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Identifying and diagnosing network traffic
anomalies, and rectifying their effects are stan-
dard, daily activities of network operators.
While there is a large and growing literature
on techniques fordetectingnetwork anomalies,
there has been little or no treatment of what
to do after a candidate anomaly has been
identified. In this paper, we present a first step
toward formalizing and automating the time-
consuming and challenging tasks associated
with network anomaly confirmation, diagno-
sis and remedy. Our work assumes that po-
tential anomalies are identified either through
visual analysis of key traffic measurements or
from a Network Anomaly Detection System
(NADS). We describe a flexible framework for
network anomaly confirmation, diagnosis and
remedy that is based on workflow concepts.
The key features of this framework include data
types/sources, analyses and decision points.
We present an instantiation of our framework
that includes a taxonomy of network traffic
anomalies and detailed steps for confirmation
of anomalies associated with malicious attacks.
We demonstrate our framework by applying
it to traffic in our university network. We
propose that our framework is a starting point
for streamlining operational tasks associated
with traffic anomalies, and for the generation
of annotated data sets that can be used in future
NADS development.

I. I NTRODUCTION

Addressing traffic anomalies is a core task
for network operators who are charged with

ensuring that their infrastructures operate reli-
ably and at specified performance levels. Traf-
fic anomalies present many challenges starting
with the fact that they are often quite difficult
to identify in complex, large scale networks
where non-anomalous network traffic is highly
variable.

These challenges have catalyzed a large body
of research over the past several years. Well
known examples include [2, 1, 6, 5, 7, 8]. The
primary focus of those studies is to develop
analysis techniques that enable network traffic
anomalies to be detectedaccurately(i.e., with
low false positive and low false negative rates)
and in a timely fashion (i.e., such that an
alert is generated shortly after the anomaly
begins). While many of the detection tech-
niques described in prior work are excellent
foundations for Network Anomaly Detection
Systems (NADS) that could be deployed in
operational networks, there has been virtually
no prior work on what to doafter an anomaly
alert has been generated.

In this paper, we begin the process of cod-
ifying the activities that take place after a
candidate traffic anomaly has been identified.
The starting assumption for our work is that
a network operator has received an alert from
a NADS or has identified a potential anomaly
through visual analysis of traffic measurements.
At this point, we posit that there are three
primary activities that must take place: Con-
firmation, Diagnosis and Remediation (CDR).
Anomaly confirmationis the process of veri-
fying that an anomaly is authentic. If NADS



were infallible, confirmation would not be nec-
essary. When an anomaly is confirmed, then
diagnosis is required, otherwise, the alarm is
false.Anomaly diagnosisis the process of iden-
tifying the causes and effects of the confirmed
anomaly. In some cases, an anomaly may be
deemed to be transient or innocuous (e.g., a
small flash crowd) and to have had no lasting
effect on the network in which case no further
steps are required. In other cases, systems in
the network may be damaged or compromised
and further steps that mitigate the anomaly’s
effects are required.Anomaly remediationis
the process of addressing the effects of the
anomaly with the goal of returning the network
infrastructure to a good state.

Each step in the CDR process can be com-
plex, time consuming and dependent on details
of particular network infrastructure. As could
be expected, the lack of established methods or
models for CDR processes has led to the prolif-
eration of ad hoc approaches. The combination
of these issues makes the codification of CDR
processes similarly complicated. The high level
challenge in our work is to create a framework
for these processes that is general enough to be
widely applicable and readily customizable for
specific networks.

We present a framework for CDR processes
based on workflow concepts. Workflow is the
notion of documenting a pattern of activities
associated with a higher level process, and
has been widely used to improve efficiency
in manufacturing and other business processes.
A strength of a workflow-based approach is
that it lends itself directly to several types of
analysis (e.g., critical path and queuing) that
can expose inefficiencies in operational envi-
ronments. Studies of workflows have a long
history. The notion of documenting workflows
and then using this as the basis for modeling
and improving processes is a central focus of
operations research. These methods have also
been applied in the information technology
domain,e.g., in [3].

Our framework begins with a taxonomy of

anomaly types that include routing/network
failures, flash crowds, malicious attacks, mea-
surement failures, and unknown events. We
then describe our workflow model for traf-
fic anomaly CDR. The model includes data
types/sources, processes/transformations and
decision points that are required for each of
the CDR steps associated with each anomaly
type. We posit that this approach satisfies the
requirement of generality since we take a top
down approach for specifying both the taxon-
omy and details of workflow associated with
handling each anomaly type. We also argue
that the approach satisfies the requirement of
being customizable since the workflows can
easily be augmented with tools, data streams
and processes associated with a given network.

While we are not aware of prior work that
defines CDR processes in detail, the operator-
defined taxonomy of five broad anomaly types
described in [1] is a starting point for our
work. That study identifies four anomaly types
(flash crowd, attack, measurement and net-
work), which were identified by network op-
erators in a multi-month set of flow traces.
This labeled data set then formed the basis
for testing a new anomaly detection scheme.
Similar labeled data sets could be created if a
consistent confirmation process is applied.

We demonstrate the efficacy of our frame-
work by presenting a detailed instance of the
confirmation process associated with malicious
attacks. This instance is based on the confir-
mation methods used by operations staff in our
university network. We then apply this work-
flow model to confirm and diagnose sample
candidate anomalies observed in our university
network. This effort was important for refining
our workflow model.

II. A C ONFIRMATION FRAMEWORK

We propose a framework for network
anomaly CDR organized around workflows, de-
scribe its components, and apply it to the abuse
anomaly confirmation process. Application of
the framework to the diagnosis and remediation



processes and to a broader set of anomalies is
a future objective.

Our approach to developing the framework
considered the perspective of practitioners. It
quickly became clear that while some initial
tasks in CDR are similar for a range of anoma-
lies, the tasks become distinct as the process
evolves. Thus, we made a design decision that
the starting point for the framework was to
generate a taxonomy of anomalies, and then
develop workflow for addressing each major
anomaly type. This highlights the importance
of anomaly classification in our framework, and
illustrates the many degrees of freedom that
must be considered and that complicate this
process.

A. Anomaly Taxonomy

Figure 1 is an initial taxonomy for net-
work anomalies, and is based on what is used
operationally at the University of Wisconsin
when logging anomalies detected visually in
IP traffic volume time-series plots [1]. The tree
is rooted at the “Anomaly” type, expands to
five general anomaly types, and then to specific
causes and characteristics that further define
and differentiate the anomalies. Rather than
being all-encompassing, this initial taxonomy
is defined pragmatically; only those types of
anomalies that are pertinent to a particular
operational anomaly detection procedure are
defined here. We believe that the best way
to further refine and expand the taxonomy is
through community contributions.

B. Workflow Requirements

The goal for our framework is to establish
a method for expressing the required steps for
network anomaly CDR that can capture both
the high level aspects and the details of the
processes. Workflow diagrams are a natural
solution. In general, a workflow documents a
process that is repeatedly applied.

Many different diagramming methods can be
used to express workflow. For anomaly CDR,
there are two basic object types that must be
explicit in any workflow representation. The

first type is atask that is conducted by a net-
work operator. A set of tasks collectively make
up the confirmation, diagnosis and remediation
processes. A task typically requires an operator
to consider data, possibly apply some kind of
transformation to the data, and eventually make
a judgment based on experience or policy.
Tasks can lead to other tasks, can require taking
an action (e.g. generating a trouble ticket), or
can simply result in the operator having more
knowledge about the anomaly.

The second basic object type isdata that
is required for tasks. There can be many data
sub-types. Data may also be collected from
a large number of sources and over different
time scales. An individual data stream can be
associated with multiple tasks.

C. Anomaly Confirmation Workflow

The confirmation process should authorita-
tively determine when a given anomaly has
occurred. Figure 2 is an initial confirmation
workflow for network abuse anomalies that em-
ploy flooding i.e., it might confirm an anomaly
type specified by the “Flood” node in Figure 1.
The representation we chose is a directed graph
with the following elements:

• Input nodesare rectangles and are con-
nected from the start node. Inputs in this
process are therequired measurementsfor
anomaly confirmation.

• Decision nodes(questions) are rounded
rectangles with sub-elements specifying
the possible result (answer).

• Directed edgesfrom inputs nodes express
prerequisites; i.e., the given input is re-
quired to make the connected decision.
Directed edges from decision nodes repre-
senttransitionsthat follow from decisions
connecting to the subsequent decision (if
any) or confirmation output.

• Dashed elementsare portions of the pro-
cess that involve decisions based on in-
tuition and operator experience. These el-
ements are candidates for automation, in
addition to the non-dashed elements that
are already automated.
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Fig. 1. A sample network anomaly taxonomy.

• Join nodesare ellipses and are labeled
with functions such as “AND” and “OR.”

• Output nodesare rectangles and are con-
nected to the end node and represent the
positive or negativeconfirmation for the
given type of anomaly.

Note that there are multiple arcs from the
start node. This indicates the presence of op-
tional paths (based on available input mea-
surements) and potential parallelism in the
anomaly confirmation process when multiple
inputs are available. Thus, this process is
partially-ordered; not all the decisions are nec-
essarily ordered.

The formal expression of a confirmation
process as a graph (or perhaps some other
diagrammatic reasoning representation) poten-
tially enables automated confirmation. It also
allows the possibility of automated analysis of
the confirmation processes (as in partial-order
planning) to arrive at alternate implementations
or interleaving of confirmation processes (for
simultaneous processing of multiple anomaly
types) for efficiency or performance.1

Requisite Measurements:Figure 2, with
rectangles representing input nodes, shows that
this confirmation workflow contains decisions
requiring three types of data:(i) bit and packet

1One example of a system optimized for efficient automated
response is described in [9].

time series measurements,(ii) flow time series
measurements, and(iii) flow or packet traces.
The out-degree of these nodes is 2, 4, and
10, respectively. This indicates those inputs in-
creasing utility in confirming or refuting poten-
tial anomalies, as we move from coarse (SNMP
counters) to detailed measurements (flow or
packet data). For instance, coarse measure-
ments can expose inbound vs. outbound sym-
metry, but detailed measurements are required
to discern multiplicity or out-degree of conver-
sations or protocol-specific header values.

Note that while detailed measurements are
ultimately required to reach the confirmation
output nodes, coarse input measures are suffi-
cient to begin the confirmation process. This
suggests that it may be possible to use the
ubiquitous, coarse measurements as leading
indicators to guide the deployment, activation,
or examination of more expensive, detailed
measurements. Thus, the confirmation work-
flow mirrors what is observed in practice:i.e.,
operators use easily digested visualizations of
coarser measurements to direct their exami-
nation of detailed measurements during the
forensic process of anomaly confirmation.

III. A PPLYING THE CDR FRAMEWORK

In this section we demonstrate how the
anomaly taxonomy and workflow framework
are applied to confirm the presence of flood-
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Fig. 2. A sample confirmation workflow for (outbound) flood-based network abuse anomalies.

based network abuse anomalies observed in
our campus network. While we describe a
single instance in order to highlight details,
the framework has been used to confirm many
other flood-based anomalies in our network.

Figure 3 is a time series plot of the uni-
cast packet rate for the campus connection
to its commodity Internet Service Provider.
These measures are based on the MIB-II SNMP
ifOutUcastPkts and ifInUcastPkts counters of a
campus border router. (In this figure as well as
Figures 4 through 6, outbound traffic is shown
above the horizontal axis and inbound traffic
below. All graphs show 48 hours, with the most
recent time on the right.)

We considered the left-most midnight local
time, labeled “00:00”, in the graphs and follow
the confirmation workflow:

1) From the start node, we visit the “bit and

packet time series” input node because
we have this coarse, SNMP-based mea-
surement available. We then consider the
left-most arc to “a prominence exists?”
decision node. We can see in Figure 3
that an outbound prominence exists at
time 00:00; this is amidst a period of
increased outbound traffic (increased by
approximately 40,000 packets per sec-
ond.)

2) Since we also have flow time series avail-
able, we can additionally visit the “flow
time series” input node. We then consider
the left-most arc to “a prominence ex-
ists?” decision node. In Figure 5 we also
note an outbound UDP prominence.

3) We now follow the arc from “packets” to
the “top talkers: packets?’ decision node.
This decision node requires “input: flow



Fig. 3. SNMP time-series:Interface packet rate.

Fig. 4. Flow time-series:Bit rate by protocol.

Fig. 5. Flow time-series:Packet rate by protocol.

Fig. 6. Flow time-series:Flow rate by protocol.

or packet trace.” We have a trace in the
form of flow-export records in log files.
We run a standard “top talker” report for
the flow records including the time 00:00
and find that there is a single host with
outbound packet rate commensurate with
the magnitude of the prominence.

4) We now visit the “OR” join node and
consider the subsequent “AND” join
nodes. These follow the “pathological
packets?” and “flow-controlled?” deci-

sions nodes. By examining a trace of
flow records, the operator can determine
whether or not the UDP packets appear
to be flow-controlled. In this case they
are not.

5) We follow the arc from “flow-controlled?
no” to the “abuse” output node, thus
confirming that an outbound flood-based
network abuse anomaly exists at time
00:00. We have now reached the “end”
node and the traversal of this anomaly
confirmation workflow is complete.

IV. D ISCUSSION

While our CDR framework, anomaly taxon-
omy and flood abuse workflow are first steps
toward formalizing what takes placeafter and
anomaly is detected, a number of open issues
and questions remain, including:

• Framework Completeness: While our
framework captures basic characteristics,
it represents only a small portion of the
CDR process:(i) the relationship between
anomaly confirmation and diagnosis is
complicated;i.e., one can often confirm
an anomaly without having completely
diagnosed its causes and effects;(ii) we
haven’t specified remedies. Remedies are
likely to be highly network dependent and
may be numerous even for a single type
of anomaly.

• Anomaly Lifetime: It is sometimes easier
to classify an anomaly having observed
both its inception and termination. Intro-
ducing lifetime into a workflow might
include decisions based on observations at
arbitrary points in the past for future.

• Anomaly Correlation: Multiple anomalies
might be correlated, whether they occur
in series or in parallel. For instance, an
inbound probe might be followed by an in-
bound vulnerability exploit compromising
a local host that is subsequently enslaved
as the source of an outbound denial-of-
service flood. Considering correlations be-
tween anomalies can aid the CDR pro-
cesses.



• Anomaly Atomicity: Since anomalies can
overlap in time and may only be distin-
guishable in fine-grained measurements,
the atomicity of anomalies is important
since it has implications for remediation.

• Detail and Time Scales: The level of detail
and the time scale of data streams deter-
mine whether or not some anomalies can
be distinguished from each other or even
discerned at all.

• Probabilistic Reasoning: We represented
the flood confirmation workflow as a di-
rected graph with only simple join nodes
whose output is a simple function of
inputs, such as “AND” and “OR.” We
believe that probabilistic reasoning, such
as that embodied by a Bayesian network,
could be employed to enhance our basic
framework.

We have explored both time scales and the
use of Bayes networks in [4].

V. CONCLUSION

While the notion of a self-healing or auto-
nomic network that can adjust to anomalies
automatically is compelling, we are a long way
from that vision. The current state-of-the-art
in dealing with network traffic anomalies are
automated detection systems coupled with ad
hoc confirmation, diagnosis and remediation
processes. In this paper, we begin the process
of formalizing network traffic anomaly CDR
toward the goal of increasing operational effi-
ciency. We describe a workflow framework for
CDR that begins with a taxonomy of anomaly
types and an approach for specifying the data
sets, process steps and decision points. We
present an example confirmation model associ-
ated with flooding attacks apply it to candidate
anomalies observed in our university network.
We plan to expand our model set to include
workflows for other anomaly types and to refine
these models by interacting with other network
operators.
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