
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FlowScan: A Network Traffic Flow
Reporting and Visualization Tool

Dave Plonka – University of Wisconsin-Madison

ABSTRACT

Internet traffic flow profiling has become a useful technique in the passive measurement and
analysis field. The prerequisites for flow-based measurements are now available within the
network infrastructure – particularly, in popular Cisco network devices. The integration of this
feature has enabled the ‘‘flow’’ concept to become a valuable tool for the network administrator, as
it had been in the past for the researcher.

This paper describes FlowScan, a software package for open systems that is freely available
under the terms of the GNU General Public License. FlowScan analyzes and reports on flow data
exported by Internet Protocol routers. It is an assemblage of perl scripts and modules and is the
glue that binds together other freely available components such as a flow collection engine, a high
performance database, and a visualization tool. Once assembled, the FlowScan system produces
graph images, suitable for use in web pages. These provide a continuous, near real-time view of
the network traffic through a network’s border.

Although there are now a number of tools available that collect and process flow data, there
is a dearth of visualization tools. By utilizing freely available software tools, FlowScan can be
readily deployed in most modern educational institution, corporate, and ISP networks. The
information presented by FlowScan assists in understanding the nature of the traffic that your
network is carrying. It can be useful in the identification and investigation of anomalies such as
poor performance and attacks on hosts. It can provide a foundation on which to develop usage-
based billing or to verify the effectiveness of Quality-of-Service policies. By understanding the
flows of traffic carried by the network, your institution should be able to make informed network
management and bandwidth provisioning decisions.

Introduction

To better understand the nature of Internet traffic,
the notion of flow profiling was introduced within the
networking research community, and subsequently
extended by other researchers, producing a series of
useful findings. Flow profiling had been predicted to
be relevant to applications such as route caching and
usage-based accounting [ClaffyPB]. Today, based in
part upon market demands for performance and
accounting, flow profiling is built into networking
devices. While not yet standards-based, the flow
methodology is robust enough to persist through this
period of vendor-specific implementations, and its
benefits in many production networks warrant its early
adoption.

Network administrators who collect measure-
ment data often find that they either have collected too
little data or too much of it. In a sense, flow profiling
is a ‘‘sweet spot’’ between those extremes. Flows
strike a balance between detail and summary. They are
neither captured packets, nor are they merely aggre-
gate totals tallied as packets travel across a given port
or interface. Flows are an expressive abbreviation in
which each flow represents a series of packets travel-
ing between ‘‘interesting’’ end points. While flow fea-
tures within the network infrastructure are a

convenience, the presence of this feature alone is not
sufficient for reliable continuous use in production
networks. We need software tools to extract, record,
and help us understand the flows.

A variety of tools for flow-based measurement
have arisen from both the commercial and free soft-
ware communities [NetFlow], FlowScan is one such
freely available system. FlowScan is an assemblage of
perl scripts and modules gluing together other freely
available components, described below. Similar to
other systems aimed at helping users to make sense of
an overwhelming quantity of data, FlowScan means to
simplify the collection, storage, and visualization of
such data. Like most software tools, FlowScan has
both ancestors and other relatives that played a part in
defining its characteristics.

Several tools have set precedents for collection
of network traffic data using passive measurement
techniques. Of the freely available tools, MRTG
[MRTG, Oetiker] and Cricket [Cricket, Allen] are
among the most popular. Typically, these tools collect
measurements by periodically collecting SNMP val-
ues, such as the interface or port counters named
ifInOctets and ifOutUcastPkts, from routers and switches.
They subsequently store this data in a reduced form
that is easy to manage since it does not burden the user
with database management responsibilities. These

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 305

FlowScan: A Network Traffic Flow Reporting and Visualization Tool Plonka

tools are ultimately effective because they make the
data available to the end user in a useful, convenient
manner. The design goals of FlowScan are similar to
those of these tools.

FlowScan analyzes and reports on NetFlow data
collected by CAIDA’s cflowd [cflowd], a mature flow
collection and analysis tool. This flow data is scav-
enged by FlowScan, which simply tries to discover
interesting things about those flows, and maintains
counters that reflect what is found. FlowScan then
stores this myriad of counter values using Tobi
Oeitker ’s RRDtool [RRDtool]. RRDtool is a a
database system built from the ground up to effec-
tively store and report on time-series data. Lastly,
through the use of RRDtool and other front-ends,
FlowScan provides reporting capabilities and visual-
ization of the processed flow data.

FlowScan’s Functionality

FlowScan and its component parts are responsi-
ble for collecting and processing raw flows exported
from routers. FlowScan examines each flow and main-
tains counters based upon that flow’s classification.
FlowScan then periodically reports its results and may
optionally take other actions. It may be configured to
either archive or discard the raw flows after process-
ing.

FlowScan, in its current form, supplies two
report modules that illustrate its functionality: Campu-
sIO and SubNetIO. CampusIO is a full-featured report
module that is often the first and only report run by
most FlowScan users. As such, its features are often
thought to be those of FlowScan itself. The CampusIO
report interrogates the raw flows, accumulates total
counts and pushes these numeric statistics into high
performance time-series Round Robin Databases
[RRDtool]. Each database contains packet, byte, and
flow counters. These counters are maintained in both
in and out directions when appropriate.

Each Round Robin Database created by FlowS-
can contains between one and eight traffic statistics,
stored at five-minute intervals, based upon one of
these flow attributes:

• the IP protocol such as ICMP, TCP, and UDP
• the well-known service or application such as

ftp-data, ftp, smtp, nntp, http, RealMedia,
Quake, and Napster

• the class A, B, C network, or CIDR block in
which a ‘‘local’’ IP address resides

• the AS (Autonomous System) pair between
which the represented traffic was exchanged

Additionally, FlowScan maintains general traffic
databases that contain total, multicast, and traffic
involving unknown networks.

Figure 1 is a sample FlowScan graph of our cam-
pus traffic over a period of 24 hours, demonstrating
some of the information handled by CampusIO.

This graph shows several features:
• There is a circadian rhythm to our campus traf-

fic, with the low point centered about 6 AM
and with peaks in the late evening.

• There is more total outbound traffic than
inbound. That is, our campus consistently pro-
vides more Internet content than it consumes,
regardless of whether or not our web cache is
enabled.

• There is a significant amount of outbound FTP
DATA content. This metric is a combination of
both ftp-data and PASV mode ftp data transfers.

• Napster users were responsible for an amount
of traffic both inbound and outbound that rivals
or exceeds both general web traffic (HTTP) and
file transfer traffic (FTP) [Plonka].

• Some sort of Napster outage occurred at
approximately 3 PM local time.

Figure 1: Graph of UW-Madison’s campus traffic I/O
during 24 hours, Sep 18 & 19, 2000.

The SubNetIO report requires a bit more config-
uration on the part of the installer, but it subsequently
provides all the functionality of CampusIO, plus it
maintains per-subnet statistics for applications such as
billing a given campus ‘‘customer ’’ based on their
subnets’ usage of precious bandwidth in and out of the
campus itself.

Background on Flows and Cisco NetFlow

FlowScan utilizes flows defined and exported by
Cisco’s NetFlow feature. This flow definition is essen-
tially that which was introduced in [ClaffyPB]. By this
definition, an IP flow is a unidirectional series of IP
packets of a given protocol, traveling between a
source and destination, within a certain period of time.
The source and destination are defined by IP address.
Because the flow is unidirectional, nearly all useful
exchanges between two hosts, such as a client and a

306 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Plonka FlowScan: A Network Traffic Flow Reporting and Visualization Tool

server, are represented by at least two flows – one
flow in each direction. For TCP and UDP flows, this
definition considers the port number to be part of the
source and destination address, making it convenient
to determine which ‘‘well known’’ application such as
HTTP and FTP is likely to have been responsible for
the traffic represented by a flow. Additionally, Cisco
NetFlow PDUs include the router’s source and desti-
nation interface (named by the SNMP ‘‘ifIndex’’) and
NetFlow version 5 PDUs include source and destina-
tion netmask and Autonomous System which are of
interest to LAN and WAN engineers, respectively.
FlowScan-1.003 requires Cisco NetFlow version 5
PDUs and makes use of all of these flow attributes.

Figure 2: An image of Cisco’s NetFlow V5 PDU
header [McRobb].

Figure 3: An image of Cisco’s NetFlow V5 PDU
entry [McRobb].

Note that while the term ‘‘flow’’ refers to the
series of packets itself, NetFlow and FlowScan users
often refer to the IP traffic flow accounting record that
is exported from the router, and subsequently ana-
lyzed, as a ‘‘flow’’. This usage is natural because it is
this exported accounting data that is the tangible data
object that FlowScan manipulates. So, in this paper
the term ‘‘flow’’ will most often have the latter mean-
ing. Remember that this usage differs from the formal
‘‘flow’’ definition used in some other written works
such as [ClaffyPB].

Cisco’s NetFlow version 5 flow export format
[Cisco]:

Version 5 flow-export packets contain a
flow header followed by a number of flow
entries. The number of flow entries in the
packet is in the count field in the flow
header.
Unlike version 1 flow-export, version 5
flow-export has AS numbers and netmask
lengths for the source and destination.
[McRobb]

While the NetFlow V5 PDU is well documented
in [McRobb] and [Cisco], Figures 2 and 3 are here as
a catalog of the flow attributes that are available to
FlowScan. This set of attributes enables FlowScan’s
current capabilities, and to a degree ultimately limits
them by imposing performance requirements and mea-
surement compromises as described in the section on
FlowScan problems.

FlowScan’s Architecture

Hardware
A diagram of a basic FlowScan system’s hard-

ware components is show in Figure 4.

Web server/client

FlowScan graphs
via HTTP, etc.

cflowd/FlowScan host
e.g. Dual 700Mhz Intel PIII

Cisco

UDP flow PDUs

����
����
����
����
����
����
����

����
����
����
����
����
����
����

Telco/LAN Router

Figure 4: An image showing the basic hardware for
the FlowScan System.

While FlowScan does not have strict platform
requirements, most users who have successfully
deployed it have dedicated either a SPARC machine
running Solaris or Intel machine running GNU/Linux
or BSD as a FlowScan system. Deploying on one of
these platforms is also convenient because cflowd
builds and runs on them as well, which allows one to
co-locate FlowScan with cflowd so that both have
access to the local disk. The fastest FlowScan
machines appear to all be multi-processor Intel
machines.

For further information, the installation docu-
mentation provided in the FlowScan distribution pack-
age discusses some recommended hardware parame-
ters such as disk space and network interface card.

Software
A FlowScan system consists of a number of soft-

ware components. The first such component is cflowd
[cflowd], which is described thoroughly in
[McRobb2]. FlowScan uses cflowd strictly as a flow

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 307

FlowScan: A Network Traffic Flow Reporting and Visualization Tool Plonka

collector. As such, the cflowd components used by
FlowScan are the cflowdmux and cflowd programs.
cflowdmux receives UDP Cisco version 5 flow PDUs
from routers and and passes them to cflowd which
writes them to disk in a portable, well-defined format
of its own. FlowScan requires that the installer apply a
patch to the cflowd sources. This modification enables
cflowd to rotate and time-stamp its flow files at
FlowScan’s pre-defined sampling interval, which is
typically five minutes. The decision to use five-minute
samples was influenced by the popular tool MRTG
[MRTG].

The second component is a program called flows-
can; note that its name consists of only lower-case
characters. ‘‘FlowScan’’ is the package whose primary
procedural component is the program flowscan. This
program is a perl script that is the central process in
the system. It loads and executes report modules of the
administrator ’s choosing. These report modules are
simply perl modules that are derived from the FlowS-
can class defined in the FlowScan.pm perl module.
FlowScan reporting modules are described below in
the architecture section. As such, it is the flowscan
script that actuates the whole system by maintaining
databases of statistics regarding the IP traffic repre-
sented by the flows.

The third major component of FlowScan is
RRDtool. RRDtool is described in [RRDtool] and is
well documented in the supplied on-line manual
pages. The FlowScan system uses RRDtool to store
numerical time-series data and automatically distill or
aggregate it into averages over time. Using RRDtool
in this manner essentially replaces cflowd’s arts++ data
aggregation features, which have a different API, and
no integrated graphing features such as those built into
RRDtool. Specifically, RRDtool is used by FlowS-
can’s supplied report modules to maintain a set of
RRD files that form an extensive database of IP flow
metrics. Also, RRDtool and RRGrapher are responsi-
ble for producing output such as graphs of IP traffic as
GIF or PNG format image files.

The other components of the FlowScan package
are utilities such as the make command, the Unix cron
job-scheduling facility, and the gzip compression util-
ity. Also, there is the flowdumper utility, supplied with
the Cflow package, which is used to examine the raw
flows ‘‘manually’’.

Figure 5 is a diagram of FlowScan’s components
and the data objects on which they operate.

FlowScan uses the disk as a large buffer area in
which cflowd writes raw flow files that wait to be post-
processed by flowscan. This buffering is an important
fail-safe when used in networks with very high traffic
or flood-based DoS attacks because FlowScan some-
times develops a backlog of flow files yet to be pro-
cessed, which could total gigabytes in size.

Cisco’s NetFlow was chosen as the base technol-
ogy because of the ease of development within our
campus’ existing infrastructure.

Together with cflowd patches [patch], FlowScan
enables multiple flow log analyses in one pass:

• flow archiving for post mortems
• real-time analysis with cflowd
• near real-time or post-processing with FlowS-

can

UDP
flow PDUs
from routers

rrdtool graph
make/

graph
image
files

process
reads from file

process
writes to file

process/
executable

legend

data object/file

FlowScan System Overview

time−
stamped
raw flow
files

cron/gzip

flowscan

Round−
Robin
Database
RRD files RRGrapher

CGI

patched
cflowd

cflowdmux
shared
memory

flowdumper

Figure 5: An overview of the software components of
the FlowScan System.

Anatomy of a FlowScan Report Module
A FlowScan report module is an object-oriented

perl module that has FlowScan as its base class. The
module named FlowScan.pm implements the base
reporting class, and serves as an example of what a
FlowScan report must provide. Objects of a FlowS-
can-derived class have 3 methods, a.k.a. subroutines.
These are:
perfile – Before flowscan processes a given time-

stamped raw flow file produced by the patched
cflowd, it invokes the perfile subroutine. As such,
it is called once per file. The name of the file
about to be processed is passed as an argument
to this routine. For the convenience of derived
classes, perfile also converts the time-stamp
embedded within the raw flow file’s name to a
native Unix time_t representation. The names of
the raw flow files produced by the patched
cflowd are of the ‘‘flows.YYYYM-
MDD_HHMISS+TZ’’ format. For example,
‘‘flows.20000917_20:08:14-0500’’ is a file created
at 8:08 PM on September 17, 2000 in a locale
that is five hours west of GMT.

wanted – As flowscan reads each of the raw flows
from within a cflowd-produced flow file, it
invokes the wanted routine once per flow. This
routine decides whether the current flow is
wanted, i.e., whether it is an interesting flow for
the report. The wanted subroutine is at the heart
of a FlowScan report because it provides the
opportunity for a report to interrogate the val-
ues stored in each flow and act accordingly.

308 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Plonka FlowScan: A Network Traffic Flow Reporting and Visualization Tool

report – After flowscan processes the last raw flow in
a given flow file, it invokes the report routine.
This routine is responsible for dispatching with
any information ‘‘discovered’’ and collected by
the aforementioned wanted routine. As such,
this routine reports what has been discovered
about the flows analyzed within the current
flow file.

Two report classes are supplied with FlowS-
can-1.003: ‘‘CampusIO’’ and ‘‘SubNetIO’’. Campu-
sIO is implemented in the file CampusIO.pm, following
the usual naming convention for perl modules that
implement object-oriented classes. CampusIO is
derived from the FlowScan class defined in FlowS-
can.pm. SubNetIO is, likewise, implemented in SubNe-
tIO.pm and its base-class is CampusIO. That is, SubNe-
tIO is an extension that relies upon the functionality
provided by CampusIO. As such, it is appropriate to
run CampusIO or SubNetIO, but not both, since Sub-
NetIO’s functionality is a superset of the CampusIO’s
functionality.

Figure 6 is a simplified representation of the
logic of CampusIO in perlish pseudo-code.

package CampusIO;

sub perfile {
Remember the time-stamp from the filename.
whence = filename2time_t(filename)

}

sub wanted {
if (exporter_hop(flow::next_hop)) {

This flow is destined for another "local" flow-exporting router.
We’ll catch it later, if and when it’s exported by that router.
return 0

}

if (outbound_hop(flow::next_hop) or outbound_interface(flow::output_if)) {
This flow is outgoing.
outbound_total++

} elsif (inbound_address(flow::destination_address)) {
This flow is incoming.
inbound_total++

} else {
This flow (an "intranet" flow) is unwanted.
return 0

}

return 1
}

sub report {
update_RRD_files(whence, inbound_total, outbound_total)

}

Figure 6: The logic of CampusIO.

One of the features unique to the FlowScan sys-
tem is its modular reporting structure. Because most of
what the system does is the responsibility of periph-
eral modules, the flowscan script essentially just

provides a framework for arbitrary testing and peri-
odic reporting on flow content.

Stateful Inspection of Flows
The CampusIO report uses a number of heuris-

tics that help it to identify elusive traffic, such as that
of the Napster application [Plonka] or of PASV mode
ftp file transfers. These heuristics employ a method of
stateful inspection, which is essentially a variation of
the stateful inspection of packets employed by many
modern firewalls. Such firewalls track the state of an
application session by observing information within a
packet or series of packets. This technique enables the
firewall to filter packets according to whether or not a
session has been established and is still active. This
state information is gleaned via passive inspection of
either the packet header or application payload.

Similarly, FlowScan attempts to track the state of
an application session, or series of sessions, by
observing the information within flows. This flow-
based stateful inspection enables counters to be main-
tained and reported upon for flows which would other-
wise be left unidentified or be misidentified. For
example, the identifying of traffic using a simple test
of protocol and port number (i.e., tcp and port 6699) to
identify Napster data flows is likely to sometimes
erroneously match flows from applications such as
PASV mode ftp which negotiate dynamic, unprivileged

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 309

FlowScan: A Network Traffic Flow Reporting and Visualization Tool Plonka

port numbers. We minimize or eliminate this error by
employing a more complicated test based on stateful
inspection.

sub Napster_wanted {
if (ICMP != flow::protocol || not (TCP == flow::protocol and

(1024 < flow::srcport and 1024 < flow::dstport)) {
return 0

}
flow is either ICMP or TCP on unprivileged ports

if (inbound(flow)) {
direction = ’in’;
outside_addr = flow::srcaddr;
inside_addr = flow::dstaddr

} elsif (outbound(flow)) {
direction = ’out’;
outside_addr = flow::dstaddr;
inside_addr = flow::srcaddr

}

if (TCP == flow::protocol and ACK & flow::tcp_flags and
is_napserver(outside_addr)) {
flow involves an ouside host that is a "publicly advertised" napserver
remember_napster_server(outside_addr, flow::endtime);
remember_napster_user(inside_addr, flow::endtime)

} elsif (is_napuser(inside_addr)) {
flow involves an inside host that has talked to a napserver recently
if ((TCP == flow::protcol and

napster_ports(flow::srcport, flow::dstport)) or
(ICMP == flow::protocol and 28 == flow::bytes/flow::pkts)) {
Confidence is high that this is a Napster application flow because
flow is either TCP on Napster "default" ports or
flow is ICMP using the "known" Napster ICMP packet size.
napster_total++;
return 1

} else {
Confidence is lower that this is really a Napster application flow
because the port numbers are not Napster defaults or the ICMP
packet size isn’t right. We’ll keep a count of these anyway.
maybe_napster_total++

}
}

return 0
}

Figure 7a: Pseudo-code logic to detect Napster flows and PASV mode ftp data flows, part 1.

Figure 7 is a pseudo-code example of the logic
used to detect Napster flows and PASV mode ftp data
flows, which demonstrates the technique.

Also, without this sort of analysis, a large per-
centage of our campus traffic would be simply labeled
as ‘‘unknown’’. As it is now, still more than 30% of
our campus traffic remains unclassified.

FlowScan is not the only package that performs
such stateful inspection of flows. Although FlowScan
has for some time performed such inspection to iden-
tify Real Media flows and Napster flows, such a tech-
nique was developed independently by Simon Leinen
for Fluxoscope [Fluxoscope] to identify PASV mode

ftp data flows, a feature only more recently added to
FlowScan.

Life with FlowScan

FlowScan produces a variety of graphs that pro-
vide a different view of network traffic than that pro-
vided by most other tools. For example, flow-per-sec-
ond graphs are often as useful in network management
as are packet-per-second and byte-per-second (band-
width) graphs. FlowScan’s RRD files are configured
in such a way that they aggregate counters into less
granular totals over time. For instance, five minute
samples are combined into 30 minute samples, then
into two hour samples, then into 24 hours samples. As
a result, the sort of anomalies which we are able to
discover is determined by the time length of the graph.
In general we have found that by graphing over both

310 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Plonka FlowScan: A Network Traffic Flow Reporting and Visualization Tool

short and long terms to be useful. However, each
serves its own purposes.

sub ftp_PASV_wanted {
if (TCP != flow::protocol) {

return 0
}
flow is TCP
if (not (21 == flow::srcport or 21 == flow::dstport or

(1024 <= flow::srcport and 1024 <= flow::dstport))) {
return 0

}
flow is either ftp (control port 21) or
TCP on unprivileged ports (>= 1024)
if (1024 <= flow::srcport and 1024 <= flow::dstport) {

could be ftp PASV data flow
if (ftp_session_exists(flow::srcaddr,

flow::dstaddr,
flow::endtime)) {

flow is probably ftp PASV data
ftp_PASV_total++

}
return 1

}
flow is ftp (control port 21)
if (ACK & flow::tcp_flags) {

ftp (control port 21) stream is active
remember_ftp_session(flow::srcaddr, flow::dstaddr, flow::endtime)

}
if (FIN & flow::tcp_flags) {

ftp (control port 21) stream is closed
remember_ftp_session_closed(flow::srcaddr, flow::dstaddr, flow::endtime)

}
this flow wasn’t ftp PASV data
return 0

}
sub perfile {

...
Forget Napster server hosts (in the outside world) and user hosts
(on the inside) that haven’t talked Napster recently.
forget_quiet_napservers(30*60);
forget_quiet_napusers(30*60);
Forget ftp session if we have seen FIN and 15 mins has passed
since we don’t expect DATA flows so long after control port 21
has closed.
Also, forget ftp session if we haven’t seen ACK on its control
port 21 in the past 30 mins since it’s likely to have timed
out by now. Perhaps we missed the flow which indicated that
the control port 21 stream has closed.
forget_closed_or_quiet_ftp_sessions(15*60, 30*60);
...

}

Figure 7b: Pseudo-code logic to detect Napster flows and PASV mode ftp data flows, part 2.

Short-Term Analysis

By default, FlowScan’s window for short-term
analysis is 48 hours, that allows easy comparison of
those two consecutive days. The standard graphs

supplied with FlowScan provide views of traffic by
network or subnet, by application or service, and by
Autonomous System over the past 2 days. In each of
these three graph categories, graphs are available by
bits-per-second, packets-per-second, and flows-per-
second.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 311

FlowScan: A Network Traffic Flow Reporting and Visualization Tool Plonka

The graphs over a short, recent time frame are
based upon the data that FlowScan keeps at five-
minute intervals. The coarser-grained averaging in the
longer term graphs will often hide anomalies seen in
these finer-grained graphs. Network abuse, such as
flood-based Denial of Service attacks, are easily visi-
ble.

Specifically, in our experience with FlowScan,
we have learned that a discrepancy between the num-
ber of inbound and outbound flows or packets is an
indication of abusive traffic, such as a DoS flood. Sud-
den changes in packet counts, especially when con-
strained to one protocol, are usually indications of a
flood as well. Figure 8 is an example graph based on
flow counts representing a flood of traffic which was
unnoticeable on bandwidth usage graphs and nearly so
on packet count graphs. The traffic responsible for the
spikes in TCP flows was a flood of incoming 40-byte
TCP ACK packets to which the campus host to which
they were directed responded with 40-byte TCP RST
packets. Even though a flood of small packets with
dynamic source addresses produces spikes of equal
magnitude in both packet and flow graphs, it is more
readily noticed in the flow graph because the spike is a
much larger proportion of the total flows than it is of
the total packets.

Figure 8: Graph produced 2000/09/24 showing a
40-byte TCP DoS flood.

When visualizing over the short term, it is impor-
tant to remember that FlowScan increments traffic
counters at the time when the flows are exported.
More precisely, it records the values of these counters
with the time-stamp corresponding to the five-minute
interval in which cflowd wrote the flow to the raw
flow file. As such, the time reported in the graphs is
some function of the flow end time, but may involve
timeouts defined in the NetFlow implementation. This

time-stamp is thus not necessarily that when the repre-
sented traffic was actually observed by the router.

It is possible for a FlowScan graph to report a
quantity of traffic in a given five-minute period that
exceeds that actually forwarded by the router. On
occasion, the quantity reported could even exceed the
physical capacity of the link that carried it, which can
be misleading. The reason that FlowScan operates in
this way is twofold. First, for the sake of simplicity,
FlowScan assumes that the traffic represented there-in
must have occurred within the given five minute
period. Without this assumption, we couldn’t simply
accumulate totals, and plot those values vs. time. Sec-
ond, while NetFlow flows contain start and end time
information for the packets in a given flow, they do
not contain any hint as to how the delivery of those
packets was distributed between the flow start and end
time. So, even if FlowScan attempted to record the
real time at which traffic was observed, it would not
necessarily be any more accurate. We will see that the
effect of this ‘‘time kludge’’ is negligible as data is
coalesced into less granular time samples and visual-
ized in longer-term analyses.
Long-Term Analysis

When producing FlowScan graphs, one may sim-
ply specify the number of hours over which to plot,
such as 24 (hours) times 365 (days). Increasing the
hours significantly beyond the default becomes an
exercise in customization, since these graphs often
need to be annotated with dates and other descriptions
so that they have meaning to their intended audience.

Daily averages, which are used when graphing
anything but fairly recent time ranges, hide spurious
abuse activity such as flood-based Denial of Service
attacks because such attacks are usually short-lived
and will be severely minimized by averaging. As such
the primary value of graphing over extended periods
with daily averages is to aid in capacity planning and
perhaps to help target traffic shaping efforts.

Figure 9: Graph produced 2000/09/21 showing cam-
pus traffic by network over the past 550 days.

Figure 9 shows a sample FlowScan long-term
graph using daily averages over 550 days.

Information gleaned from this graph includes:
• The academic calendar dramatically influences

the traffic levels, but only with respect to traffic

312 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Plonka FlowScan: A Network Traffic Flow Reporting and Visualization Tool

to and from ResNet, the residence halls net-
work.

• There has been an increase in outbound ftp traf-
fic from the Computer Sciences department
within the past year.

• While our outbound traffic level has consis-
tently exceeded our inbound traffic level, the
discrepancy between the two appears to be
increasing.

rrdtool graph /your/file/name/here.gif \
--start ’Aug 15, 2000’ \
--end ’Sep 15, 2000’ \
--vertical-label ’bits/sec’ \
--title ’ftp PASV and ftp-data, +outbound/-inbound’ \
’DEF:A=ftp-data_src.rrd:in_bytes:AVERAGE’ \
’DEF:B=ftp-data_src.rrd:out_bytes:AVERAGE’ \
’DEF:C=ftpPASV_src.rrd:in_bytes:AVERAGE’ \
’DEF:D=ftpPASV_src.rrd:out_bytes:AVERAGE’ \
’CDEF:E=A,8,*,-1,*’ \
’CDEF:F=C,8,*,-1,*’ \
’CDEF:G=B,8,*’ \
’CDEF:H=D,8,*’ \
’COMMENT:A) ftp-data_src AVERAGE in_bytes’ \
’COMMENT:\n’ \
’COMMENT:B) ftp-data_src AVERAGE out_bytes’ \
’COMMENT:\n’ \
’COMMENT:C) ftpPASV_src AVERAGE in_bytes’ \
’COMMENT:\n’ \
’COMMENT:D) ftpPASV_src AVERAGE out_bytes’ \
’COMMENT:\n’ \
’AREA:E#0000FF:ftp-data src in (A,8,*,-1,*)’ \
’GPRINT:E:MIN:(min=%.1lf%S’ \
’GPRINT:E:AVERAGE:ave=%.1lf%S’ \
’GPRINT:E:MAX:max=%.1lf%S)’ \
’COMMENT:\n’ \
’STACK:F#00FFFF:ftp PASV src in (C,8,*,-1,*)’ \
’GPRINT:F:MIN:(min=%.1lf%S’ \
’GPRINT:F:AVERAGE:ave=%.1lf%S’ \
’GPRINT:F:MAX:max=%.1lf%S)’ \
’COMMENT:\n’ \
’AREA:G#00FF00:ftp-data src out (B,8,*)’ \
’GPRINT:G:MIN:(min=%.1lf%S’ \
’GPRINT:G:AVERAGE:ave=%.1lf%S’ \
’GPRINT:G:MAX:max=%.1lf%S)’ \
’COMMENT:\n’ \
’STACK:H#A0522D:ftp PASV src out (D,8,*)’ \
’GPRINT:H:MIN:(min=%.1lf%S’ \
’GPRINT:H:AVERAGE:ave=%.1lf%S’ \
’GPRINT:H:MAX:max=%.1lf%S)’ \
’COMMENT:\n’

Figure 10: RRDtool command created by RRGrapher.

Custom Graphs
In addition to using the ‘‘canned’’ graphs sup-

plied with the FlowScan distribution, FlowScan users
can produce custom graphs with the companion tool
named RRGrapher [RRGrapher]. RRGrapher is the
‘‘Round Robin Graph Construction Set’’ and is

implemented as a single perl CGI script, which runs
under a web server that has access to RRD files.
RRGrapher is also general front-end for RRDtool that
allows users to interactively build graphs of their own
design from any RRD files. Since it is based on RRD-
tool, not FlowScan, it allows one to generate graphs
containing data from RRD files containing data from
any RRDtool-based systems such as MRTG, Cricket,
and FlowScan.

Figure 11 is a sample graph produced using
RRGrapher. This graph shows the bandwidth used by
ftp data transfers from ftp servers to ftp clients both in
and out of the campus as determined by FlowScan.
Figure 10 is the resulting RRDtool command that
RRGrapher wrote and executed internally to produce

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 313

FlowScan: A Network Traffic Flow Reporting and Visualization Tool Plonka

the graph. At the user’s option, RRGrapher displays
this command when it produces the graph, allowing
the user to cut and paste it elsewhere, perhaps to
schedule it as a batch or cron job.

Figure 11: Graph showing campus ftp server traffic
Aug 15, 2000 through Sep 15, 2000.

FlowScan Problems

FlowScan, while still extremely useful in most
production networks, has exhibited a number of limi-
tations and illuminated a number of problems. These
may be instructive in the building of next generation
flow analysis tools.

FlowScan’s near real-time processing lags
behind when processing flow files containing mostly
‘‘pathological’’ flows, such as those flows which rep-
resent only one packet per flow. These degenerate
flows are produced to represent the flood of traffic
produced during most Denial of Service attacks
because the source or destination information is forged
so that each packet contains a different IP address or
port number than that which preceded it. In these situ-
ations the flow export rate approaches the router’s
packet forwarding rate, resulting in an avalanche of
flows directed to the collection host. Figure 8 is an
example graph of such traffic. Unless such traffic
eventually ceases within hours or is blackholed by the
network administrators, FlowScan would fall hope-
lessly behind, since it cannot process flows at rates
approaching the packet forwarding rate of high perfor-
mance routers with high capacity links.

Furthermore, under ‘‘normal’’ circumstances on
some networks, FlowScan can still become buried in
data. Even with the orders-of-magnitude reduction in
the number of flows vs. the numbers of packets that
those flows represent, flow processing tools may be
overrun with too many flows to process in close to
real-time on fast links. Currently, with Cisco’s version
5 flow-export, FlowScan might not be able to scale
beyond monitoring a couple fully-utilized OC3 (155
Mb/s) links. As technologies such as Gb ethernet and
optical switching are deployed in border routers, the
packet forwarding rate at these aggregation routers
could outpace the performance gains in commodity
personal computer hardware that are important for
flow post-processing. Specifically, the performance

adequacy of the processor and bus to persistent stor-
age is in question. So, as packet forwarding perfor-
mance improves, FlowScan-like processing may need
to move from the network’s DMZ to a location much
closer to the end-user. This migration will require the
deployment of arrays of measurement equipment.
Managing an array of such devices will present new
challenges for the network administrator.

In part, for tools other than FlowScan, these
backlog issues have been avoided by aggregating
totals on the router itself and then exporting those
totals less frequently as summary PDUs. Another
alternative is to adopt SNMP polling-based gathering
of flow statistics rather than collecting unsolicited,
exported flow data. However, both of these methods
prevent nearly all the interesting post-processing that
FlowScan currently performs, and also eliminate the
archivable record of network traffic that detailed flow
PDUs provide, which has proven invaluable during
investigations of security compromises and network
abuse.

Other problems occur when either NetFlow
export or FlowScan is misconfigured. In complicated
environments, configuring Cisco routers for cflowd
has been easy to do incorrectly, especially since ip
route cache flow should be enabled only on the appro-
priate interfaces. Misconfiguration can result in miss-
ing, skipped, or duplicated flows. Obviously, such
misconfiguration may result in inaccurate flow statis-
tics which, unfortunately, are dutifully stored into
RRD files by FlowScan. These files are FlowScan’s
sole means of keeping archive data to answer histori-
cal questions or examine long-term trends. To combat
this problem, in our use of FlowScan, we maintain a
diary of interesting events for correlation with spuri-
ous graph anomalies.

Finally, identifying flows as representing traffic
for specific applications is becoming increasingly dif-
ficult. Traditionally, the packets and flows of ‘‘well-
known’’ applications were easily identified by interro-
gating values in the IP header such as port number.
However, this identification is complicated by the
increasingly popular technique of dynamically negoti-
ating ports for connections, as well as the use of unre-
served port numbers by many modern applications.
Since flows do not contain the packet payload, we are
not always able to label a given flow by application
name with a high level of confidence, but instead must
resort to compromises and heuristics. Furthermore, as
VPNs, tunneling, and encryption become more com-
mon, network applications will intentionally hide the
payload and even the IP header. Quality-of-Service
initiatives may address some of these passive mea-
surement problems since the same criteria by which
packets will be marked for QoS purposes may be suf-
ficient for flow identification as well. The identifica-
tion of a flow’s user and service class may have to suf-
fice.

314 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Plonka FlowScan: A Network Traffic Flow Reporting and Visualization Tool

Future Directions and Possibilities

Alerts
Automatic event notification or alert capability

would be a useful addition to FlowScan. A report
module named ‘‘CampusIOAlert’’ is currently under
development which dispatches alerts to email
addresses or alphanumeric pagers. We have focused
on alerts based on tests that would be unlikely to gen-
erate false positives and would not need to be exe-
cuted more than once per flow file. For instance, we
have implemented an alert to report flood-based
Denial of Service attacks based simply on the detec-
tion of an imbalance of inbound versus outbound
flows.

The opportunity for alert modules to perform
tests on individual flows may also be useful, although
more processing intensive since such tests must be
executed once per flow rather than once per flow file.
For example, we have had good luck in identifying
hosts that were infected with a specific email-attach-
ment worm because this worm attempted to negotiate
an HTTP connection from the infected host to a well-
known destination host.

Ultimately, with a report such as Campu-
sIOAlert, FlowScan users will be able to write their
own alert tests using the expressive syntax of the perl
language itself. These alerts will also be able to test
values from RRDtool’s rrdtool graph command, which
has expressive RPN expression evaluation and test
features of its own.
Performance Enhancements

One of the largest challenges has been dealing
with flow file backlog created whenever the quantity
of flows exported by the router, and subsequently
written to disk, exceeds the quantity that FlowScan is
able to process in near real-time.

Converting FlowScan into a multi-threaded, or
simply multi-process, application was thought to be a
viable solution to the backlog issue, and was recently
implemented by Alexander Kunz, an ambitious
FlowScan user. This multi-process flowscan enlists the
help of another flowscan process whenever FlowScan
had more than one flow file yet to be processed. A
mutex technique in which each process takes a num-
bered ‘‘ticket’’ was employed to ensure that subse-
quent updates of the RRD files occurred in the proper
time-series order.

At the time of this writing, September 2000, the
challenge of integrating this multi-process patch into
the mainline FlowScan distribution has been delayed
in favor of simply improving the performance of the
single-threaded model. A faster single-threaded solu-
tion avoids those complications inherent in multi-
threading which we have yet to address, namely that
the FlowScan code would need to enforce serialized
access to its internal data structures used for stateful
inspection. Also, light-weight thread support in perl,
while available, is still considered experimental.

Instead, to vastly improve FlowScan’s single-
process performance, IP address prefix matching was
reimplemented with Patricia Trie lookups in a C lan-
guage extension to perl – i.e., a perl module. The term
‘‘Trie’’ is derived from the word ‘‘retrieval’’ but is
pronounced like ‘‘try’’. Patricia stands for ‘‘Practical
Algorithm to Retrieve Information Coded as Alphanu-
meric’’ and is thoroughly described in [WrightS]. The
Patricia Trie performance characteristics are well-
known as it has been employed for routing table
lookups within the BSD kernel since the 4.3 Reno
release [Sklower]. We chose the Patricia data structure
and search algorithm upon realizing that FlowScan’s
decisions based upon IP addresses are nearly identical
to those decisions that an IP router must make when
delivering a packet based upon destination IP address.

Multi-vendor Compatibility

While nearly all the focus so far has been on
Cisco’s NetFlow feature, other network hardware ven-
dors have developed similar flow-based accounting
technology. Juniper, with its announcement of its
JUNOS software release 4.1R1 in August 2000, now
supports a sub-set of the accounting functionality
using the Cisco NetFlow-defined PDU formats.
Riverstone Networks, formally a portion of Cabletron,
has a protocol called LFAP: Lightweight Flow
Accounting Protocol. Related software, such as slate,
is available at [NMOps].

We are looking at the possibility of supporting
flow processing based on the implementations of these
or other vendors. Potentially one could build this sup-
port for FlowScan by enhancing cflowd to support
other flow export implementations, by modifying
other collectors to produce the cflowd-defined raw
flow file format, or by modifying FlowScan or the
underlying Cflow perl module to be able to process a
stream of flows of a different format.

Availability

FlowScan is freely available under the terms of
the GNU General Public License [FlowScan, GPL].
FlowScan-1.002, that was released March 21, 2000,
was used at approximately 100 sites. FlowScan-1.003
was released September 15, 2000. More information
on FlowScan is available at http://net.doit.wisc.edu/
˜plonka/FlowScan/ . A mailing list for flowscan users
is archived at http://net.doit.wisc.edu/˜plonka/list/flowscan/ .

Likewise, RRGrapher is freely available under
the same terms at http://net.doit.wisc.edu/˜plonka/
RRGrapher/ .

FlowScan’s primary building blocks, cflowd and
RRDtool were both developed with the support of
CAIDA. They are are freely available at http://www.
caida.org/tools/measurement/cflowd/ and http://ee-staff.
ethz.ch/˜oetiker/webtools/rrdtool/ , respectively.

Summary

FlowScan has become a useful tool for our net-
work engineering team. We have run it nearly

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 315

FlowScan: A Network Traffic Flow Reporting and Visualization Tool Plonka

continuously to measure and analyze all traffic to and
from our campus since late 1998. The resulting reports
and graphs have been of use for the detection of abuse
and other anomalies that are detrimental to the net-
work backbone’s performance as a whole. Without
such a tool, these incidents would have gone unex-
plained. Also, FlowScan’s long-term graphs have been
used to convey the impact of Napster to our manage-
ment, and to justify progressive upgrade and band-
width acquisition plans for the campus. With its public
release, FlowScan has proven useful for these and
other purposes by a user base of educational institu-
tions, government institutions, corporations, and Inter-
net service providers.

When attempting to meet the challenges of man-
aging a heavily utilized IP network, near real-time
traffic analysis and visualization quickly becomes an
essential technology. One way to provide these capa-
bilities is by utilizing Internet traffic flow profiling
based on technology available in most networking
equipment. FlowScan is a system designed to provide
this analysis continuously in near-real time and can be
an effective tool to better understand Internet traffic.

Acknowledgements

The initial public FlowScan, released in Septem-
ber 22, 1999, was patiently tested by a number of vol-
unteers. The effort, feedback, and encouragement of
those users and of members of the flowscan mailing
list, has been much appreciated and has made FlowS-
can a better tool. James Deaton of OneNet, Ted
Frohling of the University of Arizona, John Kristoff of
DePaul University, Gregory Goddard of the University
of Florida, and others have made either a private or
public FlowScan-based web site accessible to myself
and other FlowScan users. This information has been
invaluable for research and development. Alexander
Kunz of Nextra in Germany and Michael Hare of the
University of Wisconsin-Madison have made tangible
contributions to FlowScan. Alexander hacked out the
first multi-threaded FlowScan, prototyped a visualiza-
tion enhancement for the graphs, and made the
changes available to the user community. Michael
enthusiastically began development of the aforemen-
tioned CampusIOAlert report module. Daniel
McRobb, Tobi Oetiker, and CAIDA have provided the
main tools upon which FlowScan is built, namely
cflowd and RRDtool. Thanks to K. Claffy, of the
Cooperative Association for Internet Data Analysis
(CAIDA), and Denis DeLaRoca, of the University of
California, Los Angeles who have helped by provid-
ing their thoughts and encouragement on this and
related work.

Author Information

Dave Plonka has developed a number of free
software packages, many of which are network man-
agement tools. He works as a systems programmer
doing network engineering within the Division of

Information Technology (DoIT) at the University of
Wisconsin – Madison. In the formative years of his
working life he was a programmer in the commercial
software industry focusing on the development of
portable libraries and relational database applications
under VMS and Unix. In 1991, he received a B.S. in
Computer Science from Carroll College in Waukesha,
Wisconsin. Dave can be reached at plonka@doit.
wisc.edu or via http://net.doit.wisc.edu/˜plonka/ .

References

[ClaffyPB] K. Claffy, G. C. Polyzos, and H.-W. Braun,
‘‘Internet traffic flow profiling’’, UCSD TR-
CS93-328, SDSC GA-A21526, http://www.caida.
org/outreach/papers/itf.html , November 1993.

[NetFlow] Simon Leinen, ‘‘FloMA: Pointers and Soft-
ware, NetFlow’’, http://www.switch.ch/tf-tant/
floma/software.html#netflow .

[MRTG] ‘‘MRTG’’, http://ee-staff.ethz.ch/̃ oetiker/webtools/
mrtg/ .

[Oetiker] Tobias Oetiker, ‘‘MRTG – The Multi Router
Traffic Grapher’’, USENIX LISA ’98 Confer-
ence Proceedings, 1998.

[Cricket] ‘‘Cricket Home’’, http://cricket.sourceforge.
net/ .

[Allen] Jeff R. Allen, ‘‘Driving by the Rear-View Mir-
ror: Managing a Network with Cricket’’,
USENIX NETA ’99 Conferences Proceedings,
1999.

[RRDtool] ‘‘RRDtool – Round Robin Database Tool’’,
http://ee-staff.ethz.ch/˜oetiker/webtools/rrdtool/ .

[Plonka] Dave Plonka, ‘‘UW-Madison Napster Traffic
Measurement’’, 2000., http://net.doit.wisc.edu/
data/Napster/ .

[Cisco] ‘‘Cisco’s IOS NetFlow feature’’, http://www.
cisco.com/warp/public/732/netflow/ , http://www.
isco.com/warp/public/cc/cisco/mkt/ios/netflow/tech/
napps_wp.htm .

[McRobb] Daniel W. McRobb, ‘‘cflowd configura-
tion’’, http://www.caida.org/tools/measurement/
cflowd/configuration/configuration.html ,
1998-1999.

[cflowd] ‘‘cflowd – CAIDA’s flow analysis tool’’,
http://www.caida.org/tools/measurement/cflowd/ .

[McRobb2] Daniel W. McRobb, ‘‘cflowd design’’,
http://www.caida.org/tools/measurement/cflowd/
configuration/design/design.html , 1998.

[patch] ‘‘patches to cflowd’’, http://net.doit.wisc.edu/
˜plonka/cflowd/ .

[Fluxoscope] Simon Leinen’s ‘‘Fluxoscope’’, http://
www.switch.ch/lan/stat/fluxoscope/ .

[Leinen] Simon Leinen, ‘‘Fluxoscope: a System for
Flow-based Accounting’’, 2000., http://www.
tik.ee.ethz.ch/˜cati/deliv/CATI-SWI-IM-P-000-0.4.
pdf .

[RRGrapher] Dave Plonka, ‘‘RRGrapher – the Round
Rober Grapher, a Graph Construction Set for

316 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Plonka FlowScan: A Network Traffic Flow Reporting and Visualization Tool

RRDtool’’, http://net.doit.wisc.edu/˜plonka/
RRGrapher/ .

[WrightS] Gary R. Wright, W. Richard Stevens,
TCP/IP Illustrated, Volume 2: The Implementa-
tion, Addison-Wesley Publishing Company, Inc.,
1995.

[Sklower] Keith Sklower, ‘‘A Tree-Based Packet
Routing Table for Berkeley UNIX’’, Proc.
USENIX Conference Proceedings, http://www.
cs.berkeley.edu/˜sklower/routing.ps , 1991.

[NMOps] ‘‘Network Management Operations’’, http://
www.nmops.org/ .

[FlowScan] ‘‘FlowScan’’, http://net.doit.wisc.edu/˜plonka/
FlowScan/ .

[GPL] ‘‘GNU General Public License’’ Version 2,
Free Software Foundation, Inc., http://www.gnu.
org/copyleft/gpl.html , 1991.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 317

