
Name: ________________________ Student ID:________________

 1

CS 354 Practice Final Exam
 Test topics:

 Virtual memory
o What is virtual and physical memory
o Why do we need virtual memory
o Page-based virtual memory

 Why pages?
 Single-level page table
 Multi-level page table

o Swapping/present bits/virtual memory as a cache
o TLBs—fully associative and set associative

 Dynamic memory allocators
o Implicit vs explicit allocators
o OS vs library separation
o Internal and external fragmentation
o Building a memory allocator

 Track free blocks—implicit vs explicit free list
 Choosing free blocks—first fit, best fit, next fit
 Extra space in blocks we are allocating—splitting blocks
 What to do when deallocating—coalescing blocks

o Assignment
 Linking and Loading

o Assembler
 Absolute and relative/indirect addressing

o Linker
o Loader

 Networking
o Client-server programming model
o Hub, bridge, switch, router
o 7 layer OSI model
o Packets
o DNS
o Socket programming

Name: ________________________ Student ID:________________

 2

Question 1: Virtual memory
Virtual Memory and Paging
Virtual memory is a key aspect of modern computing systems. In this question, we’ll explore how a simple
VMworks, and discuss some of its downsides.

Assume you have the following linear page table (i.e., the simplest page table, that is, just an array of page-table
entries) which is used to implement a virtual memory for a given process; each entry is 4-bytes in size and described
further (as needed) below. 0x00000000 0x80000018 0x00000000 0x00000000 0x00000000 0x80000019 0x00000000 0x00000000 0x8000000d 0x80000000 0x00000000 0x80000007 0x8000001c 0x00000000 0x00000000 0x8000001e

The size of each page is 4KB, and the entire virtual address space is 64KB in size.

1a How many pages are in a virtual address space?

1b How many page table entries are there in a single page table? What is PTBR in the context of page tables and
what does it contain?

Name: ________________________ Student ID:________________

 3

1c Assume the following format of a page table entry: 1 bit which determines whether the page is valid or not, and
the remaining bits are the PFN (physical frame number) of the translation. How many bytes in the address space
defined by the page table above can the process access legally?

1d Assume the program accesses virtual address 0x8e73. Given the page table above, is this access legal? If so, what
physical address does this translate to? (Show your work)

1e Assume the program accesses virtual address 0x4a2f. Given the page table above, is this access legal? If so, what
physical address does this translate to? (Show your work)

1f Assuming the page table above, what bad thing happens when the following C code is executed? Which line of C
causes this bad thing to happen? Explain. int *p; int x; p = NULL; x = *p;

1g Assume you can change what the pointer p is set to from NULL to some other value. What values could you set
p to in order to avoid any problems while running the above code snippet?

Name: ________________________ Student ID:________________

 4

1h Assume the page table above and the following assembly code sequence. What bad thing happens when this code
executes? Which line of assembly causes this bad thing to happen? Explain. mov $100, %eax mov (%eax), %ebx

1i Assume you could change one value in the PAGE TABLE above to ensure the assembly code runs without that
bad thing happening. What would you change in the page table? Would other bad things happen as a result?

1j (the downside) Overall, virtual memory seems to be useful for giving a process (a running program) the illusion
that it has its own private memory. But virtual memory also has negatives. What are they? Given that the negatives
exist, should we still use virtual memory?

Name: ________________________ Student ID:________________

 5

Question 2: TLBs
The Translation Lookaside Buffer (TLB)
The TLB is a special cache used to help implement virtual memory efficiently. In this question, we’ll explore how
the TLB works and then discuss some of the downsides.

Assume we have a system with 4KB pages and a 32-entry TLB that is fully associative. Let’s also assume we have
the following array that is accessed frequently by the running program, say in a loop: int m[SIZE];
We say that a data structure is “covered” by the TLB if, when accessing it frequently, the total number of pages that
the data structure resides upon is less than the number of entries in the TLB; that is, if there is little other memory
traffic on-going, each access to the data structure in question will likely yield a TLB hit.

2a How big can SIZE be before the array m is not “covered” by the TLB?
Imagine we now have the following loop which accesses the array: int m[SIZE]; int i, tmp = 0; for (i = 0; i < SIZE: i++) { tmp += m[i]; }

2b How many references to the TLB will such a loop yield? (Don’t forget about instructions!) Make any
assumptions you need to, such as loop variable i and the counter tmp are likely held in registers and so forth.

Name: ________________________ Student ID:________________

 6

2c Now, assume that SIZE is so big that the array will not be “covered” by the TLB. Thus, as we repeatedly run
the code above, it will likely generate a number of TLB misses; how many TLB misses will one run through this
entire code sequence generate? How many hits?

2d Assume a 32-bit virtual address and 4-KB page size. Now assume that the array m was located at virtual address
0x40000000. Assume that the page tablemaps the part of the address space holding m to a contiguous set of
physical pages, starting at 0x10000000. Finally, assume that the page table is a linear (array) page table, and is
located at physical memory location 0x20000000. If SIZE is set to 4096, and all accesses to m are TLB misses (i.e.,
it is the first time we ever run this piece of code), which physical memory locations will be accessed during one run
through this loop? (For simplicity, you can ignore references caused by instruction fetches)

2e (the downside) TLBS are not perfect. One place they achieve imperfection is in their replacement policy; when
making room for a new translation, the TLB must kick out an old one. Assume the TLB uses a policy known as
“least recently used” (LRU) to kick out an old translation, i.e., the TLB keeps track of when each entry is accessed
and kicks out the oldest one when it needs to put a new translation in. When does an approach such as LRU work
really poorly?

Name: ________________________ Student ID:________________

 7

Question 3: Webservers and Networking

Web servers are a critical part of the infrastructure of the modern world. In this question, we’ll explore some of the
aspects of how a web server works. Later questions try to test your understanding of Networking in general.

3a A typical web server first calls socket(), bind(), and listen() before entering into a loop in which it
calls accept(). What is the approximate role of these calls in the web server’s operation?

3b Web servers are built on top of a simple protocol known as HTTP. Describe the basics of an HTTP get request;
What does the client send to the server? What does the server send back? Assume HTTP 1.0 (but you can also
elaborate about 1.1 if you’d rather).

3c Name 3 of the layers in the OSI model.

3d Explain what static and dynamic content mean in the context of web servers.

3e Explain one difference between all of these: Hub, Bridge, Switch, Router

Name: ________________________ Student ID:________________

 8

Question 5: Linking and Loading

5a Explain why generating position independent code is useful for external procedure calls in shared
libraries? Name one table like data structure that is used to facilitate position independent code
generation.

5b Explain briefly in one or two lines what does loading an executable object file mean?

5c What is the major difference between an ELF relocatable object file and an ELF executable object file.

5d What are the different kinds of symbols in the context of a linker?

5e What the two phases of Relocation?

5f Name two real world applications where loading shared libraries dynamically from applications is
useful.

5g Name any two unix tools used to manipulate object files.

Name: ________________________ Student ID:________________

 9

 Solve the practice
problem 9.4 and
homework problems
9.11 , 9.12, 9.13
below.

