”
“Streaming,” etc., and allow one to distinguish amongst multiple service types
that happen to be identified by a single domain name or prefix, such as distin-
guishing IMAP from HTTDPS traffic for Gmail.

The last part of our methodology to assess performance of IPv6 (and IPv4)
flows is to calculate the bit rates based on fields already present in the nfdump
records: ibyt (input bytes) and td (time, duration), which we do for all flows
having a non-zero duration. We rely on the flow export implementation (in the
commercial router) in that we assume sufficient granularity, range, and accuracy
of these values for the distributions of rate values used in our performance

analyses and results.



77

5.3 Empirical Data set

Since we are interested in assessing the performance of Internet services over
IPv6 (as compared with IPv4), we select a campus population whose network
and client hosts are IPv6-capable. On our campus, there are thousands of
dual-stack hosts that reside within 22 IPv4 subnets and one IPv6 subnet and
are mixed-use in campus offices and labs.

To gather the traffic traces and input data for this chapter’s work, we monitor
campus traffic at two observation points: (i) the campus clients’ recursive
name servers, and (ii) a campus core router that forwards traffic between the
client hosts and the commodity Internet. We perform full packet capture at
the campus domain name servers, and collect non-packet-sampled NetFlow
version 9 data at a campus core router. Thus, the payload of the DNS traffic is
recorded, but the application traffic payload is neither needed nor recorded.
Such monitoring of DNS traffic between the client end-hosts and their recursive
DNS service and router-based flow export is feasible within the typical networks
of large institutions, enterprises, or Internet service providers. Our interest is in
the “canonical” DNS traffic, i.e., the standard DNS traffic expected to precede
application traffic that consists of a query by FQDN and an answer containing
one or more IP addresses associated with the query name. Because we assess
performance using flow bit rates, we use non-packet-sampled flow export data
that has complete byte and packet counts as well as start time and flow duration.

Both the DNS and flow export data were collected for the 24 hours of World
IPv6 Day. We collected ~14.2M DNS query responses for 2028 total IPv4 and
23 IPv6 client addresses; of these, ~114,300 AAAA queries resulted in ~6,200
NOERROR responses. The client hosts’ total traffic was represented as ~58.8
million IPv4 flows and ~2.4 million IPv6 flows. The number of active IPv6 and
IPv4 client hosts numbered in the the hundreds and is shown in Figures 5.4a
and 5.4b (Section 5.4).
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5.4 Results

In this section we provide a sample assessment of the IPv6 and IPv4 perfor-
mance for the World-Wide Web traffic (HTTP and HTTPS) involving two pop-
ular services, Facebook and Google Mail (Gmail), as observed during the 24
hours of World IPv6 Day (June 8, 2011). We selected these services due to the
high number of active local client hosts that utilized them, thus providing a
larger sample of hosts and their respective flows for each hour of the day. First
we consider how the traffic was classified as being associated with each service
and the differences by IP protocol version, then the active clients, and finally,
the flow bit rate as distributions in time series with hourly bins.

5.4.1 Service Domain Names

As discussed in Section 5.2, we perform our analyses with scripts that process
an nmsg stream of nfdump messages annotated with the domain names that
client hosts resolved to the source and/or destination addresses of each flow.
The traffic is labeled by domain name (FQDN or domain suffix) and that label
is the basis for classification, i.e., Facebook or Gmail.

The IPv4 Facebook traffic is that labeled with one of 950 FQDNs that have
the suffix “facebook.com” (and were resolved by this population), such as
“www.facebook.com”, “developers.facebook.com”, “ssl.facebook.com”, “lo-
gin.facebook.com”, “upload.facebook.com”, etc., including 867 different FQDNs
matching “*.channel.facebook.com”. The IPv6 Facebook traffic is that labeled
with domains including: “www.facebook.com”, “developers.facebook.com”,
“checké.facebook.com”, and various others matching “*.facebook.com”. This
Facebook classification yielded ~618K IPv4 flows and ~128K IPv6 flows.

The IPv4 Gmail traffic is that labeled with the following domains: “gmail.com”,
“mail.google.com”, and “www.gmail.com”. The IPv6 Gmail traffic is that la-
beled with the following domains: “gmail.com”, “mail.google.com”, “www.-
gmail.google.com”. This Gmail classification yielded ~785K IPv4 flows and

~463K IPv6 flows.

5.4.2 IPv4 and IPv6 Service Asymmetries

We observe that these services exhibit some asymmetry with respect to the
specific DNS names resolved to access them over IPv4 versus IPv6. This is
apparently due to differences in implementation of the IPv4 and IPv6 por-
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tions of the service. For Facebook, we see that the FQDNs matching “*.chan-
nel.facebook.com” were not resolved by AAAA queries (but were resolved by
A queries for IPv4 addresses), thus it’s probable that Facebook Chat was not yet
supported via IPv6 and may fall-back to IPv4 on a dual-stack host. Alternatively,
it’s possible that the Chat service via IPv6 was overloaded on another FQDN
or that it used a non-DNS rendezvous mechanism, and thus may be structured
differently (with respect to DNS names).

For Gmail, similarly, names such as “imap.gmail.com” and “smtp.gmail.com”
were not resolved by AAAA queries; thus, we believe that these Google Mail
features (IMAP and SMTP access) were not available via IPv6 at the time. To
accommodate this in these results, and guided by finding 1 of Kim et al. [63] and
our prior work, [86] we select only WWW traffic (by selecting flows with the
port numbers for HTTP and HTTPS) so that IPv4 Gmail traffic involving IMAP
and SMTP would not be mixed into the performance results for comparison
(below).

Such asymmetries or differences in service implementation between IPv4
and IPv6 are a challenge to attempts to directly compare service performance
between IPv4 and IPv6. The initial performance analysis presented here as-
sumes that the IPv4 and IPv6 traffic classifications are equivalent for these two
services, ignoring the Facebook Chat complication noted above.

5.4.3 Active Hosts

In Figures 5.4a and 5.4b we plot the total number of active local host IP addresses,
IPv4 (solid line) and IPv6 (dashed line) for Facebook and Gmail, respectively.
The horizontal axis above the plot in Figure 5.4a is labeled with the hour of
day in local time, five hours west of UTC; the lowest level of activity is at about
0600 and the highest (for these services) during the noon hour, with activity
decreasing toward the end of the work day (after 1700 hours). Also, note that
there are two regimes: roughly the first 12 hours of World IPv6 Day have low
activity and thus fewer flows for which we examine their bit rates; the latter
12 hours have high activity with many more hosts and flows being used to
calculate bit rate distributions.

5.4.4 Flow Rates

Bit rate distributions for unidirectional flows were calculated for all non-zero
duration flows, simply by dividing the number of bits by the flow duration (in
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seconds). Bit rate is labeled on the vertical axis in Figures 5.5 and 5.6, and the
horizontal axis is the hour of the day.

Figures 5.5a, 5.5b, 5.6a, 5.6b are box plots presenting the hourly outbound
and inbound flow bit rate distributions for each service. The outbound rates
(from local clients) are plotted above the horizontal access, and the inbound
rates (to local clients) are plotted below as negative values. The boxes plot the
25th percentile, median, and 75th percentile, and the error bars plot the 1st
percentile and the 99th percentile. For each hour bin, the IPv4 flow rates are
darker with a solid line and the IPv6 rates are lighter with a dashed line.

Figure 5.5a shows the Facebook flow rates on a coarse scale, to highlight the
error bars extending to the 1st and 99th percentile. Note that the 99th percentile
flow in hour 21 (UTC) had a rate of nearly 50 megabits per second; this is
the flow shown in Figure 5.1 (Section 5.2), where we see that it is very short-
lived: ~0.064 seconds. In this plot we also see that the 99th percentile inbound
flows from Facebook via IPv4 greatly exceed the rates via IPv6. Furthermore,
inbound flow rates from Facebook generally peak higher than those outbound
to Facebook; this might be expected for this service when most of its bulk data
transfer is content pushed to the client host’s web browser application.

Figure 5.5b shows the Gmail flow rates on a coarse scale. Here we see
that the 75th to 99th percentile flow rates outbound and inbound are roughly
equal, as are the 99th percentile flow rates for both IPv4 and IPv6; note, though,
that there are hours of the day, e.g., hours 1, 3, 5, 7, 9 UTC, when the 99th
percentile IPv6 rate exceeded the IPv4 rate, suggesting that the IPv6 service,
at least occasionally, provided similar throughput. We also see that there are
similar 75th to 99th percentile flow rates outbound to Gmail and inbound from
Gmail, suggesting that this bidirectional symmetry is characteristic of a WWW
email service; both sending and receiving messages result in similar workload
in HTTPS flows.

In Figures 5.6a and 5.6b we show a finer-detail representation, where the
vertical axis has been clipped to highlight the interquartile range and median in
the box plots of the flow rate distributions; these correspond to the distributions
plotted in Figures 5.5a and Figure 5.5b, respectively. Figure 5.6a plots the
Facebook flow rates lower than 200K bits per second. Here we see that the
flow rate distributions vary with activity level and/or the number of flows.
Such measurements, whether due to load or sample size, suggest a direction
for subsequent forensic investigation.

Lastly, by examining Figure 5.6b, we see differing performance between
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local nighttime and daytime. First, the interquartile range of IPv4 flow rate
distributions exhibit higher bit rates than the corresponding interquartile range
for IPv6 flows; note the number of active IPv4 and IPv6 hosts are nearly identical
(Figure 5.4b). Second, in the high-activity local daytime, the IPv4 and IPv6
performance seem roughly comparable, until after 1700 hours UTC (noon local
time), when the interquartile range for IPv6 flows contains consistently higher
values than those for IPv4 flows. This change in IPv6 performance is not
correlated merely with a change in the number of active hosts observed.

In these results we employed robust statistics to broadly compare IPv4 and
IPv6 performance for two popular services. We find that the number of active
hosts (observed via their flows) greatly influences the bit rate distributions.
Second, we see evidence of wildly varying near peak (99th percentile) rates
in flow export data for a given Internet service. Third, we see that there are
regimes in which IPv6 rates are higher and others in which IPv4 rates are higher.

These results show that ostensibly the same services over IPv4 and IPv6
exhibit different performance as measured by the clients’ sessions’ flow bit
rate distributions, meeting our objective to develop an analysis method and
presentation by which one could expose performance phenomena and assess
IPv6 performance. These observations motivate and guide future work in-
cluding other visualizations and forensic tasks to determine the root causes of
performance anomalies for services on both IPv4 and IPv6.
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6 TOWARD LONGITUDINAL STUDY OF EMAIL COMMUNICATION

The system introduced to analysis
email headers is interesting and
worthwhile. Clearly there is useful
things to study in this space, and
getting a large volume of donated

user email data is interesting.

anonymous reviewer, 2013

In this chapter, we take a new direction in exploring the utility of the notion
of rendezvous in host profiling. Here, rather than observing DNS rendezvous
traffic and associating it with application traffic, we hypothesize that we can
reverse-engineer the rendezvous information from voluminous logs of email
communication and knowledge of email routing, past and present. We develop
anew analysis system called “Timemail,” purpose-built to perform longitudinal
study of email communication. What follows is a report on research amongst a
team of collaborators consisting of Mark Allman, Paul Barford, Scott Cambpell,
Vern Paxson, and David Plonka, whose personal email archive data sets are

referred to by their respective names.

6.1 Overview

Given email’s pervasive use over multiple decades, it is striking how the behav-
ior and evolution of its transmission process has seen little study, especially in
the face of seemingly ever-increasing complexity and challenges from nascent
alternatives, e.g., Facebook messaging. Certainly one impediment to study has
been the lack of access to logs of email activity from a large set of sites and
users and over extensive periods of time. The goal of our work is to develop
privacy-respecting methods to broadly examine basic questions such as: What
interconnection structure do nodes that participate in email communication
exhibit? What is the nature of variability in end-to-end email delivery per-
formance? How well has email functioned over time, what trends does its
performance exhibit, and how might we improve its performance?

For decades email has been delivered on the Internet primarily via SMTP

conversations using a common message format [41]. However, during this time
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email delivery has evolved to include (i) additional protocols (e.g., POP, IMAP),
(ii) alternative routing methods (e.g., MX routing), and (iii) additional message
content processing (e.g., virus and spam filtering). Each of these evolutionary
steps has implications on the structure of the email system and ultimately its
performance.

ayps
fruitcake @ eley.edu
c.edu
wmstoredp @ it wisc.edu
\

S

Figure 6.1: A sample of the delivery network as discovered by examining the
Received headers of a message sent by one collaborator as delivered to three
recipient collaborators.

We motivate our work with an example of an email sent in January 2010 from
one of our collaborators (Paxson) to three others (Allman, Barford and Plonka),
as illustrated in Figure 6.1. When we examine the received messages we find
three qualitatively different delivery paths. All paths begin with Paxson’s SMTP
forwarder at ICSI: pork.icsi.berkeley.edu. Allman’s path includes two distinct
hosts, terminating at lawyers.icir.org, which is visited twice. (Intra-host loops are
labeled here with the number of additional hops they represent.) The message
to Barford visits three distinct hosts at the University of Wisconsin-Madison
(UW-Madison) after the initial visit to the ICSI SMTP server, terminating at
crimson.cs.wisc.edu. Plonka’s path starts with the same SMTP hops as Barford’s,
but his path continues for a total of 11 hops, with visits to 7 distinct hosts within
UW-Madison, terminating at peleus.net.wisc.edu. In fact, Plonka’s email visits
crimson.cs.wisc.edu three times while Barford’s email visits it only once. We also
note that delivery times vary from 5 sec (Barford) to 39 sec (Allman) to 91 sec
(Plonka). This small example highlights a variety of email delivery paths and
performances and raises numerous questions about the characteristics of email

traffic, both in terms of modern traffic and how our current systems compare
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to past incarnations.

To study the email delivery process we develop a methodology for large-
scale, longitudinal analysis, and apply it to expose some of email’s structural
and performance characteristics. The genesis for our work is the observation
that the header information included in the common message format [41]
used to transfer and store email holds a tantalizing opportunity for large-scale
longitudinal analysis. To leverage this potential, we create an infrastructure for
gathering and extracting header information—mostly “Received” lines—from
stored messages and develop methods for normalizing header information and
for identifying the key components of email paths. We apply our methods to a
set of personal email, mailing list, and spam archives to assess the efficacy of
our approach. Our analysis reveals the diverse characteristics of email header
information, structure of the email delivery network, facets of performance

variability, and characteristics of the key structures in end-to-end delivery paths.
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6.2 Data & Method

Our methodology is based on the collection meta-information about message
delivery from archived email. The most crucial artifact we gather from the
messages is the path a message took, as encoded in “Received” headers. These
headers were made standard circa 1982 and are defined in a series of RFCs [41,
64, 65, 89, 92, 93]. Received headers differ from most email headers in that
they are added to a message along its delivery path (i.e., SMTP hops, IMAP
hops, etc.) by mail transfer agent (MTA) software rather than by the sender’s
mail user agent (MUA) software [80]. Each Received header typically contains
several key pieces of information, including: (i) a name for the remote host
transmitting the message, (ii) a name for the receiving host, (iii) the protocol
used for delivery and (iv) a timestamp. With the variety of message corpora
used in this study we clearly observe the limitations of this data. For instance,
we see timestamps from unsynchronized clocks, incorrect timezone offsets and
names, servers that report no hostname or an ambiguous hostname, and forged
or otherwise bogus Received lines and timestamps. Our analysis deals with
all of these issues and either discards or repairs message information that is
obviously bogus in some way. We generally make two key assumptions about
the data we analyze:

Order: We assume the order of the Received lines has not been perturbed
during delivery and therefore reflects the proper sequence of hops (modulo
bogus insertion or deletion). This assumption allows us to, for instance, better
detect clocks that are not working properly, e.g., a clock that is way ahead of
both its neighbors.

Legitimacy: We assume that the vast majority of the mail transfer agents that
insert headers are acting legitimately and not intentionally using incorrect
timestamps, deleting Received headers, adding extra Received headers or other-
wise trying to obfuscate the delivery path. We understand that this does occur
to be evasive (e.g., spammers) or to keep internal server identities private. Our
assumption is that these are outliers and therefore that statistical techniques
can be used to treat them as such.

To analyze email meta-information we use a three step process: (i) collect
data from donors and available archives, (ii) parse, store and clean the data,
(iii) structure, query and graph the data.

We collect message data from donors using a script we call “timemail” that
processes locally stored mail folders or an IMAP-accessible store of messages.
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The script scans each message’s headers and constructs a one-line summary of
the delivery that includes name, protocol and timestamp for each hop in the
path. The message size and “Message-ID” header, if present, are also recorded.
We do not collect information from headers such as “To”, “Cc”, or “From” as
these might reveal information about users who have privacy concerns. With an
eye towards large-scale data collection, timemail is a self-contained, portable
script that a data donor runs personally on their own computer and donates
just its output that is uploaded to a central repository and imported into a
database. Thus we neither store, nor even have access to, a donor’s private
email messages.

In practice, timemail has grown quite complex as we have had to deal with
a wide variety of timestamp formatting, names and optional information in
the message headers—which are often designed for human inspection as op-
posed to programmatic analysis. However, we find that we can determine an
unambiguous timestamp to second granularity for 98.6% of the 42.3M Received
headers represented in our data sets; the remainder is due to missing a times-
tamp or parsing failure (e.g., missing seconds field, ambiguous hour of the day,
foreign languages, etc.). To diagnose such issues, we preserve the timestamp
text just as it appeared in the Received header; this has the added benefit of
retaining locale-specific timezone offsets and names that offer hints for coarse

geolocation.
Donor/ Dates Total | Culled-out Net
Data set Msgs. Msgs. | Msgs.
Plonka 1997-2013 | 169K 57K (33%) | 113K
Campbell 1997-2009 39K 1K (3%) 38K
Allman 19942010 | 792K | 303K (38%) | 490K
Paxson 1988-2010 | 269K 50K (19%) | 218K
Barford 2001-2010 27K 3K (11%) 24K
FreeBSD 1995-2010 | 220K 39K (18%) | 182K
Linux 2000-2008 | 882K | 669K (76%) | 213K
IETF 19922013 | 1.9M | 852K (45%) | 1.0M
The Mail Archive 2013 1.8M | 205K (11%) | 1.6M
Guenter spam 1998-2007 948K | 307K (32%) 641K
Dornbos spam 2002-2003 3.5K 719 (20%) 2.8K
TREC ‘07 ham 2007 23K 5K (21%) 18K
TREC '07 spam 2007 50K 19K (37%) 31K
CEAS '08 ham 2008 28K 24K (87%) 4K
CEAS "08 spam 2008 113K 47K (41%) 66K
Totals 1988-2013 | 7.2M | 2.6M (36%) | 4.7M

Table 6.1: Characteristics of data sets analyzed.
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Our data sets include personal, mailing list, and spam-related email archives
summarized in Table 6.1. We use a modest donor-base of personal email, i.e.,
our own and those of our collaborators, as a means to work out the significant
issues dealing with the data, as well as to begin getting a handle on whether
there are useful and interesting insights to be gained. These personal archives
vary in length and size and are biased by each donor’s archiving habits and
generosity; i.e., a donation may be an unknown sampling of messages delivered.

Secondly, we use a set of mailing list archives: the FreeBSD list “freebsd-
current” [11], the Linux Kernel Mailing List a.k.a. “lkml” [78], the Internet Engi-
neering Task Force (IETF) mailing lists archive [17], and The Mail Archive [26].
The latter two are aggregate archives of hundreds and thousands of mailing
lists, respectively. There are two sorts of mailing list archive corpora: (i) those
collected at or near the list server itself, and (ii) those collected from the vantage
point of a list subscriber; messages in the latter typically, but not always, record
a series of two complete deliveries in their Received headers: a delivery to the
list itself and a second delivery to the list subscriber.

Last, we include a set of spam archives. These include the Guenter and
Dornbos archives [47, 54], and the public spam with accompanying “ham”
corpora from spam-related conferences [38, 39]. We report only culling and
classification statistics for these archives due to questions regarding the legiti-
macy of initial Received headers from spammers and regarding how the spam
training and testing corpora were assembled.

Figure 6.2 offers a glimpse of the richness and irregularity of the collected
data; it shows the message delivery time for 152K messages in Plonka’s data
set. Note clusters with delays of minutes to hours, typically due to multiple
deliveries through mailing lists. The plateaus at 5 minutes are due to POP and
IMAP polling to pull mail, and are separated by a period of direct delivery (c.
2002-2006). Plots of the other data sets (now shown) show similar variability,
but with very different episodes, clusters, or plateaus in delivery times.

As shown in Table 6.1, 36% of the message records across our 15 data
sets are culled-out before the analysis described in subsequent sections. Once
imported into the database, messages are examined and culled by our cullmail
tool. The most common reason to exclude an email message from an analysis
(82.4% of the removals) is that the Received headers in the message show at
least one instance where the timestamp for hop N is less than the timestamp
for hop N — 1. This is indicative of either unsynchronized clocks and/or
incorrect timezone information, either of which would clearly skew some of our
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Figure 6.2: Scatter and box plots of delivery times for 152K of Plonka’s messages,
prior to culling. The boxes represent the middle fifty percent about the median,
and the whiskers extend to the 9th and 91st percentiles.

subsequent analyses (for which we do not assume tightly synchronized clocks,
but removing cases with obvious issues is worthwhile). Messages were also
removed from further consideration when timestamps from the distant past or
from the future (after timemail processed the messages) were encountered, as
these point to obvious clock issues.

While having removed many erroneous timestamps by the method outlined
above, we are quite certain that some remain, e.g., when the first or last hop
timestamps err toward the past or future, respectively. Without a ground truth
reference clock, our results rely on our assumption of legitimacy. We also retain
the details of culled-out messages in our database because they are useful for a
subset of analyses; for instance, the delivery path can expose network structure

even when the accompanying timestamps are suspect.
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6.3 Structure

Aiming to understand performance characteristics in topological context and
to identify sources of delay, we determine the overall structure of the email
delivery network at points in time. This allows us to correlate delivery latencies
with specific network elements and their role in the network. For instance,
a given MTA host in a message delivery path might be an email submission
server, a mailing list processor, a full Mail-eXchanger (that accepts MX routed
email for a domain via SMTP), a spam or anti-virus scanner, or a personal
workstation.

We organize the data by introducing a schema that specifies a structure
and a type system for its elements. This structure involves three types of
elements: messages—the delivered email objects, nodes—the agents that handle
and transfer email messages, and edges—the connections that are traversed
by email messages during transmission. The type system classifies the nodes
(based on their name as reported in a Received header) and, in turn, classifies
edges based on type, name, and protocol of their end-point nodes.

From this network structure, we define a relational database having rows
that store instances of message deliveries, node visits, and edge traversals. The
message element is used to (i) store a message’s summary information for each
instance of delivery and to (ii) group sequences of nodes and edges in the
delivery path. The Timemail database schema is shown in Appendix C. The

node and edge elements are described below.

6.3.1 Nodes

Nodes represent visits to the MTA that wrote a Received header, typically
either a server transferring the message or software processing the message
within a server. Servers that write Received headers can use arbitrary names
to identify themselves; that is, the names are not necessarily globally unique
Fully-Qualified-Domain-Names (FQDN) within in the Domain Name System.
While most reported names appear to be FQDNs, e.g., mail.example.net, it is quite
common to see ambiguities such as bare hostnames, e.g., mailhost, localhost and
variants, e.g., localhost.localnet, bare domain names, e.g., example.com, invalid
Top-Level-Domains (TLDs), private IP addresses (RFC1918), or bogon IP ad-
dresses that are not globally routed. This necessitates the disambiguation of
the node names so that we avoid mistakenly assuming these nodes have very
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high degree of connectivity and grossly misrepresenting the overall structure
of the email delivery network. To that end, our tool called typemail uses rules
and regular expressions to assign types to the nodes, as shown in Table 6.2.

Node Type Count (%)

Valid-TLD (V) || 34,338,330 (81%)
Invalid-TLD (I) 4,181,576 (10%)
Localhost (L) 2,346,671 (5%)
Private-IP-Address (P) 1,322,433 (3%)
Valid-IP-Address (A) 242,223 (< 1%)
Bogon-IP-Address (B) 2805 (< 1%)
Total (Received headers) 42,313,038

Table 6.2: Node types and their respective number of occurrences in our data
sets. 81% of Received headers identify a host with a valid Top-Level-Domain.

6.3.2 Edges

The nodes are connected by edges representing the transition from visiting one
node to the next as an email message traverses the delivery network. Intro-
ducing this network element is motivated by the fact that a Received header
reports a single timestamp, rather than one for arrival and one for departure.
Thus, it is difficult to determine whether delay is due to the origin node, the
propagation between nodes, or the destination node. Given that we ultimately
wish to attribute observed delays to subnetwork and specific server bottlenecks,
our type system assigns types to edges as well, as shown in Table 6.3, indi-
cating their position or role in the network’s structure. These annotations are
performed by the typemail and rolemail tools, the latter assigning the role
of “P” to edges that involved Pull-based protocols (e.g., POF, IMAP) so that we
can separate these user-induced delays from those of push-based (e.g., SMTP),
store-and-forward email delivery.

Note that, in this current type system, there are two situations in which
an edge representing a Pull-based delivery will be assigned a role of “P” but
does not involve a user-induced polling delay. The first situation, likely quite
rare, is when a message happens to become available on the server (i.e., just
following its arrival) immediately before a client polls for (new) messages. The
second situation is specific to the IMAP protocol; although IMAP originally
always required a client to poll the server for changes to a mailbox, an IDLE
command was introduced that allows a client to tell a server that it is able
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to accept real-time updates, such as an EXISTS notification that new email
message has arrived. [67] If the client reacts to this notification by immediately
performing a FETCH of that email message, then there is no arbitrary delay
due to polling. Explicitly handling this latter situation is left for future work;
one candidate method to address this would be to introduce another role, such
as “p”, to indicate that an IMAP FETCH appears to have been prompted by
a real-time notification. The appropriate assignment of the “P” role (polled
Pull) versus “p” (prompted pull) for an edge involving IMAP could, perhaps,
be achieved by a heuristic that considers whether the distribution of delivery
times observed across the given edge matches known distributions for typical
polling behavior or not.

When determining types for edges, we also fix ambiguous origin and des-
tination names such as localhost. For instance, it is common to see a transfer
from mail.example.com to localhost, followed by localhost to mail.example.com. In
such instances, we rewrite localhost to mail.example.com and set the type of the
two edges to “H” (intra-Host). Such heuristics help determine the domain in
which elements reside.

Edge Type Count (%)
Cross-Domain (X) 11,904, 180 (34%)
Intra-Host (H) || 11,746,685 (33%)
Intra-Domain (D) || 10,571,255 (30%)
Unknown (U) 869, 575 (< 3%)
Total 35,091, 695

Table 6.3: Edge types and their respective number of occurrences. Over 97% in
our imported data sets were identified as one of the three types.

6.3.3 Graphs

Having defined nodes and edges, we naturally wish to produce a graph for
visualization and analysis of the email delivery network. These are generated by
our graphmail tool that selects messages based on donor, time frame, domains
or other path characteristics, and weights edges by message volume, delay,
measures of delay dispersion, or type. We find two styles of graph useful:
overlay graphs and flow graphs.

Owerlay graphs are directed graphs of a set of observed paths in which all
nodes of a given name are overlaid on each other, such that a node’s name is
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unique in the graph. Figure 6.9 is an example of an overlay graph. While this
graph is concise, it is imprecise since it may contain cycles and therefore paths
that were never observed in Received headers and may be impossible due to
MX or other routing policies. However, we use the overlay graph to calculate
a node’s aggregate in-degree; we hypothesize that SMTP Mail-eXchangers
can be identified by their high in-degree, given sufficient sampling of delivery
paths, and have confirmed this for the collaborators’ local domains, but general
validation is future work.

Flow graphs are directed graphs that more precisely represent a set of ob-
served delivery paths in which nodes of a given name are not necessarily unique;
nodes represent visits to a given MTA at a specific position in the delivery path
and the number of hops on paths through this graph matches the number
of Received headers in the messages having that delivery path. Flow graphs
are actually trees that are rooted at the terminal nodes and having branches
containing each and every observed delivery path. A hybrid of overlay and
flow graphs overlays only adjacent nodes of the same name. For an even more
concise graph, nodes can be labeled by MTA domain instead of full MTA name.
Samples of such graphs are shown in Figures 6.3 and 6.4. In these figures,
peripheral nodes with high in-degree are those representing domains hosting
mailing lists that are ultimately archived within ietf.org or mail-archive.com,

respectively.



96

Figure 6.3: An MTA domain-level flow graph for message deliveries in the year
2000 in the IETF data set. Edges are weighted by message volume and nodes
are sized and shaded by weighted degree.
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Figure 6.4: An MTA domain-level flow graph for message deliveries on April 1,
2013 in The Mail Archive data set. Edges are weighted by message volume and
nodes are sized and shaded by weighted degree.
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6.4 Results

The email data we’ve collected and organized offer myriad possibilities for
data mining. Initially, we validate our findings by leveraging our familiarity
with the collaborators’ personal archives and transparent organizations hosting
publicly available mailing lists.

6.4.1 End to End Delay

To investigate end to end performance, we first identify each data set’s most
common terminal domains, i.e., domains in which the MTAs performing the
final delivery reside. Then, we choose a set of the most common initial domains,
i.e., the domains of initial MTAs that have forwarded at least 500 messages in
the data set, and plot the distribution of delivery times of all messages, pairwise
between those initial and terminal domains. Figure 6.5 is one example. Here
we see a wide range of delivery times and delay dispersion for the messages
forwarded from 35 domains in the Allman data set, with his local domains
being two of the three with least delay.
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Figure 6.5: Delivery times for 292K of Allman’s messages from the most common
initial domains in delivery paths to his terminal domains, 2003-2010, sorted by
median delay. The boxes represent the middle fifty percent about the median,
and the whiskers extend to the 9th and 91st percentiles.
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Figure 6.7: Interquartile ranges of delivery times for 433K messages from 798
initial domains in the IETF data set since 1997.

Figure 6.6 is a plot of the cumulative distribution function (CDF) for each of
the mailing list archives delay dispersion as measured by interquartile range
(IQR), for initial domains that have forwarded at least 50 messages in the data
set. (Our intent is to select only those domains with a sizeable number of sample
deliveries to calculate delivery delay dispersion.) We’ve split the IETF data set in
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two, when the archives’ terminal domain changed from ietf.org to amsl.com with
the move to a new managed services provider on February 1, 2008 [82]. There is
significantly less delay dispersion afterward for “IETF (amsl.com).” To examine
this delay dispersion over time, we first calculate the IQR of the delay for each
of those significant initial domains by year, then produce box plots from those
domains’ delay IQR values, as shown in Figure 6.7. Here we see a trend toward
lower delay dispersion over the past decade for the IETF mailing lists archive.
The significant changes from 2005 to 2006 and 2007 to 2008 are validated by
their correspondence to (i) when the IETF acquired data management services
under a 2-year contract at about the beginning of 2006 [52], and (ii) when the
IETF switched to a new service provider on February 1, 2008 [82] that continues
to operate the IETF mailing lists infrastructure today.

6.4.2 Delay Centers

One goal of our work is to identify the elements of the email delivery network
most responsible for delay and delay dispersion and how these change in time.
To identify delay centers, we first divide the delivery path into remote and
local segments. We do this by considering each message’s path individually
and finding its last cross-domain edge (type “X”) that has a destination MTA
within the data sets’ terminal domains. We typically find that MTA to be a
Mail-eXchanger for a terminal domain. The path up to and including that edge
is the remote segment and the rest of the path is the local segment. Figures 6.8a
and 6.8b are sample plots of the delays observed while traversing those seg-
ments of the messages’ delivery paths. Here we see that the remote and local
segments of the delivery path exhibit very different performance.

In Figure 6.8a, we see some very long delivery times in 2001 and 2002. To
identify the source of those delays, we use graphmail to select messages in 2001
with remote delay between 4 and 15 hours, i.e., those in the dashed-line quad-
rant, and graph the delivery network. The result, in Figure 6.9, prominently
shows that nearly all the delay (93%, in fact) was incurred on an intra-host
edge to/from loki.ietf.org, a server used to send messages to subscribers of
the “IETF-Announce” and “Internet-Drafts” mailing lists. This graph also
shows Plonka’s complete delivery terminus infrastructure at the time, includ-
ing redundant anti-virus scanners {avl,av2}.doit.wisc.edu, other email servers
{mail2,mail3,mail4} .doit.wisc.edu, and terminal host mil.doit.wisc.edu. The other

high delay-inducing MTA discovered, roam.psg.com, is verified to be a laptop
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Figure 6.8: Delivery delay for the remote segments and local segments of
delivery paths for 34K of Plonka’s messages ostensibly having a single delivery
in their path, i.e., just one type “X” edge. The boxes represent the middle
fifty percent about the median, and the whiskers extend to the 9th and 91st
percentiles.

host that was sometimes disconnected from the Internet, thus its outbound
email sometimes experienced these long delays. [28]
Our results thus far have shown both challenges and opportunities in study-

ing the trace data. While trends have generally not emerged and each data
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Figure 6.9: A graph of the delivery network discovered from 873 messages
having delays shown in the dashed-line quadrant in Figure 6.8a. Edges are
weighted by delay and nodes sized by weighted out-degree.

set has curiosities, e.g., due to capricious email archiving behaviors or idiosyn-
crasies in terminal domains, we’ve isolated performance phenomena and em-
ployed our tools to identify their source in structural context.
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7 SUMMARY, CONCLUSIONS, AND FUTURE WORK

The idea of mapping IP addresses

with domain names is cool.

anonymous reviewer of [25], 2012

7.1 Summary

In this dissertation we advocate novel analysis techniques involving Internet
rendezvous, i.e., the method by which Internet hosts are introduced prior to
establishing communication, to perform traffic measurements, traffic classifica-
tion, and host profiling. We develop these techniques in four parts and employ
them in four empirical studies that demonstrate their performance. In this
chapter, we summarize that work as outlined in prior chapters and close by

enumerating directions for future work.

7.1.1 Context-aware Clustering of DNS Query Traffic

In Chapter 3 we present a set of novel techniques for analyzing DNS query
traffic. The goal of our work is a deeper understanding of general network
traffic and of unusual or unwanted traffic that can have a negative impact on
networks. Unlike prior efforts that have focused on using DNS traffic to identify
specific behavior (e.g., bots that use fast flux), we take a general approach
to query analysis by using data-driven cluster analysis to expose coarse-to-
fine characteristics of network traffic associated with the queries. The specific
classes of DNS queries that we focus on in this portion of our work are canonical
queries consistent with RFC-intended behaviors, overloaded queries commonly
associated with black-listing services, and unwanted queries that will never
succeed and are thus superfluous. Our clustering methods are context-aware
in the sense that they are oriented around the hierarchy inherent in both IP
addresses and domain names, and enable users to specify the desired level
of analysis detail. We implement our clustering methods in the TreeTop tool
which can be applied to DNS query traces off-line, near real time, or in real
time to streams of DNS queries. We use a set of DNS queries collected in our
campus network over a period of three months to demonstrate the capabilities

of our methods. Our analysis shows how TreeTop can expose the rich diversity
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of general network traffic, the significant use of black-listing services and the
details of characteristics of unwanted traffic. We believe that these tests highlight
the novelty and utility of our methods.

Ultimately, this study of DNS traffic lays the foundation for our rendezvous-
based traffic classification and host profiling by identifying the subset of DNS
traffic that is useful in classification, i.e., that which is not just a curiosity of this
popular service, the Domain Name System.

7.1.2 Flexible Traffic and Host Profiling via DNS Rendezvous

Based on the tool and foundation laid in Chapter 3, we present a novel traffic
classification method based on DNS rendezvous, i.e., the domain names by
which end-hosts present and discover IP addresses, in Chapter 4. Our rendez-
vous-based approach combines some of the best characteristics of prior methods:
(1) port numbers are not implicitly trusted, (ii) deep packet inspection of the
target traffic is not required, and (iii) packet sampling of the target traffic is not
an obstacle. The goal of our work is to add flexibility in classification with high
accuracy of classification in live operational deployments. This approach gleans
information from the most common rendezvous method, the DNS, which is
widely used and offers flexible options to both profile hosts and classify their
traffic.

We demonstrate the feasibility and utility of rendezvous-based classification
by implementing and extending our method in the TreeTop tool and applying it
to DNS traces and flow-export data gathered from a campus network, focusing
on two starkly different user groups’ traffic for a typical day. We show that a
large proportion of the traffic from the office group is arranged via the DNS,
enabling it to be directly classified by our method. In the residential group,
where a significant amount of traffic is not is preceded by DNS queries, we
implement two alternatives: (i) we apply the port-based method selectively,
to just the named traffic, to minimize that method’s false reports, and (ii) we
infer labels for unnamed traffic by profiling the end-hosts involved, based on
their DNS activity. These initial results demonstrate how a traffic classifier can
make effective use of a hitherto untapped, independent source of information,
i.e., the Domain Name System.

Finally, we demonstrate that rendezvous-based techniques can work in
concert with prior techniques to bolster overall classification performance.
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7.1.3 Assessing Performance of Internet Services on IPv6

In Chapter 5 we identify a new passive measurement application for traffic
classification via rendezvous that demonstrates a unique capability enabled
by using a source of information from outside the target traffic itself. We
present a method to examine the performance of Internet services on IPv6
and IPv4, with which clients rendezvous via the DNS. Our approach is a new
application of TreeTop’s traffic classification technique that doesn’t perform
active measurements, doesn’t need “insider” knowledge about those services
IP addresses, and doesn’t require inspection of application traffic payloads
that may be encrypted, obscured, or otherwise unavailable. Instead, it relies
on low-volume DNS query/response traffic and easily-obtained application
transport information from packet headers.

We demonstrate the feasibility of the approach by implementing our method
in the TreeTop Framework and a set of assessment tools. We demonstrate its
utility by analyzing DNS traces and flow export data gathered from a campus
network with an advanced deployment of IPv6 via dual-stack hosts, focusing
on their traffic on the World IPv6 Day. A large proportion of traffic involving
services running IPv6 is arranged via the DNS, allowing the associated service
(e.g., Facebook or Gmail) to be directly identified. While we find that dual-
stack IP implementations complicate measurement, our method is able to infer
service identities by a consensus of hosts in the monitored population.

These sample results demonstrate how a rendezvous-based technique can be
effective in assessing the IPv6 performance of services during their deployment
and side-by-side operation over IPv4. We apply robust statistics to observed
flow bit rate distributions for Facebook and Gmail traffic and present them as
graphs allowing visual detection of performance differences and anomalies.
Such capability can inform developers, operators, and users with respect to
selection of which Internet Protocol version is likely to yield better performance,
making it more likely that Internet services’ transition to IPv6 will meet or

exceed expectations.

7.1.4 Toward Longitudinal Study of Email Communication

Lastly, motivated by anecdotal experiences of highly variable email delivery
performance and the opportunity presented by ubiquitous Received headers
present in everyone’s email message archives, we take a new direction in rendez-
vous-based analysis that involves host profiling and rendezvous information for
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the email application. Rather than directly observing transmitted rendezvous
information as in our other studies, here we hypothesize that we can reverse-
engineer some rendezvous configurations based on Received headers that are
artifacts evidencing prior rendezvous.

In Chapter 6, we describe a method for studying the Internet email commu-
nication system, past and present. With data donors’ privacy in mind, we’ve
developed and exercised the Timemail System [88], applying it to both personal
and publicly available email message archives. A sample of early results expose
interesting aspects of performance and structure and suggest richer results at
large scale. Our current goal is, thus, to collect and analyze a broader range of
data to better understand this critical system’s behavior and to inform efforts

in its ongoing design and operation.

7.2 Conclusions

In conclusion, the stepwise work outlined in this dissertation has culminated in
the development and operation of new Internet traffic measurement techniques
and of two tools, TreeTop and Timemail, that we have applied in our research to
yield numerous novel results. Furthermore, our rendezvous-based method has
been made available to industry for commercial use [22] in network operations
and has been independently reimplemented yielding novel results in others’
research studies reported in the literature. [25, 48] Thus, we assert that we have
validated our thesis: our rendezvous-based methods are feasible and useful in

measurement, classification, and profiling.
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7.3 Future Work

The focus of our work in this dissertation is to improve the state of traffic
classification for Internet research and operations. While we believe that the
empirical studies described herein evidence our methods’ effectiveness, there
are a number of promising future directions suggested by both the rendezvous
classification and email delivery studies, including the following:

1. While we develop and demonstrate rendezvous-based traffic classification
based on the DNS, there are many other rendezvous mechanisms that are
used; tapping those other rendezvous services, e.g., P2P and SIP, would
improve overall classification. It is especially tempting to pursue those
where the rendezvous is easily separable from the application traffic
when passively observed in the network. Also, where the rendezvous
information is not easily discerned, e.g., when it passes over encrypted
channels, temporal analysis involving prior communications could help
to determine the possible channels by which a host may have learned
another host’s IP address. This may be similar to work that investigates
host compromises and command and control channels since they often
involve serial communications wherein one stream is “dependent” on
another (via a prior compromise or via tunneling).

2. The reliance on an application-independent source of information, such
as the DNS, to perform traffic classification raises the question: in what
situation should or shouldn’t one trust passively observed rendezvous
information? That is, do we know that the DNS queries and responses
that we observe are legitimate and, thus, trustworthy for use in classifi-
cation? While we trust the recursive DNS service infrastructure on our
campus in these studies, our work could be extended to validate DNS
responses based on Secured DNS (DNSSEC). DNSSEC information can
be verified even when observed by an element that neither generated the
query nor response. Otherwise, this concern of legitimacy may be able to
be addressed similarly to that in work that determine IP address or do-
main reputation; i.e., what is the past reputation of a given DNS server or
those servers that are authoritative for a domain? Also, it would be useful
to determine whether a given domain allows dynamic update, e.g., dyn-
dns.org, since the DNS rendezvous information is no longer independent
in such a case.
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3. While we’ve introduce a notion of host profiling based on a host’s peer-to-
peer-related DNS queries related to file sharing, gaming, and chat/mes-
saging services, there are many other possibilities. Rather than a network
administrator having to develop these profiles in advance, future work
could investigate automatically generating dynamic rendezvous-based
host profiles based by observation of a population of hosts. Subsequently,
other hosts could be profiled by similarity or difference to those dynam-
ically created profiles. It is interesting, for instance, to consider where
and when one might trust one host’s rendezvous behavior to define a

profile/class for others.

4. While we’ve successfully applied the DNS query responses to the classifi-
cation of associated traffic, it remains the case that this isn’t an intended
purpose of the DNS. Thus, it’s worthy to consider how the DNS and
other rendezvous services and protocols could be improved to explicitly
account for traffic classification. For instance, the DNS (Service Location)
SRV [55] query approaches something like this by including both the
name and desired service or port number in the query. By augmenting
rendezvous queries with clear information about a client’s intended use
of the host identity that it receives, a rendezvous service could play an
increasingly valuable role in traffic classification and determination of
packet treatment. (Conversely, if rendezvous information is encrypted,
it may severely limit traffic classification, possibly resulting in too much
traffic being forwarded on only a “best effort” basis.)

5. In studying IPv6 versus IPv4 performance, we provide a rendezvous-
based measurement method to expose performance, however we do
not determine the root cause of differences, when they exist. Future
work exploring other visualizations and forensic tasks are necessary to
determine these root causes. These causes may relate to the protocol,
clients, servers, or other elements in the end-to-end path.

6. In our studying structure and performance of the email delivery network
and its processes, we note that the performance information is gathered
from messages stored in personal archives that are likely an “unknown
sample” of all messages that were delivered. The sample is likely biased
based on the interests and behaviors of capricious users. It would, of
course then, be useful to determine how representative a given sample
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of email messages is, with respect to the delivery performance recorded
in those messages’ Received headers. To this end, we propose studies
that gather data more broadly by operating of filters (such as timemail)
on every one of a recipient’s messages, rather than just those that they

choose to save in their personal archives.

. In Chapter 6, we examine the structure of the email delivery network at
arbitrary points in time past or present. We hypothesize that an MTA
node’s in-degree and corresponding node and edge characteristics can be
used to reverse-engineer whether or not that MTA was, or is, an SMTP
Mail-eXchanger. This hypothesis has yet to be fully tested, but could be
done on a large scale by utilizing existing passive DNS monitors and
databases, such as DNSDB [16], in future work.
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A DNS RENDEZVOUS PROFILE DEFINITIONS

The following are the domain names and suffixes that define the P2P profiles
used in the work presented in Chapter 4. The Torrent entries are domains of
popular BitTorrent Clients from Wikipedia [13] and from Alexa’s top “Torrent
Directories and Tracker Domains.” [7] The Talk entries are based on observed
behavior of the Skype application and a well-known domain. The Game entries
are a well-known online game domain and Alexa’s top “Massive Multiplayer
Online Domains.” [7]

e Torrent:
bittorrent.com
utorrent.com
bitcomet.com
turbobt.com
pingpong-abc.sourceforge.net
bittornado.com
bitlord.com
azureus.sourceforge.net
azureusplatform.com
vuze.com
limewire.com
acquisitionx.com
aria2.sourceforge.net
ktorrent.org
transmissionbt.com
thepiratebay.org
isohunt.com
mininova.org
demonoid.com
hongfire.com
torrentportal.com
bwtorrents.com
torrentbox.com
torrentresource.com
legaltorrents.com

mybittorrent.com
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boxtorrents.com
tuxdistro.com
thebeehive.info
bittorrenttopsites.com
torrenttyphoon.com

Talk:
ui.skype.com
talk.google.com

Game:

battle.net
worldofwar.net
wowhead.com
runescape.com
worldofwarcraft.com
wowwiki.com
mmo-champion.com
curse.com
thottbot.com
dofus.com
mmosite.com
tibia.com
mmorpg.com
startrekonline.com
guildwars.com
allakhazam.com
onrpg.com
elitistjerks.com
arenajunkies.com
wowinterface.com
wow.allakhazam.com
warcraftmovies.com
zybez.net
tankspot.com
ddo.com
Wwowprogress.com

runehq.com



maxdps.com
runescape.salmoneus.net
lotro.com
play.toontown.com
lineage2.com
guildomatic.com
mabinogiworld.com

ragnarokonline.com
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B THE TREETOP FRAMEWORK

The following figure shows the TreeTop Framework for rendezvous-annotated

flow export as discussed in Chapter 5.
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The following figure shows the relational database schema for the Timemail

system discussed in Chapter 6.

create_timemail .sql

donor e message

donor_id int [PK, FKI message_index int U, FKI1 message_index int [PK. FK

upload_file_time DATETIME i WYARCHAR(128) start_tine OATETIME

upload_time DATETIME tupe CHAR(1) haops SMALLINT

remote_host YARCHARC128) protaengl YARCHARIED ) total_dt int

contact_info VARCHARC1Z8)  [U] chartime WYARCHAR 642 message_size  inf

hotify BOOLEAN time DATETIME mesgage_id WARCHAR (2582

personal _tupe BOOLEAN tz_offzet ik conor_id int FK1

work_type BOOLEAN path_index int w1 nessage_flag

lists_tupe BOOLEAN cull_code CHARC1)

spam_type BOOLEAN

other_tupe BOOLEAN overlayed_graph_details

type_count. TINVINT start_time DATETINE  CH] aggregate_node_details

cull_code CHARCLY end_time CATETIME [U1 start_time DORTETIME 1
donar_id int U, FK1 end_time DORTETIME 1
nodes int donor_id inf U, Fk1

graph_details edges int id VARCHARCLZEY  [U]

start_tine OATETIME  [U] diameter tht betweenness_centrality DOUBLE

end_tine OATETIME  [U] path_lengthr OOUBLE

donor_id int (U, FKI1 average_degree OOUBLE

nodes int average_weighted_degree  DOUBLE

edges int

diameter int

path, Length OUBLE averlayéd_node_details

average_degree DOUELE start/time DATETIMNE [<TH]

auerage_ueighted_degres  DOUBLE enit time DATETIME [
conor_id int [u, Fkl
id WHRCHAR(128)  [U]

edge in_degree int

nessage_index int T, FK1 out_degree int

origin_mta WHRCHAR(128) degres int

origin_domain WARCHAR (128 weighted_degree OOUBLE

destination_mta WARCHAR (1282 weighted_in_degree OOUBLE

destination_domain WARCHAR(12E) weighted_out_degree OOUBLE

type CHARC1) eceentricity DOUBLE

role CHARCLY clogeness_centrality OOUBLE

it int betweenness_centrality  DOUBLE

path_index int 413

Legend

[FK1 Foreign Key

[U1  Unigue constraint
[FK] Primary key

Created by S0L::Translator 0.11007
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Besides, the writing and the plots
for this paper is not polished.

anonymous reviewer, 2013

This dissertation was prepared using ETEX and the Wisconsin dissertation
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