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ABSTRACT

The Domain Name System (DNS) is a one of the most widely
used services in the Internet. In this paper, we consider
the question of how DNS traffic monitoring can provide an
important and useful perspective on network traffic in an
enterprise. We approach this problem by considering three
classes of DNS traffic: canonical (i.e., RFC-intended be-
haviors), overloaded (e.g., black-list services), and unwanted
(i.e., queries that will never succeed). We describe a context-
aware clustering methodology that is applied to DNS query-
responses to generate the desired aggregates. Our method
enables the analysis to be scaled to expose the desired level
of detail of each traffic type, and to expose their time vary-
ing characteristics. We implement our method in a tool we
call TreeTop, which can be used to analyze and visualize
DNS traffic in real-time. We demonstrate the capabilities of
our methodology and the utility of TreeTop using a set of
DNS traces that we collected from our campus network over
a period of three months. Our evaluation highlights both
the coarse and fine level of detail that can be revealed by
our method. Finally, we show preliminary results on how
DNS analysis can be coupled with general network traffic
monitoring to provide a useful perspective for network man-
agement and operations.

Categories and Subject Descriptors: C.2.3 [Network
Operations]: Network management, Network moni-
toring, C.4 [Performance of Systems]: Measurement
Techniques

General Terms: Design, Experimentation, Measure-
ment, Performance

1. INTRODUCTION

Methods for classifying and identifying key characteris-
tics of network traffic have important implications in net-
work management, traffic engineering and network security.
For example, the popularity and large sizes of the files dis-
tributed through peer-to-peer (P2P) applications can con-
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sume a significant percentage of the bandwidth in a network.
The ability to accurately identify P2P traffic can enable it
to be throttled at the network border to the benefit of other
more critical traffic types. Similarly, the ability to identify
malicious traffic accurately and in a timely fashion in the
best case can enable an attack to be blocked before it is
completed or at least can enable the effects to be mitigated
quickly.

The key challenge in accurately identifying different traf-
fic types and their characteristics is that there is no inher-
ent mechanism for this task. In years past, port numbers
could be used to classify a large percentage of network traf-
fic, primarily due to the limited diversity of applications.
However, there is a wide variety of applications in use to-
day, and many of these use ephemeral ports or standard
protocols such as HTTP for communication, which defeat
simple classification via port numbers. In the case of mali-
cious traffic, there is strong incentive to actively obfuscate
payloads (e.g., via packing and morphing methods), which
makes the identification problem even more challenging. Fi-
nally, encrypted traffic transmitted via standard protocols
represents perhaps the most significant classification chal-
lenge since it would seem that almost no details could be
discerned.

Prior work on non-port based approaches to identifying
network traffic include payload-based analysis, behavioral
analysis and clustering analysis. Payload-based approaches
(e.g., [28, 12]) are standard e.g., in network intrusion de-
tection systems (NIDS) and in some commercially available
traffic shaping systems. This approach tries to match packet
payloads to a library of signatures composed of unique byte
sequences associated with particular attacks or applications.
A disadvantage of the payload-based approach is that byte
sequences are often not unique to a particular traffic type,
which leads to the well-known false alarm problem in NIDS.
Classification methods based on behavioral characteristics
such as [19, 29, 20] focus on building statistical models
of transport layer metrics such as connection duration and
packet size to distinguish applications. Cluster-based ap-
proaches such as [13, 22] take the next logical step by us-
ing standard machine learning methods to divide traffic into
groups based on similarity of transport layer characteris-
tics. We believe that these methods have merit but are
ultimately limited by the diversity of information available
to them from the protocols that are being used. While traf-
fic classification using methods such as the aforementioned
can be useful, they often omit key details that are required
to diagnose and remedy problems and are likely to never



be able to fully distinguish all traffic types accurately. We
argue that a broader perspective is necessary.

In this paper, we investigate the question of how Domain
Name System queries could be used to provide important
and unique insights on network traffic. Our motivation for
this work is the observation that DNS is used by almost
all applications in the Internet, and the conjecture that
the plain-text DNS query/response traffic is a rich source
of information on network traffic that might otherwise be
difficult to understand. For example, while prior classifi-
cation methods might accurately identify application traf-
fic as HT'TP, information from DNS queries that precedes
this traffic could be used to further label the traffic with
prominent domain names. (Throughout the remainder of
this paper, we refer to standard or expected DNS traffic as
“canonical”.) DNS is also now routinely used for black-listing
services (throughout the remainder of this paper, we refer to
this type of DNS traffic as “overloaded”), which are critical
for spam checking, but increasingly used for other purposes
(see Section 3 for details). Understanding the nature of this
traffic could be useful in network operations. Finally, there
are many queries that never succeed, but still require DNS
resources. So, any improvement in understanding this cate-
gory of DNS traffic (throughout the remainder of this paper,
we refer to this type of traffic as “unwanted”) will be impor-
tant to network operations and security administrators.

The starting point for our work was a set of traces of
DNS query/response traffic continuously gathered from our
campus network from January through April, 2008. This
data set comprised over 11 billion total query responses for
tens of thousands of clients. With a data set this large and
diverse, a principled analysis method is required in order to
extract, visualize and evaluate the desired information.

Our approach to analyzing the DNS traces is data-driven
and context-aware. In particular, we apply a clustering
methodology that is guided by DNS syntax and semantics
to decompose the query/response traces into the three ma-
jor categories described above. We also employ IP prefix
and domain name search trees to divide clusters into more
detailed subclusters and aggregates. Rather than relying on
single fields, we distinguish additional unwanted and over-
loaded traffic types by identifying combinations of query
names, response codes, and answer values. Additionally, we
employ a “reflexive clustering” method that uses these multi-
ple dimensions for creating groups where the interpretation
of one group is based on the context of the other.

We implemented our context-aware clustering method in
a tool we call TreeTop. This tool enables both off-line and
real-time analysis and visualization of DNS query/response
traffic. Specifically, TreeTop analyzes query /response traffic
with a variety of filters and summarizes in tabular or graph-
ical reports. TreeTop is currently in operational use in our
campus network and is also available to the community [25].

When applied to our DNS query/response traces, Tree-
Top highlighted a number of interesting characteristics that
demonstrate the utility of our approach. First, we found a
diurnal cycle consistent with standard packet traffic. The
profile for this traffic is relatively smooth and clearly high-
lights a wide variety of popular applications such as Face-
book, Google, etc. Next, we automatically identified ap-
proximately 200 black-lists and found black-list traffic to
be of significant volume continually while also marked by
high magnitude spikes. Finally, we defined and measured

a new high-volume category of unwanted, avoidable queries
due to incorrect use of resolver search lists. While the de-
tails of these results are derived from our local dataset, our
approach and TreeTop can be used to investigate similar
activity in other networks.

The remainder of this paper is organized as follows. In
Section 2, we discuss prior studies that are related to our
own. In Section 3, we provide an overview of DNS including
details that are pertinent to this paper. In Section 4, we
describe the measurement infrastructure used to gather our
DNS query traces, and details on the traces themselves. In
Section 5, we describe our context-aware clustering method,
and in Section 6, we describe the implementation of the
method in our TreeTop tool. The results of the analysis of
our dataset are provided in Section 7. We outline future
work, summarize, and conclude in Section 8.

2. RELATED WORK

Methods for analyzing the characteristics of network traf-
fic behavior have been described in a large number of prior
studies. Of particular relevance to our work are prior stud-
ies that describe techniques for classifying network traffic in-
cluding [19, 20, 29, 13, 22]. These methods have been shown
to be highly accurate, and we consider the information that
they produce to be complementary to what is produced by
our DNS query analysis. Our approach to clustering is in-
formed by the work of Cho, et al. in [7] and Estan, et al.
in [14]. Both employ hierarchical aggregation based on IP
packet header information and the latter describes a dy-
namic method for creating minimal, multidimensional clus-
ters of interest. Our work diverges from those techniques by
utilizing the DNS traffic payload to create new clusters and
by introducing hierarchical aggregation by domain names.
Clustering methods have been applied to network traffic in
several other studies. For example, Estan and Varghese de-
scribe a method for efficient identification of heavy hitter
flows that is based on a fixed cluster definition [15]. Zhang,
et al. describe a method for detecting anomalous BGP route
advertisements based on clustering update behavior [39]. Fi-
nally, Yegneswaran et al. use cluster analysis as the key
component of an algorithm for intrusion signature genera-
tion in [37]. Our work differs from these in that our clus-
tering techniques are customized to the unique semantics of
the DNS.

There is a growing literature on the empirical character-
istics of DNS behavior and performance (e.g., [3, 18, 21]).
These studies have focused on volume and diversity of query
types from both the client and server perspectives, and shed
light on the impact of specific mechanisms such as client-side
caching. More recent studies have focused on how the DNS
can provide insights on unwanted activity. For example,
Whyte, et al. describe a method for identifying scanning be-
havior associated with worm infections based on maintaining
whitelists of known DNS records [36]. Other works propose
new tools for passive monitoring of DNS traffic. Wessels, et
al. [34, 35] introduce a tool to identify high volume types
of DNS traffic. While we build upon this tool (dnstop), our
analysis differs in that we perform clustering based on the
DNS response answer values rather than just queries and re-
sponse codes and then we apply DNS measurements to clas-
sify IP traffic in general. In [33], Weimer introduced a tool
that populates a database from passive DNS traces and effec-
tively identified abusive behavior including botnet activity.



Likewise, Zdrnja, et al. [38] record DNS trace information
to a database and subsequently identify DNS anomalies in-
cluding fast flux domains typically associated with botnet
activity [10, 26]. While that work mentions DNS traffic
due to anti-spam tools, our work differs in that we isolate
and measure this black-list traffic, and we monitor all DNS
query responses from clients, not just authoritative answers.
Several of the methods described in these papers are incor-
porated into our DNS monitoring framework.

Finally, Ren, et al. [27] propose visualization techniques
for DNS data. Our motivation is similar to this study in
some respects and we also utilize time series data as input,
but our work differs in analysis method and in the tree-based
visualizations that we produce.

3. DNS MECHANICS

We are primarily concerned with analysis of DNS packets
sent in response to queries from end-hosts, i.e., those at
the periphery of the Internet. As in [38], we analyze just
the responses (replies) because the details of the query are
repeated in the corresponding DNS response packet. Here
we present a partial overview of the DNS service as it is used
by these hosts and provide definitions of the terms we use
in this paper.

DNS query packets and response packets have a similar
form, and are typically exchanged between clients and name
servers using the UDP “domain” service port 53. The packet
contains a header, a question section, and an answer section.

Generally, queries are performed with query names that
are Internet domain names. The Internet domain space is hi-
erarchical ', with a well-known set of top-level domains, such
as “com,” “net,” and “org.” Institutions have sub-domains,
such as “example.com” and “example.org,” in which they can
arbitrarily create sub-domains and entries such as
“www.example.com.”

DNS client hosts typically perform queries by using a re-
solver that is supplied with the operating system. The most
common queries are for the IP addresses associated with do-
main names. These queries have a type IPv4 Address (A)
or IPv6 Address (AAAA, known as “quad A”) and contain
a string-based query name such as “www.example.org,” to
which a DNS name server typically responds with either
“No error” (NOERROR) or “Nonexistent Domain” (NXDO-
MAIN). In the NOERROR case, one or more IP addresses,
such as 192.0.2.2, are returned in the response packet’s an-
swer section. Other common query types include those for
Mail eXchanger (MX) records used to route e-mail, Pointer
(PTR) records used to translate IP addresses to names, Ser-
vice Location (SRV) records used for automatic discovery of
services, and Text (TXT) records used for various purposes.
Each query type may have its own corresponding answer
type.

We refer the reader to either [32] or [23], [24] for a thor-
ough introduction to DNS packet structure and service se-
mantics.

!See Figure 5 for a graphical example of a portion of the
DNS hierarchy.

4. EMPIRICAL DATASETS

In this work, we are interested in DNS traffic, i.e., queries
and corresponding replies, exchanged between Internet hosts
and trustworthy recursive name servers. To assure the le-
gitimacy of the servers, we monitor only the traffic involv-
ing those servers under the campus’ administrative control.
This avoids us having to question the validity of responses
because the campus DNS servers perform recursive queries,
on their clients behalf, only to zone-authoritative name servers
(based on referrals from the Internet’s trusted root servers).
Thus, we avoid rogue DNS servers such as those investigated
in [9].

For off-line analysis, we capture DNS traffic exchanged
between campus client hosts and the campus’ recursive any-
cast [2] DNS service. Our university operates a recursive
name service consisting of four geographically dispersed server
machines that answer queries received at one of the service’s
two IP addresses, which are in different campus network pre-
fixes. As such, this recursive anycast DNS service exempli-
fies current best practice for a large, highly-reliable lookup
service that serves tens of thousands of clients. The com-
plication introduced by anycast is that any of the servers
could handle a specific client’s request, so we monitor all
servers simultaneously, and combine the traces at synchro-
nized points in time to get a complete view.

In this paper, we consider a traffic trace from January 8,
2008 through April 21, 2008. Tables 1 ? and 2 show the
query types and response codes as percentages of total DNS
traffic observed during this time. The active client num-
bers are based on the count of clients observed performing
queries in a five minute interval. Figure 1 presents the traf-
fic as a time series. While the details have been omitted for
space, note the rich set of characteristics involving multiple
dimensions in the measurement data. (The weeks labeled 2,
3, and 12 are during the January inter-semester and spring
recesses, thus had lower traffic volume due to fewer active
clients.)

Query Type || Queries/Sec | Active Clients
A 671 (54%) 4521 (87%)
PTR 310 (25%) 1386 (26%)
AAAA 120 (10%) 906 (17%)
MX 99 (8%) 197 (3%)
TXT 25 (2%) 112 (2%)
SRV 5 (0%) 145 (2%)
any 1236 (100%) 5183 (100%)
Table 1: DNS query distribution: average rates

and average numbers of active clients by query type.
An “active client” is one that has performed a DNS
query within a given five minute interval.

For online analysis in real-time, we also monitor traffic at
individual DNS servers and on an individual workstation.
That is, the traffic is observed within the end host, either
the DNS server or client host, at its network interface.

2The percentages of active clients in Table 1 are not ex-
pected to add to 100% because any given active client can
issue multiple types of queries in a measurement interval.
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Figure 1: DNS query and response rates, January
8, 2008 through April 21, 2008. Query rates by type
are plotted above the horizontal axis and the corre-
sponding response rates by code are plotted below.
See Tables 1 and 2 for the rate values.

| Response Code || Responses/Sec |

NOERROR 729 (50%)
NXDOMAIN 180 (30%)
SERVEATL 57 (%)
any 1236 (100%)

Table 2: DNS response distribution: average rates
by response code.

5. ANALYSIS METHOD

Our initial observation about the measurement data, pre-
sented in time series in Figure 1, is that the DNS query
responses have a rich set of characteristics not unlike those
seen when measuring all Internet traffic (i.e., not just DNS)
involving a similar number of hosts. This observation mo-
tivated our analysis goals and the methods we developed to
achieve them.

5.1 Goals

We have two primary goals for off-line and real-time DNS
traffic analysis:

1. Distill Useful DNS Traffic Types.

The number of combinations of DNS packet field values
is large, similar to that of TCP and UDP IP headers
in general IP traffic. This suggests applying analysis
techniques successful in prior work, i.e., aggregation-
based clustering techniques inspired by [7] and [14],
both of which use hierarchical, volume-based cluster-
ing to more succinctly store and represent an otherwise
overwhelming number of measures. Thus, our fore-
most goal is to distill the measurement data so that we
can present essential, concentrated clusters that will be
useful in both research and operations.

2. Enable Flexible Analysis.

Our second goal is a flexible analysis of DNS traffic
such that we can answer new questions and conve-
niently apply the knowledge gleaned from our analysis
to broader Internet traffic applications.

For example, we wish to use the knowledge of the do-
main names by which clients refer to Internet hosts for

the measurement and analysis of IP traffic in general.
That is, we want to classify traffic by familiar domain
name identifiers.

5.2 Methods

We use two methods to achieve our goals:

1. Context-awareness.

Our first method is to form clusters by leveraging the
knowledge of DNS syntax and semantics. Instead of
attempting to apply general clustering methods (e.g.,
simple K-means), we use knowledge of the protocol
itself and knowledge gleaned from prior work to as-
semble DNS-specific clusters.

Our starting point for context-aware clustering is based
on our specification of three general types of DNS
queries. While other high-level taxonomies of DNS
traffic are certainly possible, we argue that the follow-
ing three classes support the goal of making the result-
ing analysis useful in both research and operations.

Unwanted Traffic.

Many of the prior empirical studies of DNS traffic
discuss high-volume anomalies observed in the data,
and are driven by concern of their potential impact
on local and Internet-wide DNS operations. These
anomalies are within an important class of unwanted
DNS traffic including all sorts of misdirected and mal-
formed queries, such as those with IP addresses as
query names, unknown Top Level Domains (TLDs),
RFC-1918 addresses for PTR, and for names contain-
ing invalid characters.

Overloaded Traffic.
The DNS has come to be both extended and reused
for new purposes in both foreseen and creative ways,
e., it has become overloaded. By this we mean that
an earlier function of the DNS is overloaded with new
meaning (rather than meaning that the DNS service
is experiencing excessive load due to these new pur-
poses). In light of these new uses, there is the danger
of misinterpreting this “overloaded” traffic as either un-
wanted or typical DNS traffic, thus we wish to identify
and isolate it in analyses.
The primary examples of applications that overloads
the DNS are “black-lists.” The most common intent
and use of these lists is to limit spam or network abuse
by providing a mechanism for determining whether or
not a given IP address or domain name is currently
a member of a list that is maintained by some “list-
ing service” (both community-based and commercial
services are available). These lists exist in many vari-
eties including Real-time Blackhole Lists (RBLs), DNS
Black-Lists (DNSBLs), DNS White-Lists (DNSWLs),
Uniform Resource Identifier Black-Lists (URIBLs),
Spam URI Real-time Black-Lists (SURBLs), and Right-
Hand-Side Black-Lists (RHSBLs, for testing the do-
main name portion of an email address).
Black-lists employ an informal protocol [1] atop DNS
and, in doing so, they overload the meanings of the
DNS A query type and its response codes. For in-
stance, a given [P address or fully qualified domain



name (FQDN) is tested by prepending it to the black-
list’s domain name and then performing a DNS lookup,
and testing for “magic numbers” in the returned an-
swer. While the meaning of these numbers is defined
by the particular black-listing service, black-lists clearly
overload the DNS query types, response codes, and an-
swers, thus requiring special context-aware treatment
in our clustering method to isolate this traffic from the
canonical. In Section 6, we explain in detail how we
cluster this traffic using a technique we call “reflexive
clustering.”

Canonical Traffic.

This class of traffic is the expected, well-behaved DNS
traffic. Essentially, it is what is likely to be left over
once the unwanted and overloaded traffic is removed,
and is most often used to identify hosts and services,
such as converting domain names to IP addresses or
the reverse (A, AAAA, or PTR queries), routing elec-
tronic mail (MX queries), etc. Canonical traffic uses
the RFC-defined query classes, types, and response
codes in a well-defined fashion.

We have significant interest in the canonical traffic and
the clients involved in it since our intent is to apply the
information gleaned to improve identification and anal-
ysis of the subsequent IP traffic involving those clients.
The DNS query/response traffic is a compelling, trans-
parent source of additional information about Inter-
net traffic beyond what is available in packet headers.
DNS traffic is of relatively low volume (compared with
all IP traffic involving a given population of clients),
making it practical to process in real-time. Lastly, it
is not obscured by encryption mechanisms that thwart
general payload analysis.

With these categories, our method improves the anal-
ysis of DNS traffic by using clusters involving multiple
fields of the response packets (such as query name, re-
sponse code, and answer values) and reflexive clusters
prepared from other clusters in a DNS-specific way.
That is, we form clusters using the contextual knowl-
edge of DNS traffic and its idiosyncrasies for unwanted,
overloaded, and canonical traffic.

2. Utilize Purpose-built Data Structures.

Our method to achieve the goal of flexible clustering
and analysis in real-time is to utilize efficient, high-
performance data structures to handle IP addresses
and domain names. (In contrast, a relational database
as the data store is a good choice for off-line analysis
as in [33] and [38].) The ability to store, lookup, and
report IP address and domain names are key functions
to identify and measure the unwanted, overloaded, and
canonical types of traffic. Furthermore, an implemen-
tation will benefit if these data structures can be com-
bined and nested arbitrarily. This is the online equiv-
alent of the flexibility achieved by joins in relational
databases.

We continue in the next section by describing our imple-
mentation of these methods to cluster DNS traffic.

6. DESIGN AND IMPLEMENTATION

To implement and apply our clustering methodology, we
developed two high-performance data structures and an anal-

ysis tool that employs them. Both naturally have a hierar-
chical structure like the IP address and domain name sys-
tems whose elements they store. These data structures are
described below.

6.1 Data structures

6.1.1 The Address Tree

Our address tree is a binary prefix search tree or trie sim-
ilar to a Patricia trie, as used in BSD UNIX to perform
efficient longest-prefix matching for IP routing lookup ta-
bles [30], but with additional features.
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Figure 2: An address tree containing four IPv4 ad-
dresses, each with a count of 1. Internal nodes are
shown with dashed lines and occupied nodes with
solid lines.

Figure 3: An address tree containing two IPv4 pre-
fixes, each with “rolled-up” counts of 2. This is the
result of aggregating the tree shown in Figure 2 with
a 40% threshold.



An example address tree is shown in Figure 2. The ad-
dress tree is based on the tree implementation in Aguri that
is thoroughly described in [7], and has the following charac-
teristics:

e The trie’s alphabet consists of only binary digits 1 and
0. Thus, the internal node out-degree is 2.

e Level-compression is employed to reduce node count
and thus increase storage efficiency. This can also ben-
efit performance by eliminating the traversal of a long
list that terminates in just one entry.

e Aggregation is performed by configurable threshold
tests of a counter stored in the node. This aggregation
“rolls up” entries from more-specific to less-specific.
Figure 3 shows a 40% threshold aggregation of the tree
shown in Figure 2; this means that nodes with values
representing less than 40% of the total (in this case, 4)
are aggregated to the parent node. The affected leaf
nodes are available for reclamation.

o A Least-Recently-Used (LRU) node allocation scheme
is employed. This allows total size of the tree to be
bounded and to automatically aggregate reclaimed leaf
node counts to their parents whenever the list of free
nodes is exhausted.

In addition to the functionality of Aguri’s tree, we added
the following;:

e The option to dynamically allocate nodes on demand
rather than a fixed pool of nodes reclaimed by LRU
(with automatic aggregation). When not memory-
constrained, this allows us to retain all host IP ad-
dresses in the tree, so that detail is not lost. This
enables exact set representation (for instance, to store
interesting IP prefixes), accurate counting of entries
inserted into the tree, and thus additional analyses. 3

Testing for exact match and longest-prefix match with-
out modification of the tree. Essentially, this pro-
vides general set-membership testing in the IP address
space. Since Aguri’s tree was fine-tuned to its sole pur-
pose, it didn’t provide an API to test for matches in
the tree. (It could add entries, increment counters,
optionally aggregate, and report the tree contents.)

The address tree data structure is used as the basis for
clustering. It gives us the ability to aggregate by IPv4 and
IPv6 addresses  and to test for set membership in prefix
sets.

6.1.2 The Domain Tree

Inspired by the effective use of prefix tries within the IP
number space in both Aguri and AutoFocus [14], we employ
a similar technique to the domain name space. Thus, we
introduce the domain tree: an n-ary prefix search trie for
fully-qualified-domain names.

Figure 4 is an example of a domain tree structure. Domain
trees differ from address trees in the following ways:

3See [7] for an analysis of the accuracy of counting when
aggregation is applied.

4For brevity, we've shown just IPv4 addresses in the figures,
however we actually use address trees as a unified store of
IPv4 and IPv6 addresses, by representing an IPv4 address
as a 128-bit “IPv4-Mapped IPv6 Address.” [17]
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Figure 4: A domain tree counting references to
8 fully-qualified domain names (FQDNs). Var-
ious prefix and exact counts for those entries
are shown, slash-separated, in the nodes as
prefiz_count/exact_count.
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Figure 5: A domain tree containing 8 FQDNs; this
is a level-compressed presentation of the tree shown
in Figure 4.

e Since the presentation of a domain-name is a series of
labels separated by “.” characters (e.g.,
“www.example.com”) with the most-specific label first
rather than last, domain trees use reversed FQDNs,
e.g., “com.example.www.” Thus, the prefixes match-
ing the FQDN “www.example.com” include “com” and
“com.example,” but not “www.”

e The alphabet representable by a domain node con-
sists of all possible case-inspecific domain name la-
bels. RFC-1035 [24] specifies a 63 character maximum
length. Thus, the maximum domain node out-degree
is very large. In our implementation we store refer-
ences to child nodes in a red-black tree [8], so that
it is both space efficient (versus a hash) and exhibits
predictable performance. °

5The red-black tree does not play a major role in determin-



e Terminal domain tree entries, i.e., FQDNs, are of vari-
able distance from the root and are not always leaves
in the tree. For instance, “www.example.com” and “ex-
ample.com” could both be valid domain names resolv-
ing to an IP address. In contrast, full IP address en-
tries in an address tree are always leaves, and thus
never both a terminal entry and a prefix.

e Aggregation is implemented as a reporting feature rather

than a data restructuring feature. Therefore, domain
tree nodes must contain multiple counters: one count-
ing exact matches and one counting prefix matches.
This is also necessary because, unlike fixed-length IP
address entries, FQDNs can contain other FQDNs,
thus internal nodes that are also terminal entries need
exact counters.

e Level-compression is a reporting feature rather than a
structural feature. This retains the advantage of com-
pacting the presentation but without introducing the
need to store label sequences, i.e., varying sizes of ar-
rays of labels, within a node.

Figure 5 shows a level-compressed report of the same do-
main tree as depicted in Figure 4. Like address trees, domain
trees are employed in clustering. For instance, we can aggre-
gate by domain names queried or test query names for prefix
matches in sets of FQDN suffixes such as known TLDs and
dynamically discovered DNS black-lists. (Recall that the
FQDNs are represented in reverse, so a prefix match in the
tree means that the suffix matches in the canonical FQDN
presentation format.)

6.2 The TreeTop Analysis Tool

We developed a DNS and general traffic analysis tool
called TreeTop. TreeTop is implemented as a patch to
dnstop [35], and is about 8000 lines of C code including ap-
proximately 3000 lines originally from dnstop. Thus, Tree-
Top has all dnstop’s functions combined with our additional
features (including the ability to identify additional unwanted
traffic). We’ve run TreeTop on Intel and PowerPC-based
Linux and Mac OS X machines; it should be portable to
other UNIX-like systems.

TreeTop has two forms of output, tabular and hierarchical
text reports and graphical reports in which hierarchies are
represented as directed graphs.

TreeTop sets the aggregation threshold in one of two ways.
When run interactively, TreeTop sets the threshold as a
function of terminal window size. It chooses a threshold
with the goal of representing 100% of the observed traffic
as a level-compressed tree in the user’s window. When run
non-interactively for off-line analysis, TreeTop’s aggregation
levels, and the size of the resulting reports and tree graphs,
are configurable via a command-line option.

In contrast to prior tools that employ single-level hashes
with domain names as keys (such as dnstop and nscd), Tree-
Top’s functionality is based on the aforementioned data struc-
tures: address trees, domain trees, and combinations thereof.
We employ them to quantify unwanted traffic in new dimen-
sions (such as hierarchical counting of both the total number
of clients and number of domains queried), to identify over-
loaded DNS traffic (such as DNS black-list queries), and,

ing the domain tree’s functionality; other structures may be
substituted based on performance objectives.

ultimately, to classify general IP traffic based on the do-
main names by which the participating hosts know that IP
traffic’s source and destination IP addresses.

6.2.1 Clustering DNS Black-list Traffic

Here we describe how TreeTop clusters black-list traffic;
other clustering is done similarly, but sometimes using fil-
ters that were already present in dnstop. In Section 5, we
explained that DNS black-lists overload the meaning of par-
ticular fields of the request and response packets. To identify
this type of traffic, we look for high-confidence evidence of it,
then save some state information, and interpret subsequent
packets using that state, where otherwise the interpretation
would be ambiguous. We call this “reflexive clustering” and
describe it below using black-list traffic to illustrate. The
term “reflexive cluster” is analogous to “reflexive ACL”: an
access control list (ACL) with entries that are created dy-
namically based on the prior matching of a packet to a cor-
responding ACL.

Consider an example involving the domain entries shown
in Figures 4 and 5. To query a black-list, a candidate
IP address or FQDN is prepended to a black-list’s domain
name and then a DNS lookup for an A (IPv4 Address)
record is performed. Suppose there exists a DNS black-
list named “dnsbl.example.com” that black-lists IP addresses
that are known sources of spam e-mail. Suppose further that
“smtp.example.com” is a Mail-eXchange (MX) host that re-
ceives an email message from host 192.2.0.1. Wishing to
limit the propagation of spam, this MX host queries for
“1.0.2.192.dnsbl.example.org.” If it results in an NXDO-
MAIN response, it means 192.2.0.1 is not a member of the
black-list. If it results in a NOERROR response, an IPv4
address within the reserved 127.0.0.0/8 local network is re-
turned, e.g., 127.0.0.2. In the context of black-lists, the NO-
ERROR response means that the given IP address is listed.
Furthermore, IPv4 addresses in the answer section are over-
loaded; 127.0.0.2 commonly means this is a general entry in
the list. Thus, black-list domain queries are distinguished,
at least in part, by the fact that that they return bogon ad-
dresses. Bogon addresses are addresses that should never be
routed in the Internet because they lie within either reserved
address spaces (like 127.0.0.0/8) or within prefixes that have
yet to be allocated by the Internet Assigned Numbers Au-
thority (IANA) [11].

To identify and cluster black-list traffic, TreeTop first main-
tains a read-only bogon address tree because black-listing
uses bogons as answers. Next, as response packets are pro-
cessed, if the response code is NOERROR, TreeTop per-
forms a prefix match in the bogon address tree for any ad-
dresses present in the packet’s answer section. If a match is
found, then the answer is a bogon (i.e., within 127.0.0.0/8)
and TreeTop adds the address to a bogon seen address tree.
TreeTop next examines the packet’s query name. If the
name appears to begin with either (1) an embedded IP ad-
dress (as a reversed dotted-quad, i.e., “1.0.2.192”) or (2) a
nested FQDN ending in a known TLD, it adds the trailing
domain (i.e., “dnsbl.example.org”) to a list domain tree and
increments a counter of query references to that black-list
domain name. At this point TreeTop has likely discovered
a black-list and has a cluster counting references for true
positive hits in the black-list.

To count the black-list negative response misses, TreeTop
performs a prefix match in the list domain tree if a packet’s



response code is NXDOMAIN. If a match is found, TreeTop
examines the packet’s query name as above; if it begins with
either an embedded IP address or nested FQDN, the count
for the matching entry in the list domain tree is incremented.

In this way, the total DNS black-list traffic is accumulated
in a reflexive cluster; the counts of NOERROR responses
(that identified the black-lists) and NXDOMAIN responses
associated with all black-lists are summed in the list domain
tree. This tree is subsequently used to quantify the black-
list traffic and to save the black-list domains to a file for
initialization of the list domain tree on subsequent TreeTop
analysis runs.

6.2.2 General Traffic Analysis

The clustering technique described for black-list traffic
that uses an assemblage of carefully linked address trees and
domain trees generalizes to other purposes. Here we describe
how we use the addresses observed in IP traffic headers to
cluster IP traffic by its domain.
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Figure 6: An example of TreeTop’s combined use of
address and domain trees to measure traffic by do-
main name. Here, traffic from 192.0.2.1 is observed;
the dashed edges are traversed to locate the domain
node counters to be incremented.

Figure 6 is an example of a combined arrangement of ad-
dress and domain trees that TreeTop employs to measure IP
traffic by domain names. ¢ To initialize and maintain the
trees and the requisite links between them, TreeTop observes
DNS queries with valid A or AAAA answers, then adds (or
updates) entries to both this address tree and this domain
tree. Then, on observing subsequent IP traffic, an IP ad-
dress (e.g., from the packet header’s source address field)
is looked-up and a series of links are traversed to maintain
exact and prefix counters in the nodes. In this way, traffic

5Some details have been omitted from Figure 6 including the
Time-To-Live (TTL) of the name to IP relationship. Tree-
Top can use TTL information to report IP to name map-
pings at past points in time and to cull expired mappings
from the data structures.

measurements by domain name are achieved with perfor-
mance similar to that of standard IP exact match lookups.

In the DNS as it is commonly used today, it is certainly
the case that multiple IP addresses are sometimes associ-
ated with a single domain name and that multiple domain
names are sometimes associated with a single TP address. *
TreeTop accommodates the former implicitly and accom-
modates the latter by finding a common prefix (i.e., FQDN
suffix) of the domain names, with the default case being
“” (the root of the domain name hierarchy). For instance
in Figure 6, if both “example.com” and “www.example.com”
happened to resolve to address 192.0.2.1, we would link the
node 192.0.2.1 to “example.com” and upon traversal, incre-
ment roll-up counters (not shown) rather than exact or pre-
fix counters. This allows the measures of traffic involving IP
addresses with multiple names to be represented in aggre-
gated domain tree reports, even when there isn’t an exact
match to a single domain name.

We’ve described two instances of how TreeTop uses com-
binations of address and domain trees to maintain counts of
DNS and general IP traffic in many dimensions. Other such
arrangements, including domain trees in nodes of address
trees and vice-versa, enable counting and tracking known
domain names per client and the ability to determine the
number of clients that know a given domain name. The
former, i.e., address trees of domain trees, is useful in gen-
eral traffic analysis. When domain names are tracked on a
per client basis, the measurement system is aware of which
names are legitimately known (bounded by TTL) by each
client. Also, the clients’ domain name caching behavior can
be used to determine whether those clients’ applications are
likely utilizing stale name to IP address translations. ® The
latter, i.e., domain trees of address trees, may provide a
more useful measure of a domain name’s popularity than
query rate, given that the query rate is increased for lower
TTLs.

These analyses demonstrate the utility of these data struc-
tures when analyzing DNS traffic.

7. RESULTS

In this section we report our experiences using TreeTop to
perform both off-line and real-time analyses. Our intent is
to highlight the utility of our approach in terms of the scope
and detail of information, rather than to show all possible
reports. For clarity of presentation in time series plots, we
focus on just the week of March 8, 2008. (Results for other
weeks not during student recesses are similar.) Figure 7
shows an overview of all DNS traffic by type. In Figures 7, 8,
and 9, note that the traffic types are shown “stacked” on top
of each other so that none is obscured by another and so
that the the highest values on the vertical axis are totals.
Each type is examined further below.

7A common case of multiple domain names being associ-
ated with a given IP address is a web server configured with
many “virtual hosts”, perhaps thousands, that use a single
IP address.

8 A common cause of stale name to IP address translations is
that some applications use inet_addr, inet_aton, or geth-
ostbyname APIs to resolve a name only at initialization and
thus neither collect TTL information, nor resolve names and
reestablish connections upon expiry of that domain name to
an IP address translation.
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Figure 7: Clusters of DNS traffic during the week
of March 3, 2008. Note that many spikes have been
identified as unwanted and overloaded types.

7.1 Unwanted Traffic

We begin by focusing on unwanted traffic identified during
the sample week. It is decomposed as four sub-clusters in
Figure 8.

— unknown-tld
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Figure 8: Unwanted DNS traffic during the week of
March 3, 2008.

7.1.1 unknown-tld, rfc1918-ptr, and A-for-A Traffic

The traffic categories unknown-tld, rfc1918-ptr, and A-
for-A are identified by existing filters in dnstop and are de-
scribed thoroughly in [35] as well as briefly below. We in-
clude them here since they significanlty represent one of our
three primary traffic types (i.e., unwanted) and serve as a
point for comparison to results published in earlier studies.

The unknown-tld queries are those for TLDs that are not

Type Queries/Sec | Active Clients
unknown-tld || 197 (87.3%) 530
nx-nested-tld 22 (9.8%) 310
rfc-1918-ptr 2 (1.1%) 78
A-for-A 4 (1.8%) 15
any 226 (100%) n/a

Table 3: Distribution of unwanted DNS traffic types
during the week of March 3, 2008. Values are aver-
ages shown with their respective percentages of the
total unwanted traffic.

officially recognized by Internet governance organizations.

The rfc1918-ptr queries are PTR queries requesting names
for private IPv4 addresses that exist in one of the private IP
address ranges specified by RFC 1918. These are misdi-
rected queries except within the private network using that
IP address range. (The campus network in which our DNS
servers reside does not use these addresses.)

A-for-A queries are queries for addresses with a query
name string that already contains an address and are typi-
cally due to a bug in one resolver implementation. In Fig-
ure 8, note the lack of diurnal fluctuations in the level of
A-for-A traffic. This indicates that this traffic’s sources are
“always on” which agrees with the likely source being a buggy
resolver in a server’s operating system.

7.1.2  nx-nested-tlds Traffic

The unknown traffic category of nx-nested-tlds, mean-
ing nonexistent nested Top Level Domains, are queries re-
sulting in NXDOMAIN response codes that have a query
string that appears to contain a domain name ending in a
known TLD embedded with an FQDN. For instance, Tree-
Top would count a query for “www.example.com.example.com”
that results in NXDOMAIN as an nx-nested-tld.

These queries typically stem from resolver’s search list
feature that, for convenience, allows users to enter names
that are not FQDNs, i.e., a either a single label or a partially
qualified domain name. For instance, in the aforementioned
example, a user within “example.com” might configure their
machine to search “example.com”, then they could connect
to “www.example.com” simply by referring to it as “www”.

An issue arises when querying for names like
“www.example.com” when there is a search list configured.
Technically, since it does not end in a “” (which would
make it “rooted” and thus an FQDN), “www.example.com”
is considered a partially qualified domain name. The nega-
tive impact of this is that a resolver might first a lookup for
‘www.example.com.example.com”; and upon failure, lookup
“www.example.com” which will succeed. From the user’s
point of view, everything works, however two queries were
performed, one unnecessarily.

RFC 1535 [16] addresses this issue by prescribing that
when a “.” exists in a specified name, it should be assumed
to be a FQDN and should be tried as a rooted name first.
From our measurements however, it is clear that not every
name server or resolver does this: much of the nx-nested-tld
traffic was due to queries for resolvable FQDNs in our univer-
sity’s domain that are incorrectly being nested by appending
our university’s domain again (presumably from a resolver
search list). A second significant source of such traffic was



a campus mail server performing black-list queries with a
slight misconfiguration. Since most black-list queries result
in a negative response (NXDOMAIN), a single missing “.”
at the end of a black-list’s domains name (thus making it
only a partially qualified domain name and therefore a can-
didate to apply the search list) can cause the NXDOMAIN
query to be retried after appending a domain in the local
machine’s resolver search list.

The high volume of nx-nested-tlds we observe are unneces-
sary repeated queries (that always fail with NXDOMAIN)
and are most often due to persistent misconfigurations or
ill-behaved resolvers rather than simply typos in FQDNs.

7.2 Overloaded Traffic

Next, we present an analysis of overloaded DNS traffic
during a typical week. We’ve identified two kinds of over-
loaded DNS traffic: black-list and dnsbugtest traffic summa-
rized in Figure 9 and Table 4 and described in more detail
below.

10k T T

— blacklist
— dnsbugtest

Query Responses per Second (Log Scale)

Figure 9: Overloaded DNS traffic during the week
of March 3, 2008.

Type Queries/Sec
blacklist 122 (98.4%)
dnsbugtest 2 (1.6%)
any 124 (100%)

Table 4: Distribution of overloaded DNS traffic
types during the week of March 3, 2008. Values
are averages and their respective percentages of the
total overloaded traffic.

7.2.1 Black-list Traffic

Through the period of this week, TreeTop identified 220
domains as black-list domains. Consideration of the names
showed about 10% of these seem likely to be false positives. °

90One exemplary false positive was similar  to
“10.mx.example.com” and resolved to 127.0.0.1.  This

False negatives arise for black-lists that are in use, but that
never answer in the affirmative, i.e., always result in NX-
DOMAIN. The accumulated NOERROR and NXDOMAIN
query reply rates are shown in Figure 9 and Table 4.

7.2.2  dnsbugtest Traffic

A second type of overloaded DNS traffic that we identi-
fied is what we call “dnsbugtest” traffic. Described in [6],
a system intentionally sends a malformed DNS query to a
server, in an attempt to determine the quality of service that
server is providing. Based upon the response, an assessment
is made, and an appropriate action may be taken to either
rely upon or avoid that service.

As seen in Figure 9, dnsbugtest traffic is strongly diurnal.
This suggests that it is directly linked with user behavior.
We believe the dnsbugtest technique is used by a commer-
cial implementation of Zero Configuration Networking (Ze-
roconf [31]) and is thus tied to mobile computing.

7.3 Canonical Traffic

One of our main interests in the canonical DNS traffic is
in the query names and the resulting A or AAAA answers of
successful queries. It is this traffic that is likely the precursor
to IP traffic to and from the host IP addresses in the answers.
We present decompositions of this portion of the canonical
traffic as hierarchical graphs.

7.3.1 DNS Queries for Addresses

In Figure 10, we show the domain tree hierarchy of query
names which were accompanied by address answers in DNS
response traffic. We can discern the following from this
graph depicting ten minutes of DNS traffic:

e 492 586 address queries were answered and are repre-
sented in graph. (This is the prefiz_count from the
“” root node.)

e Popular web services including Facebook, Google, and
Weather.com, represented approximately 15%, 5%, and
4% of those queries.

e Most of the answered queries for those services were for
sub-domains. (This can indicate how the services con-
tent is distributed or how the service is load-balanced
using the DNS.)

e 47% of the answered queries for “com” sub-domains
were rolled-up because those sub-domain’s query counts
did not exceed the 3% aggregation threshold. (This is
the middle percentage, under the roll_up_count value
in the “com” node.)

e Within the campus, only queries in the IT depart-
ment’s domain, “doit.wisc.edu,” rivalled the quantities
of queries to those commercial services.

e No TLDs other than “com,” “edu,” and “net” had sub-
domains with 3% of the answered queries.

“example.com” domain was mistaken for a black-list be-
cause it does contain a nested TLD: “mx” is Mexico’s
country-code TLD (ccTLD). In actuality, this was a
Mail-eXchanger (MX) for “example.com,” inexplicably
configured with a localnet IP address. False positives
can be reduced by considering only those domains with a
sufficient proportion of NXDOMAIN responses as black-list
candidates.
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Figure 10: A TreeTop graph of query domains answered with Addresses during 10 minutes beginning at
1900 hours, Wednesday, March 5, 2008. The slash-separated query counts and corresponding percentages
are exact_count/roll_up_count/prefiz_count. The aggregation threshold was 3%.

7.3.2  IP Traffic by Domain

Lastly, we present sample general IP traffic measurements
by domain, as implemented in TreeTop by the method de-
scribed in Section 6.

In Figure 11, we show a TreeTop graph prepared in real-
time by running TreeTop on a single workstation to moni-
tor that workstation’s own incoming traffic. Note that this
graph has the same hierarchical structure as that in Fig-
ure 10, but instead of counting answered queries, the graph
in Figure 11 counts bytes received from source hosts known
to the workstation by each node’s given domain name.

We see, in Figure 11, that inbound traffic for this web
browsing session was received primarily from “facebook.com,”
“collegehumor.com,” and “youtube.com.” Note that this in-
cludes both HTTP and HTTPS traffic; the latter demon-
strating the capability of our technique to identify the host
names associated with the sources of encrypted traffic with
payloads that can not be externally examined to determine
the URL host name. '°

Lastly, in Figure 11, a small portion of the traffic (0.15%)
was from IP sources addresses for which no domain name
was know. This traffic is counted in the “unnamed” node and
includes the DNS requests themselves (since a host’s DNS
server is necessarily identified by IP address), and would also
include, for instance, any web traffic from URLs specifying
hosts by IP address rather than DNS-resolvable host name.

This example demonstrates how the combination of just
transport layer information and the associated DNS traffic
can be used to measure and classify IP traffic in general.
Thus our technique avoids payload dependencies in traffic
classification in situations when the payload is simply un-
available, i.e., when the traffic was either encrypted or was
recorded without payload (as in IP flow data).

OFor HTTP traffic, host names can often be identified us-
ing the “Host” field; this information can not be externally
observed in HTTPS traffic, but can be inferred by our pro-
cessing of the corresponding DNS query responses.
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Figure 11: A TreeTop graph of traffic destined for
a single workstation during a 5-minute web brows-
ing session. The values shown are volume of bytes
recetved from the domain specified in each node; the
aggregation threshold was 5.5%.

8. FUTURE WORK

Our on-going activities are focused on enhancing our anal-
ysis methods to expose further details of network behav-
ior, and on expanding our understanding of the relationship
between DNS query analysis and information provided by
other standard traffic monitoring methods. Based on Tree-
Top’s ability to monitor general IP traffic by domain, we
will quantify the amount of IP traffic that does and does
not appear to use DNS names as service identifiers. This
will allow us to evaluate the efficacy of our methods to clas-
sify IP traffic continually on a large scale, for instance by
monitoring links that aggregate traffic for an entire enter-



prise or organization.

We have not yet specifically isolated zero configuration
networking and service discovery traffic. Some of these tech-
niques are RFC-defined extensions to DNS and others are
experimental. These include DNS-Based Services Discovery
(DNS-SD [4]) and Multicast DNS (mDNS [5]). Because of
its unique characteristics, such traffic warrants identification
by clustering; we have yet to determine whether it is best
considered a sub-cluster of overloaded or canonical traffic.

We are evaluating the use of our methods in middleboxes
applications including firewalls, NIDS, and Intrusion Protec-
tion Systems (IPS). In addition to the benefit of using the
user-visible identifiers (domains rather than IP addresses),
there are advantages to this for combined IPv4 and IPv6 en-
vironments and transition efforts. This is because the same
DNS name can be used as a service identifier with both IP
versions, whereas this is not the case for IP addresses.

Finally, the authenticity of domain name to IP mappings
is of paramount importance in some applications of our
methods. In this work, we restricted ourselves to monitoring
DNS traffic involving our own trusted servers. However, we
plan to apply our methods to determine the trustworthiness
of other DNS servers. In part, this can be done by identi-
fying discrepancies amongst the passively observed answers
returned to client hosts, such as those resulting from cache
poisoning. There are other opportunities to discover both
undesirable and malicious network activities.

Conclusion

In this paper we present a set of novel techniques for ana-
lyzing DNS query traffic. The goal of our work is a deeper
understanding of general network traffic and of unusual or
unwanted traffic that can have a negative impact on net-
works. Unlike prior efforts that have focused on using DNS
traffic to identify specific behavior (e.g., bots that use fast
flux), we take a general approach to query analysis by using
data-driven cluster analysis to expose coarse-to-fine charac-
teristics of network traffic associated with the queries. The
specific classes of DNS queries that we focus on in this paper
are canonical queries consistent RFC-intended behaviors,
overloaded queries commonly associated with black-listing
services, and unwanted queries that will never succeed and
are thus superfluous. Our clustering methods are context-
aware and they are oriented around the hierarchy inherent
in both IP addresses and domain names, and enable users
to specify the desired level of analysis detail. We imple-
ment our clustering methods in the TreeTop tool which can
be applied to DNS query traces off-line, near real time, or
in real time to streams of DNS queries. We use a set of
DNS queries collected in our campus network over a pe-
riod of three months to demonstrate the capabilities of our
methods. Our analysis shows how TreeTop can expose the
rich diversity of general network traffic, the significant use
of black-listing services and the characteristics of unwanted
traffic. We believe that these tests highlight the novelty and
utility of our methods.
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